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Abstract

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and
arcs of D, respectively.

A digraph D is 3-transitive if the existence of the directed path (u, v, w, x)
of length 3 in D implies the existence of the arc (u, x) ∈ A(D). In this
article strong 3-transitive digraphs are characterized and the structure of
non-strong 3-transitive digraphs is described. The results are used, e.g.,
to characterize 3-transitive digraphs that are transitive and to characterize
3-transitive digraphs with a kernel.
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1. Introduction

In this work, D = (V (D), A(D)) will denote a finite digraph without loops or
multiple arcs in the same direction, with vertex set V (D) and arc set A(D). For
general concepts and notation we refer the reader to [1, 4] and [7], particularly we
will use the notation of [7] for walks, if C = (x0, x1, . . . , xn) is a walk and i < j
then xiCxj will denote the subwalk (xi, xi+1, . . . , xj−1, xj) of C . Union of walks
will be denoted by concatenation or with ∪. For a vertex v ∈ V (D), we define the
out-neighborhood of v in D as the set N+

D (v) =
{
u ∈ V (D)

∣∣(v, u) ∈ A(D)
}

; when
there is no possibility of confusion we will omit the subscript D. The elements
of N+(v) are called the out-neighbors of v, and the out-degree of v, d+D(v), is the
number of out-neighbors of v. Definitions of in-neighborhood, in-neighbors and
in-degree of v are analogously given. We say that a vertex u reaches a vertex v in
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D if a directed uv-directed path (a path with initial vertex u and terminal vertex
v) exists in D. An arc (u, v) ∈ A(D) is called asymmetrical (resp. symmetrical)
if (v, u) /∈ A(D) (resp. (v, u) ∈ A(D)).

If D is a digraph and X,Y ⊆ V (D), an XY -arc is an arc with initial vertex in
X and terminal vertex in Y . If X∩Y = ∅, X → Y will denote that (x, y) ∈ A(D)
for every x ∈ X and y ∈ Y . Again, if X and Y are disjoint, X ⇒ Y will denote
that there are not Y X-arcs in D. When X → Y and X ⇒ Y we will simply write
X 7→ Y . If D1, D2 are subdigraphs of D, we will abuse notation to write D1 → D2

or D1D2-arc, instead of V (D1)→ V (D2) or V (D1)V (D2)-arc, respectively. Also,
if X = {v}, we will abuse notation to write v → Y or vY -arc instead of {v} → Y
or {v}Y -arc, respectively. Analogously if Y = {v}.

A digraph is strongly connected (or strong) if for every u, v ∈ V (D), there
exists a uv-directed path, i.e., a directed path with initial vertex u and terminal
vertex v. A strong component (or component) of D is a maximal strong subdi-
graph of D. The condensation of D is the digraph D? with V (D?) equal to the
set of all strong components of D, and (S, T ) ∈ A(D?) if and only if there is
an ST -arc in D. Clearly D? is an acyclic digraph (a digraph without directed
cycles), and thus, it has both vertices of out-degree equal to zero and vertices of
in-degree equal to zero. A terminal component of D is a strong component T of
D such that d+D?(T ) = 0. An initial component of D is a strong component S of
D such that d−D?(S) = 0.

A biorientation of the graph G is a digraph D obtained from G by replacing
each edge {x, y} ∈ E(G) by either the arc (x, y) or the arc (y, x) or the pair of
arcs (x, y) and (y, x). A semicomplete digraph is a biorientation of a complete
graph. An orientation of a graph G is an asymmetrical biorientation of G; thus,
an oriented graph is an asymmetrical digraph. A tournament is an orientation
of a complete graph. An orientation of a digraph D is a maximal asymmetrical
subdigraph of D. A complete digraph is a biorientation of a complete graph
obtained by replacing each edge {x, y} by the arcs (x, y) and (y, x).

Let D be a digraph with vertex set V (D) = {v1, v2, . . . , vn} and H1, H2, . . . ,
Hn a family of vertex disjoint digraphs. The composition of digraphs D[H1, H2,
. . . , Hn] is the digraph having

⋃n
i=1 V (Hi) as its vertex set and arc set

⋃n
i=1A(Hi)

∪
{

(u, v)
∣∣u ∈ V (Hi), v ∈ V (Hj), (vi, vj) ∈ A(D)

}
. The dual (or converse) of D,

←−
D is the digraph with vertex set V (

←−
D) = V (D) and such that (u, v) ∈ A(

←−
D)

if and only if (v, u) ∈ A(D). The directed cycle of length 3 will be denoted, as
usual, by C3.

