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Abstract

A graph whose edges are labeled either as positive or negative is called
a signed graph. In this article, we extend the notion of composition of
(unsigned) graphs (also called lexicographic product) to signed graphs. We
employ Kronecker product of matrices to express the adjacency matrix of
this product of two signed graphs and hence find its eigenvalues when the
second graph under composition is net-regular. A signed graph is said to be
net-regular if every vertex has constant net-degree, namely, the difference of
the number of positive and negative edges incident with a vertex. We also
characterize balance in signed graph composition and have some results on
the Laplacian matrices of this product.
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1. Introduction

All graphs in this article are finite and simple. The objective of this paper is to
extend the notion and some results available in unsigned graph theory associated
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with the lexicographic product of graphs to signed graphs. Moreover we deal
with the balance of the lexicographic product of signed graph as the theory of
balance is an important aspect in the case of signed graphs. For all definitions in
(unsigned) graph theory used here, unless otherwise mentioned, reader may refer
to [5, 6]. Much has been discussed in literature about the lexicographic product
of graphs (for example, see [5, 6, 11, 12]). We denote by G = (V,E), a simple
(unsigned) graph with the vertex set V and the edge set E. If G1 = (V1, E1) and
G2 = (V2, E2) are two graphs, their lexicographic product G1[G2] is defined as
the graph with the vertex set V1×V2 and the vertices u = (ui, vj) and v = (uk, vl)
are adjacent whenever ui is adjacent to uk or when ui = uk and vj is adjacent to
vl. We shall extend this definition to signed graphs.

Signed graphs (also called sigraphs), with positive and negative labels on the
edges, are much studied in the literature because of their use in modeling a variety
of physical and socio-psychological processes (for example, see [2, 3]) and also
because of their interesting connections with many classical mathematical systems
(see [15]). Formally, a sigraph is an ordered pair Σ = (G, σ) where G = (V,E) is
a graph called the underlying graph of Σ and σ : E → {+1,−1} called a signing,
is a function (also called a signature) from the edge set E of G into the set
{+1,−1}. We define the lexicographic product Σ1[Σ2] (also called composition)
of two signed graphs Σ1 = (V1, E1, σ1) and Σ2 = (V2, E2, σ2) as the signed graph
(V1 × V2, E, σ) where the edge set E is that of the lexicographic product of
underlying unsigned graphs and the signature function σ for the labeling of the
edges is defined by

(1) σ
(

(ui, vj)(uk, vl)) =

{

σ1
(

uiuk) if i 6= k,

σ2
(

vjvl) if i = k.

A signed graph is all-positive (respectively, all-negative) if all of its edges are
positive (respectively, negative); further, it is said to be homogeneous if it is
either all-positive or all-negative and heterogeneous otherwise. Note that a graph
can be considered to be a homogeneous signed graph. A signed graph Σ is said
to be balanced or cycle balanced if all of its cycles are positive, where the sign of
a cycle in a signed graph is the product of the signs of its edges.

To obtain certain results in lexicographic products of signed graphs, in the
sequel, we deal mainly with the adjacency matrix and Laplacian matrix of a
signed graph which are direct generalization of familiar matrices from ordinary,
unsigned graph theory. If Σ = (G, σ) is a signed graph where G = (V,E) with
V = {v1, v2, . . . , vn} and if we denote an edge belonging to the edge set E of Σ
as eij = vivj , then its adjacency matrix A(Σ) = (aij) is defined as,

aij =

{

σ(vivj) if vivj ∈ E,

0 otherwise.
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The Laplacian matrix of a signed graph Σ = (G, σ) is given by L(Σ) = D(Σ) −
A(Σ), where D(Σ) is the diagonal matrix of degrees of vertices of Σ.

The roots of the characteristic polynomial det(λIn −A(Σ)) of the adjacency
matrix A(Σ) are called the eigenvalues of Σ. We denote the eigenvalues of a
signed graph of order n by λj for 1 ≤ j ≤ n and Laplacian eigenvalues by λL

j .

