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Abstract

A dominating set of a graph is a vertex subset that any vertex belongs
to or is adjacent to. Among the many well-studied variants of domination
are the so-called paired-dominating sets. A paired-dominating set is a dom-
inating set whose induced subgraph has a perfect matching. In this paper,
we continue their study.

We focus on graphs that do not contain the net-graph (obtained by
attaching a pendant vertex to each vertex of the triangle) or the E-graph
(obtained by attaching a pendant vertex to each vertex of the path on three
vertices) as induced subgraphs. This graph class is a natural generalization
of {claw, net}-free graphs, which are intensively studied with respect to
their nice properties concerning domination and hamiltonicity. We show
that any connected {F, net}-free graph has a paired-dominating set that,
roughly, contains at most half of the vertices of the graph. This bound is a
significant improvement to the known general bounds.

Further, we show that any { E, net, Cs}-free graph has an induced paired-
dominating set, that is a paired-dominating set that forms an induced match-
ing, and that such set can be chosen to be a minimum paired-dominating set.
We use these results to obtain a new characterization of {E, net, Cj}-free
graphs in terms of the hereditary existence of induced paired-dominating
sets. Finally, we show that the induced matching formed by an induced
paired-dominating set in a {E, net, Cs}-free graph can be chosen to have at
most two times the size of the smallest maximal induced matching possible.
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1. INTRODUCTION

Let G be a graph. If S and T are two vertex subsets such that every member
of T either belongs to S or has a neighbor among S, then S is said to dominate
T. A dominating set X of a graph G is a vertex subset that any vertex of G
either belongs to or is adjacent to, i.e. X dominates V(G). There is a lot of
literature dealing with the concept of dominating sets and its many variants. An
introduction into the field of domination in graphs is the book by Haynes, Hedet-
niemi and Slater [9]. Among the common variants of domination is the concept of
paired-domination. A paired-dominating set P is a dominating set such that the
induced subgraph, denoted G[P], has a perfect matching. Note that any isolate-
free graph, i.e. any graph without isolated vertices, has a paired-dominating set.
The minimal size of a paired-dominating set, the paired-domination number, is
denoted 7,(G). A paired-dominating set of size v,(G) is said to be minimum.
An inclusionwise minimal paired-dominating set is said to be minimal. Paired
domination was introduced by Haynes and Slater [11] in 1998 with the following
application in mind. The members of a paired-dominating set can be thought of
as guards dominating the graph, and every guard has a partner providing backup.
Paired domination received a lot of attention in the literature and is still an active
topic. Among many others, some very recent papers on paired-domination were
written by Dorbec and Gravier [6], Mynhardt and Schurch [13] and the author
[15].

An induced matching of a graph G is a subset of the edges, no two edges of
which are adjacent or share a common vertex. Induced matchings were introduced
by Cameron [4], and are well studied now. There are also some combinations of
induced matchings and domination problems, e.g. efficient edge domination (see
[8] among others) and efficient total domination (see [16] among others). Another
natural combination of paired-domination and induced matchings, generalizing
those concepts mentioned above, are the so-called induced paired-dominating sets.
An induced paired-dominating set is a dominating set such that the induced
subgraph forms an induced matching. However, it is an A/P-complete problem
to decide if a given graph has an induced paired-dominating set [17]. If a graph G
has an induced paired-dominating set, the minimal size of such a set, the induced
paired-domination number, is denoted 7;,(G). An induced paired-dominating
set of size 7;,(G) is said to be minimum. Induced paired-dominating sets were
introduced and first studied, according to our knowledge, by Haynes, Lawson
and Studer [10] and later by Zelinka [19]. They are also studied (as dominating
induced matchings) by Telle [17].

The complete bipartite graph K 3 is often called the claw. The graph E' is
obtained from the claw by subdividing two of its three edges exactly once. The
graph net is obtained by attaching a pendant vertex to any vertex of the triangle
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Ks3. The graphs C5, net and E are displayed in Figure 1. Let G and H be two
arbitrary graphs. G is said to be H-free, if H is not a subgraph of G. If H is a
set of graphs, G is H-free if G is H-free for all H € H.

[T]

Figure 1. The graphs C5, net and E.