A digraph is transitive if for every three distinct vertices u, v, w ∈ V (D),
(u, v), (v, w) ∈ A(D) implies that (u,w) ∈ A(D). Transitive digraphs have a lot
of properties, many of which can be verified straightforward by using the following
structural characterization, which can be found in [1] as an exercise.
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Theorem 1. Let D be a digraph D with strong components S1, S2, . . . , Sn. Then
D is a transitive digraph if and only if D = D?[S1, S2, . . . , Sn], where Si is a
complete digraph for 1 ≤ i ≤ n.

But, the structure of transitive digraphs is so rich that, working on this family,
many problems become trivial or have a very simple solution. In view of this
situation, some generalizations of transitive digraphs have been studied. With-
out doubt, the most studied generalization of transitive digraphs is the family
of quasi-transitive digraphs. A digraph is quasi-transitive if for every three dis-
tinct vertices u, v, w ∈ V (D), (u, v), (v, w) ∈ A(D) implies that (u,w) ∈ A(D)
or (w, u) ∈ A(D). Clearly, every semicomplete digraph is a quasi-transitive di-
graph, so, quasi-transitive digraphs generalize both, transitive and semicomplete
digraphs. Quasi-transitive have been characterized by Bang Jensen and Huang in
[2], and their structure is very similar to the structure of transitive digraphs. Once
again, this structural characterization has been very helpful to solve a large num-
ber of problems over this family, e.g., characterization of quasi-transitive digraphs
with 3-kings, Hamiltonicity in quasi-transitive digraphs, or the Laborde-Payan-
Xuong Conjecture for quasi-transitive digraphs.

Quasi-transitive digraphs were generalized with 3-quasi-transitive digraphs.
A digraph D is 3-quasi-transitive if for every directed path, (v0, v1, v2, v3), either
(v0, v3) ∈ A(D) or (v3, v0) ∈ A(D). Let us notice that in the definition of 3-
quasi-transitive digraphs, the subdigraph (v0, v1, v2, v3) considered is a directed
path, so it cannot happen that v0 = v3 and we can effectively work on digraphs
without loops. The family of 3-quasi-transitive digraphs were introduced by
Bang-Jensen in the context of arc-locally semicomplete digraphs, which generalize
both, semicomplete digraphs and semicomplete bipartite digraphs. A digraph is
arc-locally in-semicomplete if (z, x), (x, y), (w, y) ∈ A(D) and z 6= w implies that
(z, w) ∈ A(D) or (w, z) ∈ A(D). A digraph is arc-locally out-semicomplete if
(x, z), (x, y), (y, w) ∈ A(D) and z 6= w implies that (x,w) ∈ A(D) or (w, x) ∈
A(D). A digraph is arc-locally semicomplete if it is arc-locally in-semicomplete
and arc-locally out-semicomplete. These families are defined to fulfill a property
on some specific orientation of a path of length 3, in all of them, the existence of a
(undirected) 4-cycle can be inferred from the existence of the specific orientation.
There is one more orientation of a directed path of length 3 that induces the
existence of a fourth family of digraphs. A digraph is often called of the type
H4 if (x,w), (x, y), (z, y) ∈ A(D) and z 6= w implies that (w, z) ∈ A(D) or
(z, w) ∈ A(D). The problem of finding structural characterizations of these four
families of digraphs was proposed by Bang-Jensen. Besides transitive and quasi-
transitive digraphs, also arc-locally semicomplete digraphs [8] and arc-locally
in-semicomplete digraphs [13] have been characterized.

In [10], Galeana-Sánchez and the author introduce k-transitive and k-quasi-
transitive digraphs. A digraph D is k-transitive if the existence of a directed
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Figure 1. The family of digraphs Fn.

path (v0, v1, . . . , vk) of length k in D implies that (v0, vk) ∈ A(D). A digraph D
is k-quasi-transitive if the existence of a directed path (v0, v1, . . . , vk) of length k
in D implies that (v0, vk) ∈ A(D) or (vk, v0) ∈ A(D). Also in [10], some basic
properties on the structure of both k-transitive and k-quasi-transitive are proved.
These properties are used to prove the existence of n-kernels in both families.

The aim of this article is to characterize strong 3-transitive digraphs and give
a thorough description of the structure of non-strong 3-transitive digraphs. We
will use the following characterization of strong 3-quasi-transitive digraphs given
by Galeana-Sánchez, Goldfeder and Urrutia in [9].

Theorem 2 (Galeana-Sánchez, Goldfeder, Urrutia). Let D be a strong 3-quasi-
transitive digraph of order n. Then D is either a semicomplete digraph, a semi-
complete bipartite digraph or isomorphic to Fn (Figure 1).