Eigenvalues of the adjacency and Laplacian matrices of a graph have been widely
used to characterize properties of a graph and extract some useful information
from its structure. When we have two signed graphs to deal with, say Σ1 and Σ2,
the former is considered to be of order m and the latter to be of order n. Their
eigenvalues are taken, respectively, as λi and µj . We denote by Jn the square
matrix of order n with all ones and by j the column vector of all ones, and +Kn

denotes the all-positive complete graph of order n.

Kronecker product of an m × n matrix A = (aij) and a p × q matrix B is
defined to be the mp× nq matrix A⊗B = (aijB).

Lemma 1 [16]. If A and B are square matrices of order m and n respectively,

then A⊗B is a square matrix of order mn. Also (A⊗B)(C ⊗D) = AC ⊗BD,

if the products AC and BD exist.

Lemma 2 [16]. If A and B are square matrices of order m and n respectively

with eigenvalues λi (1 ≤ i ≤ m) and µj (1 ≤ i ≤ n), then the eigenvalues of

A⊗B are λiµj and that of A⊗ In + Im ⊗B are λi + µj.

2. Preliminaries

For the definitions and the eigenvalues of the following graph products available
for (unsigned) graph, one may refer to [5] and the same for signed graphs can be
found in [8].

Given two signed graphs Σ1 = (V1, E1, σ1) and Σ2 = (V2, E2, σ2), their Carte-
sian product Σ1×Σ2 is defined as the signed graph (V1×V2, E, σ) where the edge
set E is that of the Cartesian product of underlying unsigned graphs and the
signature function σ for the labeling of the edges is defined by

σ
(

(ui, vj)(uk, vl)) =

{

σ1
(

uiuk) if j = l,

σ2
(

vjvl) if i = k.

The strong product Σ1 ⊠ Σ2 of two signed graphs Σ1 = (V1, E1, σ1) and
Σ2 = (V2, E2, σ2) is defined as the signed graph (V1 × V2, E, σ) where the edge
set E is that of the strong product of the underlying unsigned graphs and the
signature function σ for the labeling of the edges is defined by

σ
(

(ui, vj)(uk, vl)) = σ1
(

uiuk)σ2
(

vjvl).
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In the examples given in the main section, we use the following lemmas found in
[7] and [8]. We follow the notation, [r], for an integer r, such that [r] = 0 if r is

even and [r] = 1 if it is odd. We denote by P
(r)
n , where 0 ≤ r ≤ n − 1, signed

paths of order n and size n− 1 with r negative edges where the underlying graph

is the path Pn. Also C
(r)
n , for 0 ≤ r ≤ n, denotes signed cycles with r negative

edges.

Lemma 3 [7]. The signed paths P
(r)
n , where 0 ≤ r ≤ n−1, have the eigenvalues

(independent of r) given by λj = 2 cos πj
n+1 for j = 1, 2, . . . , n.

Lemma 4 [8]. The eigenvalues λj of C
(r)
n for j = 1, 2, . . . , n and 0 ≤ r ≤ n

are given by λj = 2 cos
(2j − [r])π

n
.

The following three results on Cartesian product and strong product of signed
graphs are found in [8].

Lemma 5 [8]. Given two signed graphs Σ1 = (V1, E1, σ1) and Σ2 = (V2, E2, σ2)
where |V1| = m and |V2| = n, then the adjacency matrix A(Σ1 × Σ2) of the

Cartesian product Σ1 × Σ2 is A(Σ1) ⊗ In + Im ⊗ A(Σ2). Hence eigenvalues of

Σ1 × Σ2 will be the sum of the eigenvalues of Σ1 and Σ2.

Lemma 6 [8]. The Cartesian product Σ1 ×Σ2, of the signed graphs Σ1 and Σ2,

is balanced if and only if Σ1 and Σ2 are both balanced.