There is some literature concerning { claw, net}-free graphs, dealing with domina-
tion and hamiltonicity problems: It was shown by Damaschke [5] that a connected
graph is {claw, net}-free if and only if each of its connected induced subgraphs
has a hamiltonian path. Later, Brandstadt and Dragan [2] studied {claw, net}-
free graphs in view of their linear and circular structure. They proved that a
connected {claw, net}-free graph either has a doubly dominating induced cycle
or a dominating pair, i.e. a pair of vertices such that any connecting path is a
dominating set. Furthermore, problems concerning hamiltonicity of {claw, net}-
free graphs were studied by Kelmans [12] and Brandstddt, Dragan and Kéhler
[3]. In this paper, we deal with the problem of paired-domination and induced
paired-domination restricted to { E, net}-free graphs, a natural generalization of
{claw, net}-free graphs.

2. THE MAIN RESULTS

This section presents our main results. The proofs are given in Section 3.
Our first observation, arising from theorems of Tuza [18] and Bacsé [1], is
the following:

Lemma 1. If G is a connected {E, net}-free graph, then G has a connected
dominating set X such that G[X] is a path.

A bound on 7, for {E, net}-free graphs is obtained by the following theorem
by Dorbec and Gravier [6]. There, the graph K7, is obtained from K, by
subdividing each edge exactly once.

Theorem 2 (Dorbec, Gravier [6]). Let G be a connected graph of order n > 3.
If G is KT, o-free for some a > 1, then

(G) < 2(2(1¢:L:11)'

The bound is sharp.
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We observe that E is an induced subgraph of K7j. Thus if G is an E-free
connected graph of order n > 3, then G is also K7 s-free. Theorem 2 gives

2n + 2

(1) Ww(G) < 5

However, (1) is not asymptotically sharp for { £, net}-free graphs, i.e. 2/3 is not
an optimal factor (see Theorem 3). Using Lemma 1, we obtain a better bound,
which roughly says that +, is at most half the number of vertices of the graph
considered:

Theorem 3. Let G = (V, E) be a connected { E, net}-free graph of order n > 2.
Then

@) W@ <2|7|.

The bound is sharp.

Note that v,(Py) = 2 (ﬂ for all £ > 2 as was observed by Haynes and Slater [11].
Hence, (2) is attained by connected graphs with arbitrary large values of v,(G).

As the proof of Theorem 3 shows, an isolate-free connected {E, net}-free
graph has a paired-dominating set P such that G[P] is the disjoint union of
single edges with at most one path P,. That is, P is closed to be an induced
paired-dominating set. However, there are {E, net}-free graphs that do not have
an induced paired-dominating set (e.g. the cycle C5). As the next theorem shows,
if C is forbidden, induced paired-dominating sets always exist and they can be
chosen to be minimum paired-dominating sets:

Theorem 4. Let G be an isolate-free graph that is {E, net, Cs}-free. Then G
has an induced paired-dominating set that is a minimum paired-dominating set.
In particular, v,(G) = 7ip(G).

This leads us to the following characterization, parts of which were already proven
before by the author [15].

Theorem 5. Let G be a graph. The following statements are equivalent:
(i) Any isolate-free induced subgraph of G has an induced paired-dominating set.

(ii) Any isolate-free induced subgraph of G has an induced paired-dominating set
that s a minimum paired-dominating set.

(iii) G is {E, net, Cs}-free.

Our next result bounds ;;, from above in terms of a parameter related to induced
matchings. We denote by i¢m_(G) the minimal size of an inclusionwise maximal
induced matching of G (sometimes called the lower induced matching number).



PAIRED- AND INDUCED PAIRED-DOMINATION 477

An inclusionwise maximal induced matching of size im_(G) is called a minimum
maximal induced matching. This concept was studied, among others, by Orlovich
and Zverovich [14] and with Finke and Gordon [7]. Since any induced paired-
dominating set forms an induced matching, each graph G that has an induced
paired-dominating set fulfills

2im_(G) < 7p(G).

On the other hand, 7;,(G) is bounded from above by im_(G) in the following
way':

Theorem 6. Let G be an isolate-free graph such that any isolate-free induced
subgraph has an induced paired-dominating set. Then

(3) 1in(@) < dim_(G).

That is, there is an induced paired-dominating set such that its induced matching
s at most two times larger than a minimum mazimal induced matching.

The bound (3) is attained by Ps. We do not know if the bound is also sharp for
connected graphs with arbitrary large values of ;.

3. THE PROOFS

3.1. Proof of Lemma 1 and Theorem 2

Let D be a class of connected graphs. Dom(D) is defined to be the class of
connected graphs whose any connected induced subgraph H has a connected
dominating set X such that H[X] is isomorphic to a graph of D. For example,
Dom({Py : k € N}) is the set of connected graphs whose any connected induced
subgraph H has a connected dominating set X such that H[X] is a path.