Thus, Section 2 will be devoted to prove some basic results about 3-transitive
digraphs. In Section 3 the characterization of strong 3-transitive digraphs and
the structural description of non-strong 3-transitive digraphs are given. In Section
4, one application of the results of Section 3 is given: A characterization of 3-
transitive digraphs having a kernel. Also, an interesting problem concerning
underlying graphs of 3-transitive and 3-quasi-transitive digraphs is proposed.

2. Preliminary Results

We begin this section with a very simple remark that will be very useful through
this work.

Remark 3. A digraph D is a 3-transitive digraph if and only if
←−
D is 3-transitive.

The following is another simple, yet useful, property of k-transitive digraphs.

Proposition 4. If D is a k-transitive digraph with k ≥ 2, then D is k+n(k−1)-
transitive for every n ∈ N.
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Proof. Let D be a k-transitive digraph. We will proceed by induction on n.

For n = 1, consider (v0, v1, . . . , vk+(k−1)), a directed path of length k+(k−1).
From the k-transitivity of D we have that (v0, vk) ∈ A(D), so (v0, vk, vk+1, . . . ,
vk+(k−1)) is a v0vk-directed path of length k, and by the k-transitivity of D, we
have that (v0, vk+(k−1)) ∈ A(D).

Let us assume the result valid for n − 1 and let (v0, v1, . . . , vk+n(k−1)) be
a directed path of length k + n(k − 1) in D. By the induction hypothesis
(v0, vk+(n−1)(k−1)) ∈ A(D), and clearly (v0, vk+(n−1)(k−1), . . . , vk+n(k−1)) is a di-
rected path of length k in D.

It follows from the k-transitivity that (v0, vk+n(k−1)) ∈ A(D). The result is
now obtained by the Principle of Mathematical Induction.

As a particular case of Proposition 4, we can observe that a 3-transitive digraph
is n-transitive for every odd integer n. We can state this observation as the
following corollary.

Corollary 5. Let D be a 3-transitive digraph and (v0, v1, . . . , vn) a directed path
in D. Then (v0, vi) ∈ A(D) for every odd integer 1 ≤ i ≤ n.

Proof. It is straightforward from Proposition 4.

In [14], Wang and Wang proved some results describing the structure of non-
strong 3-quasi-transitive digraphs. Since every 3-transitive digraph is also 3-
quasi-transitive, the properties stated next hold also for 3-transitive digraphs.

Proposition 6 [14]. Let D′ be a non-trivial strong induced subdigraph of a 3-
quasi-transitive digraph D and let s ∈ V (D) \ V (D′) with at least one arc from
D′ to s and D′ ⇒ s. Then each of the following holds:

1. If D′ is a bipartite digraph with bipartition (X,Y ) and there exists a vertex
of X which dominates s, then X 7→ s.

2. If D′ is a non-bipartite digraph, then D′ 7→ s.

In the case of 3-transitive digraphs, the condition D′ ⇒ s in Proposition 6 not
necessary. The following proposition is some kind of analogous of Proposition 6
for 3-transitive digraphs, emphasizing the behavior of certain strong subdigraphs.

Proposition 7. Let D be a 3-transitive digraph and v ∈ V (D). The following
statements hold:

1. For every C3 in D such that there is a C3v-arc in D, then C3 → v.

2. For every C3 in D such that there is a vC3-arc in D, then v → C3.

3. For every
←→
Kn in D, n ≥ 3, such that there is a

←→
Knv-arc in D, then

←→
Kn → v.

4. For every
←→
Kn in D, n ≥ 3, such that there is a v

←→
Kn-arc in D, then v →←→Kn.
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5. For every
←−→
Kn,m = (X,Y ) in D such that there is a Xv-arc in D, then X → v.

6. For every
←−→
Kn,m = (X,Y ) in D such that there is a vX-arc in D, then v → X.

Proof. For 1. Let C3 = (x, y, z, x) be a cycle in D and (x, v) ∈ A(D). The
existence of the directed path (y, z, x, v) in D, implies that (y, v) ∈ A(D). Finally,
since (z, x, y, v) is a directed path of length 3 in D, (z, v) ∈ A(D). Thus C3 → v.

For 2. It suffices to dualize 1 using Remark 3.
For 3. Let D[S], with S = {1, 2, . . . , n}, be a complete subdigraph of D and

(1, v) ∈ A(D). Let i ∈ S \ {1} be an arbitrary vertex. Remember that n ≥ 3, so

there exists a vertex j ∈ S \ {1, i}. Now, since D[S] =
←→
Kn, we have the existence

of the directed path (i, j, 1, v), which implies that (i, v) ∈ A(D). But i is an
arbitrary vertex of D[S], and then we can conclude that D[S]→ v.