Lemma 7 [8]. The adjacency matrix of the strong product Σ1 ⊠ Σ2 will be the

Kronecker product of the adjacency matrices of Σ1 and Σ2 and its eigenvalues

will be the product of the eigenvalues of Σ1 and Σ2.

3. Adjacency Eigenvalues of Lexicographic Product

In this section, we generalize to signed graphs the expression for the adjacency
matrix of the composition of two unsigned graphs given in [5]. This expression
provides a way to calculate their eigenvalues in the sequel.

Theorem 8. If Σ1 = (V1, E1, σ1) and Σ2 = (V2, E2, σ2) are two signed graphs

where |V1| = m and |V2| = n, then the adjacency matrix A(Σ1[Σ2]) of the lexico-

graphic product Σ1[Σ2] is A(Σ1)⊗ Jn + Im ⊗A(Σ2).

Proof. A direct computation shows that A(Σ1)⊗ Jn + Im ⊗A(Σ2)

=









0Jn σ1(u1u2)Jn σ1(u1u3)Jn . . . σ1(u1um)Jn
σ1(u2u1)Jn 0Jn σ1(u2u3)Jn . . . σ1(u2um)Jn

. . . . . . . . . . . . . . .

σ1(umu1)Jn σ1(umu2)Jn σ1(umu3)Jn . . . 0Jn








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+









A(Σ2) 0 0 . . . 0
0 A(Σ2) 0 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . A(Σ2)









=









A(Σ2) σ1(u1u2)Jn σ1(u1u3)Jn . . . σ1(u1um)Jn
σ1(u2u1)Jn A(Σ2) σ1(u2u3)Jn . . . σ1(u2um)Jn

. . . . . . . . . . . . . . .

σ1(umu1)Jn σ1(umu2)Jn σ1(umu3)Jn . . . A(Σ2)









.

Now let us examine the (ui, vj)(uk, vl) elements of this matrix. We find them
as











σ1(uiuk) if ui 6= uk and uiuk ∈ E1,

σ2(vjvl) if vjvl ∈ E2 and ui = uk,

0 otherwise.

They are exactly what appear in the (ui, vj)(uk, vl) positions of A(Σ1[Σ2]).

Corollary 9. The adjacency matrix of Σ1[Σ2] can also be expressed as

(2) A(Σ1[Σ2]) = A(Σ1 × Σ2) +A(Σ1 ⊠ (+Kn)).

Proof. We have Jn = In + A(+Kn). Applying this in the expression for the
adjacency matrix of Σ1[Σ2] given in Theorem 8, we have the result.

Before we proceed further, we need some more definitions and notations. The net-
degree d±Σ(v) of a vertex v of a signed graph Σ is defined as d±Σ(v) = d+Σ(v)−d−Σ(v),
where d+Σ(v) and d−Σ(v) denote, respectively, the number of positive edges and the
number of negative edges incident with v. If no confusion arises, we may omit the
suffix and write them as d+(v) and d−(v). Also as usual, d(v) denotes the total
number of edges incident at v and of course, d(v) = d+(v) + d−(v). Properties
of the degree sequence of a signed graph can be seen in [4, 9, 10]. A signed
graph Σ is called net-regular if every vertex has the same net-degree and in that
case, we write the common value of net-degree as d±(Σ). We define, a signed
graph Σ = (G, σ) to be co-regular, if the underlying graph G is r-regular for
some positive integer r and Σ is net-regular with net-degree k for some integer
k. In this case we also define the co-regularity pair to be the ordered pair (r, k).

For example, the alternately signed cycle C
(n)
2n is a co-regular signed graph with

co-regularity pair (2, 0).

In general, though we cannot come up with a precise formula for the cal-
culation of the eigenvalues of the lexicographic product of two signed graphs,
which is the case even with (unsigned) graphs (see [5]), we have Theorem 12,
using Lemma 10 and Lemma 11, which generalizes a similar result given in [5]
for (unsigned) graph composition.
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Lemma 10 [14]. If Σ is a net-regular signed graph, then d±(Σ) is an eigenvalue

of Σ with j as an eigenvector.