Tuza [18] (and independently Bacsé [1]) gives the following characterization.
Note that the leaf graph F(G) of a graph G is obtained by attaching a pendant
vertex to each of the non-cutting vertices of G.

Theorem 7 (Tuza [18]). Let D be a nonempty class of connected graphs closed
under taking connected induced subgraphs. The minimal forbidden induced sub-
graphs of Dom(D) are the cycle Ciio if P, ¢ D but P,_y € D and the leaf graphs
of the minimal forbidden subgraphs of D.

We observe that the class { P : k € N} equals the set of connected graphs that do
not contain a cycle or the claw as induced subgraph. Now we are in the position
to prove Lemma 1.
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Proof of Lemma 1. Let G be a connected {E, net}-free graph. Then G does
not contain the leaf graph of C'3 as induced subgraph, since F'(C3) = net. Further,
for all £ > 4, F is an induced subgraph of F(C%). Hence, G does not contain
the leaf graph of a cycle as induced subgraph. Finally, since the leaf graph of the
claw contains E as induced subgraph, G € Dom({F} : k € N}) by Theorem 7.
Thus G has a connected dominating set that induces a path. [

Proof of Theorem 3. Let G = (V, E) be a connected {E, net}-free graph of
order n > 2. By Lemma 1, G has a connected dominating set that induces a
path. Among the connected dominating sets inducing a path, let X be a minimal
set, i.e. each of the two endvertices of the path G[X] has a private neighbor with
respect to X. If | X| = 1, then 7,(G) = 2 and hence (2) holds. Thus we can
assume that |X| > 2. Let vy, v9,...,v, be a consecutive ordering of the vertices
of X, ie. N(vi) N X = {va}, N(v2) N X = {v1,v3}, and so on. Furthermore, let
vg be the private neighbor of v; and let v,1 be the private neighbor of v,.

In the following, we construct a paired-dominating set P C (XU{v,41}) of G,
say with k pairs p1, pa, ..., pr. We will ensure that v,41 ¢ p; forall 1 << k-1,
ie. vp41 & P\ pg.

Further, we construct an injective function

(4) [P \pe = V(P \pe) U{vrsa}).
The injectivity of f and v,41 ¢ P\ pg imply
n = [P\ pe|+ [(P\ pr) U{vrp1}[ 2 2|P \ ppf +1 = 4k - 3.

The fact that v,(G) < 2k gives 7,(G) < (n+ 3)/2. Note that 7,(G) is always an
even number and thus it suffices to show that if (n + 3)/2 > 2i for some 4, then
also 2[n/4] > 2i. This is clear since

n+3)/2>2i=n>4i—-3= [n/4] >i=2[n/4] > 2i.

Recall the consecutive ordering vy, vo, ..., v, of the vertices of X. We iteratively
construct P and f by the following procedure. We start with P, = p; = {v1,v2}
and fi(v1) = vo, f1(ve) = vs. It is clear that the partial function f is injective.
Starting with ¢ = 1, we iteratively add a pair p;41 to the set P; to obtain the set
Pi11. Thereby, we define f;+1 as an extension of f; to the members of p;+1 (as
long as v, ¢ pi+1) and keep fi+1 injective as an invariant. When the procedure
terminates, we have obtained a paired-dominating set P and an injective function
f as described above.

We initialize Py = p1 = {v1,v2}, fi(v1) = vo, fi(v2) = vs3 and i = 1. Then
we proceed with the following steps:

1. Let j be such that p; = {v;,vj41}.
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2. If r < j + 3, then let pj11 = {vy,vp41} and P = P; U p;y;. Further, let
f = f;. Terminate the procedure.

(Logic of step 2: If r = j+3, we do not need to consider v;;2 as a member of
pi+1 (see proof of Claim 8). We can finish the procedure without extending
fi to the members of p; 11 in view of (4).)

3. If r > j + 4 and not every member of N(v;;3)\ X is dominated by F;, let
Pir1 = {vj43,vj44} and let Py = P;Up;y1. Extend f; to fi;1 by letting
fi+1(vj4+3) be an arbitrary member of N(vj13) \ X not dominated by FP;
and fiy1(vj44) = vjqs5. Increment ¢ by 1 and go to step 1.

(Logic of step 3: Since G is E-free, we do not need to consider v; s as
a member of p;;1 (see proof of Claim 8). Then v;;3 is included in P4
to guarantee that P;;; dominates all neighbors of the set {v1,va,...,vjy3}
and vj44 is added to Pjy1 to be the matching partner of v;i3 in G[P;yq].
After the step, all neighbors of the set {v1,vs,...,vj44} are dominated by
Pit1.)