For 4. It suffices to dualize 3 using Remark 3.

For 5. Let
←−→
Kn,m = (X,Y ) be a complete subdigraph of D and x ∈ X. If

|X| = 1, then we are done. If not, let z ∈ X be a vertex such that z 6= x. Since
Y 6= ∅, there is a vertex y ∈ Y . Also, (z, y), (y, x) ∈ A(D), because D[X ∪Y ] is a
complete bipartite digraph. So (z, y, x, v) is a directed path of length 3 in D and
hence, (z, v) ∈ A(D). Thus, X → v.

For 6. It suffices to dualize 5 using Remark 3.

The following proposition is also due to Wang and Wang.

Proposition 8 [14]. Let D′ be a non-trivial strong subdigraph of a 3-quasi-
transitive digraph D. For any s ∈ V (D) \ V (D′), if there exists a directed path
between s and D′, then s and D′ are adjacent.

In the case of 3-transitive digraphs we can be a little more specific. The proof of
the following proposition will be omitted since it is almost the same as the one
given by Wang and Wang in [14].

Proposition 9. Let D′ be a non-trivial strong subdigraph of a 3-transitive digraph
D and s ∈ V (D) \ V (D′). Then each of the following holds:

1. If there exists an sD′-directed path in D, then an sD′-arc exists.

2. If there exists a D′s-directed path in D, then a D′s-arc exists.

The following couple of propositions will be used later to characterize strong
3-transitive digraphs.

Proposition 10. Let D be a strong 3-transitive digraph of order n ≥ 4. If D is
semicomplete, then D is complete.

Proof. For any (x, y) ∈ A(D), let P = (y0, y1, . . . , ys) be a shortest path from y
to x. If s ≥ 3, then by Corollary 5 we can find a shorter path than P from y to
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x. Suppose that s = 2, then (x, y, y1, x) is a 3-cycle in D. Let D′ = D[{x, y, y1}].
Since the order of D is n ≥ 4, there exists v ∈ V (D) \ V (D′). Also, D is strong,
so a D′s-directed path and an sD′-directed path exist in D. It follows from
Propositions 7 (1 and 2) and 9 that (y1, v), (v, x) ∈ A(D). So (y, y1, v, x) is a
directed path of length 3 in D and hence, (y, x) ∈ A(D). This contradicts that
s = 2. Thus, (y, x) ∈ A(D).

Proposition 11. Let D be a strong 3-transitive digraph. If D is semicomplete
bipartite, then D is complete bipartite.

Proof. Let (X,Y ) be the bipartition of D. It suffices to prove that for any
(v, u) ∈ A(D), (u, v) ∈ A(D). Since D is strong, there exists a path P from u
to v of length n. Again, since D is bipartite and u and v belong to the different
partite, n must be odd. By Corollary 5, (u, v) ∈ A(D).

3. The Structure of 3-transitive Digraphs

Let C∗3 and C∗∗3 be directed triangles with one and two symmetrical arcs, respec-
tively. Digraphs C3, C

∗
3 and C∗∗3 are shown in Figure 2.

C3 C∗
3 C∗∗

3

Figure 2. The digraphs C3, C
∗
3 and C∗∗

3 .

The characterization of strong 3-transitive digraphs is now proved.

Proposition 12. A strong digraph D of order n is 3-transitive if and only if it
is one of the following:

1. A complete digraph,

2. A complete bipartite digraph,

3. C3, C
∗
3 or C∗∗3 .

Proof. Since every 3-transitive digraph is 3-quasi-transitive, in virtue of Theo-
rem 2, a strong 3-transitive digraph must be either semicomplete, semicomplete
bipartite or isomorphic to Fn. But Fn is not 3-transitive, so a strong 3-transitive
digraph must be either semicomplete or semicomplete bipartite. It is clear that
every strong digraph of order less than or equal to 3 is either complete, complete
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bipartite or one of the digraphs C3, C
∗
3 or C∗∗3 . If D has order greater than or

equal to 4, and it is a semicomplete digraph, it follows from Proposition 10 that
D is complete. Finally, if D is semicomplete bipartite, it follows from Proposition
11 that D is complete bipartite.

As immediate corollary from Proposition 12, we get the following result.

Corollary 13. Let D be a 3-transitive digraph. Then D is Hamiltonian if and
only if D is strong and it is not bipartite or it is regular.

Let us recall that Proposition 7 describes the interaction of a single vertex with
some subdigraphs of a 3-transitive digraph D. This covers the case when a strong
component of D consists of a single vertex. In [14], the following proposition is
proved.