Also, since the adjacency matrix of a signed graph is real and symmetric, from
the general spectral theory, we know that other eigenvectors will be orthogonal
to j. For emphasis, we state the result in the following lemma to fit it suitable
for the proof of Theorem 12.

Lemma 11. If Σ is a net-regular graph, then the eigenvector Yj= [y1, y2, . . . , yn]
T

corresponding to the eigenvalue µj 6= d±(Σ) satisfies
∑n

k=1 yk = 0.

Theorem 12. Let Σ1 and Σ2 be two signed graphs such that the latter is net-

regular. If the eigenvalues of Σ1 and Σ2 are, respectively, λ1 ≥ λ2 ≥ · · · ≥ λm

and µ1 = d±(Σ2), µ2, . . . , µn, then Σ1[Σ2] has eigenvalues λ1n + d±(Σ2), λ2n +
d±(Σ2), . . . , λmn + d±(Σ2) (each of multiplicity one) and µ2, µ3, . . . , µn (each of

multiplicity m).

Proof. Let Xi be the eigenvector corresponding to the eigenvalue λi of A(Σ1)
and Yj be the eigenvector corresponding to the eigenvalue µj of A(Σ2) for 1 ≤
i ≤ m and 1 ≤ j ≤ n. By Lemma 10, we have Y1 = j which is the eigenvector
corresponding to µ1 = d±(Σ2). Since Jn has rank 1, there is only one non-zero
eigenvalue which will be its trace= n. That is, Jn has one non-zero eigenvalue n

(with multiplicity 1) with the eigenvector j and 0 (with multiplicity n− 1) as the
other eigenvalues. Then,

A(Σ1[Σ2])(Xi ⊗ j) = (A(Σ1)⊗ Jn + Im ⊗A(Σ2))(Xi ⊗ j)
= A(Σ1)Xi ⊗ Jnj+ ImXi ⊗A(Σ2)j = λiXi ⊗ nj+Xi ⊗ d±(Σ2)j
= (λin+ d±(Σ2))(Xi ⊗ j)

showing that λin + d±(Σ2) is an eigenvalue of A(Σ1[Σ2]), for 1 ≤ i ≤ m. Again
when j 6= 1,

A(Σ1[Σ2])(Xi ⊗Yj) = (A(Σ1)⊗ Jn + Im ⊗A(Σ2))(Xi ⊗Yj)
= A(Σ1)Xi ⊗ JnYj + ImXi ⊗A(Σ2)Yj = λiXi ⊗ (

∑n
k=1 yk)j+Xi ⊗ µjYj

= λiXi ⊗ 0j+Xi ⊗ µjYj = µj(Xi ⊗Yj)
which gives the result that µj for 2 ≤ j ≤ n are the eigenvalues of A(Σ1[Σ2]).

4. Balance of the Lexicographic Product of Two Signed Graphs

Before we prove the criterion for the balance of a lexicographic product of two
signed graphs, we need an important notion called switching of signed graphs
(for more details refer to [14]). If θ : V → {+1,−1} is a function called switching

function, then switching of the signed graph Σ = (G, σ) by θ means changing σ

to σθ defined by:
σθ(uv) = θ(u)σ(uv)θ(v).
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The switched graph denoted by Σθ, is the signed graph Σθ = (G, σθ). We call
two signed graphs Σ1 = (G, σ1) and Σ2 = (G, σ2) to be switching equivalent, if
there exists a switching function θ : V → {+1,−1} such that Σ1 = Σθ

2. It can be
seen that switching preserves many features of the two signed graphs including
the eigenvalues [14]. Indeed, the following is a very important result.

Lemma 13 [14]. A signed graph is balanced if and only if it can be switched to

an all-positive signed graph.

Theorem 14. If Σ1 and Σ2 are two signed graphs with at least one edge for each,

then their lexicographic product or composition Σ1[Σ2], is balanced if and only if

Σ1 is balanced and Σ2 is all-positive.