4. If » > j + 4 and every member of N(vjy3) \ X is dominated by P, let
Pi+1 = {Vj4a,vj45} and let Py = Py Upirr. If v, € pigq, let f = fi,
P = P;;; and terminate the procedure. Otherwise, extend f; to fi4+1 by
letting fit1(vj+a) = vj+3 and fiy1(vjys) = vjy6. Increment ¢ by 1 and go
to step 1.

(Logic of step 4: Again, we do not need to consider vj;2 as a member of
Pi+1. As vj3 does not have a neighbor outside of X that is not dominated
by P;, it is not needed in the set P; ;. But since vj;3 has to be dominated,
we add vj 4 to P;yq1. Then v;5 is added to P11 to be the matching partner
of vj14 in G[Pi11]. After the step, all neighbors of the set {vi,v2,...,vj45}
are dominated by P;y1. If v, is among the pair p;11, then we can finish the
procedure without extending f; to the members of p;11 in view of (4).)

Claim 8. Let P and f be constructed by the procedure stated above. Then P is
a paired-dominating set and f is injective.

Proof of Claim 8. Let P and f be constructed by the procedure stated above
and let P consist of k pairs p1,pa,...,pr. Note that P C (X U {v,11}), p1 =
{v1,v2} and that v, € pg. Furthermore, P dominates every member of X.

To see that P is a paired-dominating set of GG, assume the contrary. Then,
as G[P] has a perfect matching (any member of P is contained in a pair p; for
some 7), P is not a dominating set (otherwise it would be a paired-dominating
set). Since X is a dominating set, there is a minimal index 3 <! < r — 1 such
that there is a vertex w € N(v;) \ X that is not dominated by P. Thus v; ¢ P.
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Since every member of X is dominated by P, either v; 1 € P or v;_1 ¢ P but
v_o € P.

First assume that v;_1 ¢ P but v;_o € P. Let v;_3 be a member of the pair
p;. Then in the construction of the pair p; 1, step 3 would be applied to v, since
w € N(v;) \ X is not dominated by P;. But then v; € P11 C P, a contradiction.

Thus v;—1 € P and so vj—o € P, too. If vyy;1 € P, then vj492 € P and
thus G[{vi_2,vi—1, v, V141, V142, w}] = E, a contradiction. Hence, v;11 ¢ P and
so w ¢ N(vj4+1), since otherwise step 3 would be applied to vy (as described
above). Hence, G[{v;—2,v1—1, Vi, V41, V42, w}] = E again, a contradiction.

To see that f is injective, we observe that if p; = {v;,v;41} is a pair of P
(with @ < k —1), then f(v;) # f(vj4+1). Furthermore, in view of the steps 3, 4
and 2, it is clear that the image of f; (denoted imf;) is dominated by the set P,
for all 1 <i <k — 1. On the other hand, no member of imf \ imf; is dominated
by P;, for all 1 <¢ < k — 1. This means that f is injective. 0O

As described above, Claim 8 proves Theorem 3. [

3.2. Proof of Theorem 4 and Theorem 5

Proof of Theorem 4. Let G be an isolate-free graph that is { E, net, C5}-free.
Among the minimum paired-dominating sets of G we choose the set P to be
minimal with respect to the number of edges in G[P]. Since P is a paired-
dominating set, G[P] has a perfect matching M. We claim that M is an induced
matching of G, i.e. P is an induced paired-dominating set of G. If |P| = 2, we
are done. Thus we can assume that |P| > 4. Let {a,b} and {c,d} be two distinct
edges of M. We claim that G[{a, b, ¢, d}] contains no edges but {a,b} and {c,d}.
Since {a,b} and {c,d} are arbitrary, this claim completes the proof.

We assume for contradiction that G[{a, b, ¢, d}] contains other edges but {a, b}
and {c,d}. For symmetry we can assume that G[{a,b, c,d}] is identical to either
one of the graphs G1, G2, G3, G4 or G5 displayed in Figure 2.

c d c d

SHORNK

a b a b

Figure 2. Gl, GQ, Gg, G4 and G5.