Proposition 14. Let D1 and D2 be two distinct non-trivial strong components
of a 3-quasi-transitive digraph with at least one D1D2-arc. Then either D1 7→ D2

or the digraph induced by D1 ∪D2 is a semicomplete bipartite digraph.

As it was noted before, every 3-transitive digraph is a 3-quasi-transitive digraph,
so Proposition 14 is also valid for 3-transitive digraphs. In an attempt to be
more explicit with the interaction between non-trivial strong components of a
3-transitive digraph, we state the following proposition. Nonetheless, we omit
the proof, since it is very similar to the proof of Proposition 14.

Proposition 15. Let D be a 3-transitive digraph and S1, S2 be distinct strong
components of D such that there exists an S1S2-arc. The following statements
hold:

1. If S1 contains a subdigraph isomorphic to C3, then S1 → S2.

2. If S2 contains a subdigraph isomorphic to C3, then S1 → S2.

3. If Si is a complete bipartite digraph with bipartition (Xi, Yi) for i ∈ {1, 2}
and if the S1S2-arc is an X1X2-arc, then X1 → X2.

4. If Si is a complete bipartite digraph with bipartition (Xi, Yi) for i ∈ {1, 2}
and there exist an X1X2-arc and a Y1X2-arc, then S1 → S2.

5. If Si is a complete bipartite digraph with bipartition (Xi, Yi) for i ∈ {1, 2}
and there exist an X1X2-arc and an X1Y2-arc, then S1 → S2.

As a direct consequence of Propositions 9 and 15, we have the following corollary.

Corollary 16. Let D be a 3-transitive digraph and S1 a strong component of D
which contains a subdigraph isomorphic to C3. If S1 → v for some vertex v ∈ V ,
then S1 → u for every vertex u ∈ V that can be reached from v. Dually, if v → S1

for some vertex v ∈ V , then u→ S1 for every vertex u ∈ V that reaches v.
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We have already proved that the structure of 3-transitive digraphs is very similar
to the structure of transitive digraphs. The following results are devoted to
a deeper exploration of the similarities between these families of digraphs. A
structural characterization of 3-transitive digraphs that are transitive is given.

Theorem 17. Let D be a non-strong 3-transitive digraph with strong components
S1, S2, . . . , Sp. Then D = D?[S1, S2, . . . , Sp] if and only if, for every pair of strong
components Si, Sj of D, such that an SiSj-arc exists in D, then:

1. If Si, Sj are complete bipartite digraphs, then D[Si ∪ Sj ] is not bipartite.

2. If one of Si and Sj is a complete bipartite digraph and the other consists of
a single vertex, then D[Si ∪ Sj ] is not bipartite.

Proof. The necessity is trivial. In order to prove the sufficient, let Si and Sj be
two distinct strong components of D such that there is an SiSj-arc. If both Si

and Sj are both non-trivial digraphs, then by 1 of the theorem and Proposition
14, we have that Si → Sj . Since the converse of a 3-transitive digraph is still
a 3-transitive digraph, we assume, without loss of generality, that Si is a non-
trivial complete bipartite digraph with bipartition (Xi, Yi) and Sj = {v}. Since
D[Si ∪ Sj ] is not a bipartite digraph, then there is a vertex x ∈ Xi such that
x→ v and there is a vertex y ∈ Yi such that y → v. By Proposition 6.1, we have
that Si → v.

Theorem 18. Let D be a 3-transitive digraph. Then D? is a transitive digraph
if and only if for every triplet of strong components S1, S2, S3 of D, such that:
Si consists of a single vertex vi, i ∈ {1, 3}; S2 is either a single vertex v2 or a
complete bipartite digraph with bipartition (X,Y ) and v1 → v2 → v3 or v1 →
X → v3 but there are neither v1Y -arcs nor Y v3-arcs in D, respectively, then
(v1, v3) ∈ A(D).

Proof. Let D be a 3-transitive digraph. If D? is a transitive digraph, then for
every triplet of strong components S1, S2 and S3 of D, such that there is an S1S2-
arc in D and an S2S3-arc in D, then there is an S1S3-arc in D. In particular, if
S1 and S3 consist of single vertices v1 and v3 respectively, then (v1, v3) ∈ A(D).

For the converse, let D be a 3-transitive digraph and S1, S2 and S3 strong
components of D, such that there is an S1S2-arc in D and an S2S3-arc in D. We
will prove that there is an S1S3-arc in D. If S1 contains an isomorphic copy of C3,
then, by Corollary 16, we have that S1 → S3 in D. If S3 contains an isomorphic
copy of C3, again, by Corollary 16, we have that S1 → S3. So, let us assume that
neither S1 nor S3 contains an isomorphic copy of C3.