Proof. If Σ1 is balanced and Σ2 is all-positive, then by Lemma 13, it is possible
to switch Σ1 to an all-positive signed graph Σ′

1, say and let θ : V (Σ1) → {+1,−1}
be the corresponding switching function. Define θ1 : V (Σ1[Σ2]) → {+1,−1} by
θ1(ui, vj) = θ(ui). Then we claim that Σ1[Σ2] is switching equivalent to the all-
positive signed graph Σ′

1[Σ2]. To see this, let the signatures of Σ1, Σ2 and Σ1[Σ2],
respectively, be σ1, σ2 and σc. As Σ1 is switching equivalent to Σ′

1, we have

σ1
θ(uiuk) = θ(ui)σ1(uiuk)θ(uk)

which implies that σ1(uiuk) = θ(ui)θ(uk), since σ1
θ is the all-positive signature.

Also, for uv = (ui, vj)(uk, vl) ∈ E(Σ′
1[Σ2])

σθ1
c (uv) = θ1(u)σc(uv)θ1(v) = θ(ui)σc(uv)θ(uk).

Using the definition of the composition of two signed graphs, see Equation (1),
this gives

σθ1
c (uv) =

{

θ(ui)σ1(uiuk)θ(uk) = (θ(ui)θ(uk))
2 = 1 if i 6= k,

θ(ui)σ2(vjvl)θ(ui) = (θ(ui))
2 = 1 if i = k,

since σ2 is the all-positive signature which thus leads to σθ1
c (uv) = 1 for all

uv ∈ E(Σ′
1[Σ2]) = E(Σ1[Σ2]), as required. Conversely, assuming that Σ1[Σ2]

is balanced, we have Cartesian product Σ1 × Σ2 as a subgraph of Σ1[Σ2]. So
Lemma 6 is applicable and hence Σ1 and Σ2 must be at least balanced. Now, we
claim that Σ2 cannot have any negative edge. On the contrary, if we assume that
Σ2 contains a negative edge, say vjvl, then we claim that it would result in an
unbalanced triangle in Σ1[Σ2], as per the definition of signed graph composition,
leading to a contradiction. To prove this claim consider the following cases.

Case 1. If there is a negative edge uiuk in Σ1. In this case the required
negative triangle, for example, is (ui, v1)(uk, vj), (uk, vj)(uk, vl), (uk, vl)(ui, v1),
with three edges being negative.

Case 2. If the edge uiuk is positive, then the same triangle in Case 1 will be
negative with one negative edge, giving an unbalanced triangle, as required.
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Example 15. Consider the lexicographic product P
(r1)
m [C

(n)
2n ] of the signed path

P
(r1)
m and the co-regular signed cycle C

(n)
2n such that d±(C

(n)
2n ) = 0. Then the

eigenvalues of this signed graph product are: 4n cos( πi
m+1) for 1 ≤ i ≤ m with

multiplicity one and 2 cos( (2j−[n])π
2n ) each of multiplicity m for 1 ≤ j ≤ 2n such

that j 6= n+[n]
2 . Also, by Theorem 14, P

(r1)
m [C

(n)
2n ] is unbalanced, since C

(n)
2n

contains negative edge, though P
(r1)
m is balanced.

On the other hand, if the cycle −Cn = C
(n)
n is the all-negative cycle, where

n ≥ 3 so that the eigenvalues of −Cn are −2 = d±(−Cn) and −2 cos(2πj
n
) for

1 ≤ j ≤ n − 1, then the eigenvalues of P
(r1)
m [−Cn], by applying the result in

Theorem 12, are n(2 cos( πi
m+1)) + (−2) = 2(n cos( πi

m+1) − 1) for 1 ≤ i ≤ m

with multiplicity one and −2 cos(2πj
n
) each of multiplicity m for 1 ≤ j ≤ n − 1.

Here also, as all the edges of −Cn are negative, by Theorem 14, P
(r1)
m [−Cn] is

unbalanced.