First we assume that G[{a,b,c¢,d}] = G;. Since P is a minimum paired-
dominating set, P\ {a,d} is not a paired-dominating set. In fact, it is not even
a dominating set, since G[P \ {a,d}] still has a perfect matching. Assume for
contradiction that neither a nor d has a private neighbor with respect to P.
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Therefore, every vertex not dominated by P \ {a,b} is adjacent to both a and
d. Let u be any vertex not dominated by P \ {a,b}. Then G|a,b,c,d,u] = Cs,
a contradiction. Thus we can assume, without loss of generality, that a has a
private neighbor u with respect to P. Let P’ = (P \ {b}) U {u}. Since u is
a private neighbor of a, G[P’] has fewer edges than G[P]. Hence, P’ is not a
paired-dominating set of G. P’ is not even a dominating set, since G[P’] still
has a perfect matching (we can substitute {a,b} by {a,u} in M). Hence, there
is a neighbor v of b not dominated by P’. But then G[{a,b,c,d,u,v}] 2 E, a
contradiction.

Therefore, G[{a,b, c,d}] is identical to G2, Gz, G4 or Gs. To shorten the
proof, we make the following general observation: Since P is a minimum paired-
dominating set, P\{a, b} is not a paired-dominating set. It is not even a dominat-
ing set, since G[P \ {a, b}] still has a perfect matching. Assume for contradiction
that neither a nor b has a private neighbor with respect to P. Hence, every
vertex not dominated by P \ {a,b} is adjacent to both a and b. Let u be any
vertex not dominated by P\ {a,b}. Then P’ = (P \ {b}) U {u} is a minimum
paired-dominating set of G. Since (N(u) N P)\ {b} = {a}, G[P'] has fewer edges
than G[P], a contradiction.

Thus, we can assume, without loss of generality, that a has a private neighbor
a’ with respect to P. By edge-minimality again, (P\{b})U{a’} is not a dominating
set of G. Thus there is a vertex b’ that is a private neighbor of b with respect to
P and not adjacent to a’. Again, (P \ {c,d}) U {a’,V'} is not a dominating set.
Hence, there is a vertex w ¢ P with N(w) NP C {c,d} that is not adjacent to o'
or b'.

If G{a,b,c,d}] = Ga, we can assume that ¢ is adjacent to w. But then
Gla,b,c,d’ V', w] 2 E, a contradiction.

If G[{a,b,c,d}] = Gs, then Gla,b,c,d,da’,b'] = net, a contradiction.

If G{a,b,c,d}] = G4, we have the following two cases: If ¢ is adjacent to
w, then Gla,b,c,ad’, b/, w|] = net, a contradiction. If d is adjacent to w, then
Gla,b,d,a’, V', w] = E, a contradiction.

Last we assume that G[{a,b,c,d}| = G5. Further we can assume that c is
adjacent to w. But then Gla,b,c,d,b', w] = net, a contradiction. |

Proof of Theorem 5. Let G be an isolate-free graph.
If G is {FE, net, Cs}-free, G has an induced paired-dominating set that is a
minimum paired-dominating set by Theorem 4. Hence, (iii) implies (i) and (ii).
On the other hand, it is easy to see that none of the graphs in the set { E, net,
C5} have an induced paired-dominating set. Therefore, both of the conditions (i)
and (ii) imply (iii). This completes the proof. |
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3.3. Proof of Theorem 6

Proof of Theorem 6. We assume for contradiction that there is a smallest
number k such that there is an isolate-free graph G with im_(G) = k that
fulfills the assumption of Theorem 6 but violates (3). By Theorem 5, G is {E,
net, Cs }-free.

First, we assume k = 1. Let {m = {u,v}} be a minimum maximal induced
matching of G. Let U be the vertices that are not dominated by {u,v}. We
assume for contradiction that U is not an independent set, i.e. there is an edge
e € E(G[U]). By choice of U, e can be added to {m} and the resulting set would
still be an induced matching of G, a contradiction. Hence, U is an independent
set. This fact will be used in the proof several times.

If U = 0, {u,v} is an induced paired-dominating set of G, a contradiction.
Thus |U| > 1. In each of the following case distinctions we show that the set
{u,v} can be extended to a paired-dominating set of size 4, i.e. 7,(G) < 4im(G).
But then the following contradiction appears: By Theorem 4, v;,(G) = v,(G) and
hence (3) holds for G. If |U| = 1, we choose an arbitrary neighbor of the unique
vertex w € U, say w’, and observe that the set {u, v, w, w'} is a paired-dominating
set.