It follows from Proposition 12 that S1 and S3 are either a single vertex or
complete bipartite digraphs. If S1 is not a single vertex, then it is a complete
bipartite digraph with bipartition (X1, Y1). Let us assume without loss of gener-
ality that the S1S2-arc is an X1S2-arc. Let (x1, u) be the S1S2-arc in D. Since
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S2 is a strong component of D, we have, by Propositions 12 and 15, two cases.
The first case is that a vertex s3 ∈ V (S3) exists, such that (u, s3) ∈ A(D). In
this case is clear that, for any vertex y1 ∈ Y1 (recall that Y1 6= ∅), (y1, x1, u, s3)
is a directed path of length 3 in D. By the 3-transitivity of D, we have that
(y1, s3) ∈ A(D), the desired S1S3-arc. The second case is that vertices v ∈ V (S2)
and s3 ∈ V (S3) exist, such that (u, v), (v, s3) ∈ A(D). Again, it is clear that
(x1, u, v, s3) is a directed path of length 3 and thus, (x1, s3) ∈ A(D), the desired
S1S3-arc. The case when S3 is a complete bipartite digraph can be obtained
dualizing the previous argument using Remark 3.

So, the remaining cases are when S1 and S3 consist of single vertices. We
have again two cases. First, when S2 contains a subdigraph isomorphic to C3,
then S2 → S3. So, there exist vertices s1 ∈ V (S1), u, v ∈ V (S2), s3 ∈ V (S3)
such that (s1, u), (u, v), (v, s3) ∈ A(D). Thus, (s1, u, v, s3) is a directed path of
length 3 in D. By the 3-transitivity of D, (s1, s3) ∈ A(D) is the desired S1S3-
arc. If S2 does not contain a subdigraph isomorphic to C3, then S2 is a single
vertex or complete bipartite. If S2 is a single vertex v2 or a complete bipartite
digraph with bipartition (X,Y ) such that v1 → v2 → v3 or v1 → X → v3 but
there are neither v1Y -arcs nor Y v3-arcs in D, respectively, then, by hypothesis
(v1, v3) ∈ A(D). Hence, we have the existence of an S1S3-arc. The remaining
case is that S2 is a complete bipartite digraph with bipartition (X,Y ) such that
v1 → X → v3, and either a v1Y -arc or a Y v3-arc exists. In the first case we have
by Proposition 15 that v1 → S2, and thus, vertices u ∈ X, v ∈ Y exist such that
(v1, v), (u, v3) ∈ A(D). So, (v1, v, u, v3) is a directed path of length 3 in D. For
the second case, again by Proposition 15, it follows that S2 → v3. Then, vertices
u ∈ X and v ∈ Y exist such that (v1, u), (v, v3) ∈ A(D). Therefore, (v1, u, v, v3)
is a directed path of length 3 in D. In either case, it follows by the 3-transitivity
of D that (v1, v3) ∈ A(D). So an S1S3-arc exists.

Since the cases are exhaustive, we have that D? is transitive.

Corollary 19. Let D be a 3-transitive digraph. Then D is a transitive digraph
if and only if every strong component of D is a complete digraph and, for every
triplet of strong components S1, S2, S3 of D, such that: Si consists of a single
vertex vi, i ∈ {1, 3}; S2 is either a single vertex v2 or a symmetrical arc (v2, v

′
2) ∈

A(D) and v1 → v2 → v3 but (v1, v
′
2), (v

′
2, v3) /∈ A(D), then (v1, v3) ∈ A(D).

Proof. It is clear from Theorems 1, 17 and 18.

Corollary 20. Let D be a 3-transitive digraph. If every strong component of D
is a complete digraph of order greater than or equal to 3, then D is transitive.

Proof. Let D be a 3-transitive digraph such that every strong component of D
is a complete digraph of order greater than or equal to 3. Then, by Theorem 18,
it is clear that D? is transitive. Also, in virtue of Theorem 15, we can observe
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Figure 3. A 3-transitive digraph without 3-transitive condensation.

that Si → Sj for every pair of strong components Si, Sj of D such that there
exists an SiSj-arc in D. Thus, D = D?[S1, S2, . . . , Sn], where {S1, S2, . . . , Sn} is
the set of strong components of D and D? is transitive. So, by Theorem 1, D is
transitive.

As we have already shown, the structure of 3-transitive digraphs is very similar
to the structure of transitive digraphs. We know that the condensation of a
transitive digraph is again transitive. A characterization of 3-transitive digraphs
with a transitive condensation has been already given, but a natural question
arises. Is the condensation of a 3-transitive digraph 3-transitive again? Sadly,
the answer is no, Figure 3 shows a counterexample to this fact.