5. Laplacian Eigenvalues of Lexicographic Product

Lemma 16. For a vertex u = (ui, vj) in Σ1[Σ2], d
±(u) = nd±(ui) + d±(vj) and

d(u) = nd(ui) + d(vj).

Proof. From the definition of Σ1[Σ2], the number of edges (positive or negative)
adjacent with u = (ui, vj) can be counted by first taking into account the number
of edges (ui, vj)(uk, vl), incident with (ui, vj) when i = k, which is either d±(vj)
or d(vj), as the case may be, and then as the edges of Σ1 has a major role in
the composition, we count the edges originating from (ui, vj) and incident with
(uk, vl) when i 6= k, which is nd±(ui) or nd(ui), as the case may be. By using
the phrase ‘as the case may be’, we mean that the counting strategy may be to
count the positive and negative edges adjacent to the vertices separately or the
edge as such without considering the label on it. Thus we have the results in the
lemma.

Corollary 17. If Σ1 and Σ2 are net-regular signed graphs with net-degrees, re-

spectively, d±(Σ1) and d±(Σ2), then Σ1[Σ2] is a net-regular signed graph with

net-degree d±(Σ1[Σ2]) = nd±(Σ1) + d±(Σ2).

Proof. From Lemma 16, we have for a vertex u = (ui, vj) in Σ1[Σ2], d
±(u) =

nd±(ui) + d±(vj). By assumption, d±(ui) = d±(Σ1) for any vertex ui in Σ1 and
d±(vj) = d±(Σ2) for any vertex vj in Σ2. Therefore, d

±(u) = nd±(Σ1) + d±(Σ2)
which is a constant for any vertex u = (ui, vj) in Σ1[Σ2]. So, this constant value
is the net-degree of Σ1[Σ2], making it a net-regular signed graph.
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Theorem 18.

(3) D(Σ1[Σ2]) = nD(Σ1)⊗ In + Im ⊗D(Σ2) and

(4) L(Σ1[Σ2]) = nD(Σ1)⊗ In −A(Σ1)⊗ Jn + Im ⊗ L(Σ2)

Proof. We have from Lemma 16, d(u) = nd(ui) + d(vj) for a vertex u = (ui, vj)
in Σ1[Σ2]. As such, noting the fact that D(Σ1[Σ2]) is a diagonal matrix of order
mn, we first get that it can be written as a block partitioned diagonal matrix
with diagonal entries nd(ui)In+D(Σ2) for 1 ≤ i ≤ m. This when simplified leads
to Equation (3). To get Equation (4), apply Equation (3) and the expression for
the adjacency matrix A(Σ1[Σ2]) given in Theorem 8 and note also the fact that
L(Σ1[Σ2]) = D(Σ1[Σ2])−A(Σ1[Σ2]).

Theorem 19. If the underlying graph of Σ1 is regular of degree r1 and Σ2 is a

co-regular signed graph with the co-regularity pair (r2, d
±(Σ2)), then L(Σ1[Σ2]) =

(nr1 + r2)Imn −A(Σ1[Σ2]) and the Laplacian eigenvalues of Σ1[Σ2] are
λL
i1 = nλL

i + µL
1 = nλL

i + r2 − d±(Σ2) with multiplicity one, for 1 ≤ i ≤ m

and

λL
1j = nr1 + µL

j with multiplicity m, for 2 ≤ j ≤ n.

Proof. As Σ1 is regular of degree r1, its Laplacian eigenvalues and adjacency
eigenvalues are related by the equation λL

i = r1 − λi. Similarly for Σ2, we have
µL
j = r2 − µj and µL

1 = r2 − d±(Σ2). Moreover the underlying graph of Σ1[Σ2] is
regular of degree nr1 + r2. Therefore, by the definition of the Laplacian matrix,
L(Σ1[Σ2]) = (nr1 + r2)Imn − A(Σ1[Σ2]). As such, the remaining results follow
from Theorem 12 and Lemma 16.
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