If Ul =2, say U= {w,w'}, we first assume that N(w) C N(w'). We
choose an arbitrary neighbor w” of w and observe that {u,v,w,w”} is a paired-
dominating set of G. The case N(w’) C N(w) is dealt with in a similar way. Now
we assume that N(w) and N(w’) are incomparable. Thus there are two distinct
vertices, say x and x’, such that x is a neighbor of w and 2’ is a neighbor of w’'.
In particular, z and 2’ do not belong to U. We claim that G[{u,v,z,2'}] has a
perfect matching, i.e. {u,v,z,2'} is a paired-dominating set. If z is adjacent to
2’, the case is clear. Thus we assume that x is not adjacent to x’. If neither x nor
x’ are adjacent to u, both are adjacent to v. But then G[{u,v,z, 2, w,w'}| = E,
a contradiction. Hence, z or z’ is adjacent to u. By symmetry the same holds
for v. Therefore, G[{u, v, x,2z'}] has a perfect matching and thus {u,v,z,2'} is a
paired-dominating set.

So |U|] > 3. Clearly, the set W = (N(u) U N(v)) \ {u,v} dominates U,
i.e. every vertex of U has a neighbor in W. We choose the set W/ C W to be
inclusionwise minimal with the property that every vertex of U has a neighbor
in W’. By minimality, for every vertex w € W’ there is a vertex w’ € U with
N nW' = {w}. If |W'| =1, we add W’ and an arbitrary member of U to
{u,v} and obtain a paired-dominating set of size 4. If |W’'| = 2, let x and y be
the two members of W’ and let 2’ and y’ be members of U with N(2')NW' = {x}
and N(y) N W' = {y}. If G[{u,v,x,y}] has a perfect matching, {u,v,z,y} is a
paired-dominating set of size 4. If G[{u, v, z,y}| does not have a perfect matching,
it is isomorphic to K7 3 (the only connected graph on 4 vertices without a perfect
matching). But then G[{u,v,z,y,2’,y'}] = E, a contradiction. Thus |W’| > 3.
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Let z, y and 2z be any three members of W’ and let 2/, ¢/ and 2z’ be members
of U with N(z') n W' = {z}, N/)nW' = {y} and N(z')n W' = {z}. If
G[{z,y, z}] is connected, either G[{z,y,z}] = P3 or G[{z,y,z}] = Ks3. Then
G{z,y,z,2',y,2'}| =2 E or G[{z,y,z,2',y,2'}] = net respectively, but both
cases are contradictory. Hence, G[{z,y, z}] is not connected.

First, we assume that z is adjacent to y and so z is isolated in G[{z,y, z}].
Furthermore, we assume that z and y have a common neighbor in {u,v}, say
u. Then z is not adjacent to u, since otherwise G[{u,z,y,z,2',y'}] = net, a
contradiction. Hence, z is adjacent to v. If both x and y are not adjacent to
v, then G[{u,v,z,y,2’,y'}] = net, a contradiction. On the other hand, if x
and y are both adjacent to v, then G[{v,x,y, z,2’,y'}] = net, a contradiction.
Thus we can assume that = is adjacent to v and y is not adjacent to v. But
then G[{v,x,y,z,2',y'}] = E, a contradiction. Therefore, 2 and y do not have
a common neighbor among {u,v}. Without loss of generality, we can assume
that z is adjacent to w. Then G[{u,z,y,z,2',y'}| = E, a contradiction. Using a
symmetric argumentation, we see that {x,y, z} must be an independent set.

If z, y and 2z have acommon neighbor in {u,v}, say u, then
GHu,z,y,z,2",y'}] £ E, a contradiction. Hence, we can assume that N(z) N
{u,v} = {u} and N(y)N{u,v} = {v}. Further, we can assume that z is adjacent
to u. If z is adjacent to v, then G[{u,v,x,y, 2, 2'}] = net, a contradiction. Thus
z is not adjacent to v. But then G[{u,v,z,z,2',2'}] = E, a contradiction.

Since the assumption k£ = 1 was shown to be contradictory, k > 2.

Let G fulfill im_(G) = k. Let M be a minimum maximal induced matching
of G and let m = {u,v} € M be arbitrary. Let W = N(u)UN (v) and let U be the
vertices that are isolated in G[V \ W]. We observe that both the graphs G[W UU]
and G[V \ (W UU)] are isolate-free. Since {m} is a minimum maximal induced
matching of GIWUU], im_(G[WUU]) = 1. Further, im_(G[V\(WUU)]) < k—1,
since in G the edge m can be added to any induced matching of G|V \ (W UU)].
By choice of k, (3) holds for G[W U U] and G[V \ (W U U)] and thus also for G.
This completes the proof. [
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