Following similar ideas to those used to characterize the 3-transitive digraphs
with a transitive condensation in Theorem 18, we can characterize 3-transitive
digraphs with a 3-transitive condensation. The ‘bad’ configurations, preventing
the condensation of a 3-transitive digraph to be 3-transitive, are pointed out in
the following theorem.

Theorem 21. Let D be a 3-transitive digraph. Then D? is a 3-transitive digraph
if and only if for every 4-set, {S1, S2, S3, S4}, of strong components of D such that:
Si consists of a single vertex vi, i ∈ {1, 4} and one of the following conditions is
fulfilled:

1. S2 consists of single vertex v2 and S3 is a complete bipartite digraph with
bipartition (X,Y ), such that v1 → v2 → X and Y → v4, but there are neither
v2Y -arcs nor Xv4-arcs in D;

2. S2 is a complete bipartite digraph with bipartition (X,Y ) and S3 consists of
single vertex v3, such that v1 → X and Y → v3 → v4, but there are neither
v1Y -arcs nor Xv3-arcs in D;

3. Sj is a complete bipartite digraph with bipartition (Xj , Yj), j ∈ {2, 3}, such
that v1 → X2 → X3 and Y3 → v4, but there are neither v1Y2-arcs, v1X3-arcs,
Y2v4-arcs, nor X3v4-arcs, and D[V (S2)∪ V (S3)] is a semicomplete bipartite
digraph,

then (v1, v4) ∈ A(D).
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Proof. Let D be a 3-transitive digraph. If D? is a 3-transitive digraph, then
for every 4-set of strong components {S1, S2, S3, S4} of D, such that there is an
SiSi+1-arc in D, i ∈ {1, 2, 3}, then there is an S1S3-arc in D. In particular, if S1

and S4 consist of single vertices v1 and v4 respectively, then (v1, v4) ∈ A(D).

Conversely, let {S1, S2, S3, S4} be a 4-set of strong components of D such
that there is an SiSi+1-arc in D, i ∈ {1, 2, 3}. If S1 or S4 are non-trivial, then
by Proposition 9, there exists an S1S4-arc in D. So let us assume without loss
of generality that Si consists of a single vertex Si, i ∈ {1, 4}. Suppose that S2 or
S3 contains C3 as a subdigraph. It can be easily derived from Corollary 16 the
existence of an S1S4-arc in D. So, we have 3 cases.

Before the analysis of the cases, let us recall that, by Proposition 7, if S =
(X,Y ) is a bipartite strong component of D and v ∈ V (D) \ V (S) such that a
vX-arc exists, then v → X; and if an Xv-arc exists, then X → v.

The first case is when S2 consists of single vertex v2 and S3 is a complete
bipartite digraph with bipartition (X,Y ). Clearly, if a v2X-arc, and an Xv4-
arc exist, then v2 → X → v4. Thus, a v1v4-directed path of length 3 exists
and (v1, v4) ∈ A(D) by the 3-transitivity of D. Analogously, if a v2Y -arc and a
Y v4-arc exist in D, clearly (v1, v4) ∈ A(D). So, we can assume without loss of
generality that v2 → X,Y → v4 and there are neither v2Y -arcs nor Xv4-arcs in
D. Then, by hypothesis, (v1, v4) ∈ A(D).

The second case is when S2 is a complete bipartite digraph with bipartition
(X,Y ) and S3 consists of single vertex v3. But this case is just the dual of the
first case, so, using Remark 3, it can be easily shown that (v1, v4) ∈ A(D).

The third case is when Sj is a complete bipartite digraph with bipartition
(Xj , Yj), j ∈ {2, 3}. Let us assume without loss of generality that v1 → X2 and
Y3 → v4. If X2 → Y3, then v1 → X2 → Y3 → v4 and clearly (v1, v4) ∈ A(D). If
Y2 → X3, it is easy to observe that X2 → Y3. So, we can suppose that X2 → X3

(thus Y2 → Y3) and that there are neither X2Y3-arcs nor Y2X3-arcs. Thus,
D[V (S2)∪V (S3)] is semicomplete bipartite. If v1 → Y2, then v1 → Y2 → Y3 → v4
and we are done. If v1 → X3, then v1 → X3 → Y3 → v4 and (v1, v4) ∈ A(D).
Symmetrically, if Y2 → v4 or X3 → v4 we can conclude that (v1, v4) ∈ A(D).
Hence, we can suppose that there are neither v1Y2-arcs, v1X3-arcs, Y2v4-arcs, nor
X3v4-arcs in D. By hypothesis (v1, v4) ∈ A(D).

Since the cases are exhaustive, we have that D? is 3-transitive.

4. Consequences

4.1. Existence of kernels

Let D be a digraph and N ⊆ V (D). We say that N is l-absorbent if for every
vertex u ∈ V (D) \N , there is a vertex v ∈ N such that d(u, v) ≤ l in D. The set
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N is k-independent if for every u, v ∈ N , we have that d(u, v), d(v, u) ≥ N . We
call N a (k, l)-kernel of D if D is k-independent and l-absorbent. A (k, k − 1)-
kernel is a k-kernel and a 2-kernel is simply a kernel. In [12], von Neumann
and Morgenstern introduce the concept of kernel of a digraph in the context of
Game Theory. Since then, kernels have been largely studied for their applications
within many branches of Mathematics, we can find in [5] a very good survey on the
subject. Also, in [6] is proved that the problem of determining if a given digraph
has a kernel is NP -complete, so, finding sufficient conditions for a digraph to
have a kernel or finding large families of digraphs with a kernel is a very valuable
progress.

Theorem 22. Let D be a 3-transitive digraph. Then D has a kernel if and only
if it has no terminal strong component isomorphic to C3.

Proof. The ‘only if’ part will be proved by contrapositive. Let D be a 3- tran-
sitive digraph such that a terminal strong component S is isomorphic to C3. Let
V (S) = {v0, v1, v2} and A(S) = {(vi, vi+1)}2i=0 (mod 3). Since S is terminal, we
have that d+(v) = 1 for every v ∈ V (S). Thus, the only out- neighbor of vi is vi+1

(mod 3). It is clear that S has no kernel and vertices in S cannot be absorbed
by any other vertex in D, thus, D has no kernel.

The ‘if’ implication will be proved by induction on the number of strong
components of D. Let us assume that D is strong. It can be directly verified that
the digraphs mentioned in Proposition 12, except for C3 have a kernel. So, let us
assume that every 3-transitive digraph such that no terminal strong component
isomorphic to C3 and with n strong components has a kernel. Let D be a 3-
transitive digraph such that no terminal strong component isomorphic to C3 and
with n+ 1 strong components. Let us recall that D? is an acyclic digraph, so, we
can consider an initial strong component S of D. By induction hypothesis, D−S
has a kernel N . If S is not a complete bipartite digraph, then, either S consists
of a single vertex or contains a subdigraph isomorphic to C3. If S consists of a
single vertex v, and v is absorbed by N , we are done. If v is not absorbed by N ,
since S is initial, N ∪ {v} is independent and thus a kernel of D. If D contains
a subdigraph isomorphic to C3, we can use Corollary 16 to prove that S 7→ St

for some terminal strong component St of D. But since St is terminal, at least
one vertex of St must belong to N , and thus S is absorbed by N . So, N is a
kernel of D. If S is a complete bipartite digraph, we must consider three cases.
Let (X,Y ) be the bipartition of S. If neither X nor Y is absorbed by N , then
we consider N ∪ X. Since S is an initial component, every arc between X and
N must be an XN -arc. But if such arc exists, we would have by Proposition 7.5
that X → N , contradicting our assumption. So N ∪X is an independent set, and
Y → X because S is a complete bipartite digraph. Thus, N ∪X is a kernel for
D. If some vertex of X is absorbed by N , then by Proposition 7.5 X is absorbed
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by N . So let us assume that Y is not absorbed by N . Once again, since S is an
initial component, every arc between N and Y must be a Y N -arc, but no such
arc can exist. So, N ∪Y is an independent absorbent set of D, and hence a kernel
of D. The case when Y is absorbed but X is not is analogous. Finally, if S is
absorbed by N , we have that N is the desired kernel of D.

Since in every case D has a kernel, the result follows from the Principle of
Mathematical Induction.

In [10], Galeana-Sánchez and the author proved that a k-transitive digraph D has
a n-kernel for every n ≥ k. Thus, Theorem 22 completes the study of existence
of k-kernels in 3-transitive digraphs.

4.2. One further problem

A graph G is a comparability graph if it can be oriented as an asymmetrical
transitive digraph. In [11], Ghouila-Houri proved that the underlying graphs of
asymmetrical quasi-transitive digraphs are comparability graphs. That is to say,
a graph G can receive a transitive orientation if and only if G can receive a quasi-
transitive orientation. In view of this result, and considering the great similarity
between the structure of transitive and 3-transitive digraphs, we propose the
following conjecture.

Conjecture 23. Let D be an asymmetrical 3-quasi-transitive digraph, then the
underlying graph of D, UG(D), admit a 3-transitive asymmetrical orientation.
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