ITERATED NEIGHBORHOOD GRAPHS

Martin Sonntag
Faculty of Mathematics and Computer Science Technische Universität Bergakademie Freiberg
D-09599 Freiberg, Germany
e-mail: sonntag@tu-freiberg.de
AND
Hanns-Martin Teichert
Institute of Mathematics
University of Lübeck
D-23560 Lübeck, Germany
e-mail: teichert@math.uni-luebeck.de

Abstract

The neighborhood graph $N(G)$ of a simple undirected graph $G=(V, E)$ is the graph $\left(V, E_{N}\right)$ where $E_{N}=\{\{a, b\} \mid a \neq b,\{x, a\} \in E$ and $\{x, b\} \in E$ for some $x \in V\}$. It is well-known that the neighborhood graph $N(G)$ is connected if and only if the graph G is connected and non-bipartite.

We present some results concerning the k-iterated neighborhood graph $N^{k}(G):=N(N(\ldots N(G)))$ of G. In particular we investigate conditions for G and k such that $N^{k}(G)$ becomes a complete graph.

Keywords: neighborhood graph, 2-step graph, neighborhood completeness number.
2010 Mathematics Subject Classification: 05C76, 05C12.

1. Introduction and Definitions

All graphs considered here are undirected and finite without loops and multiple edges.

Definition. The neighborhood graph $N(G)$ of a graph $G=(V, E)$ is the graph $\left(V, E_{N}\right)$ where $E_{N}=\{\{a, b\} \mid a \neq b,\{x, a\} \in E$ and $\{x, b\} \in E$ for some $x \in V\}$.

Several aspects of neighborhood graphs were investigated in the last thirty years (cf. $[1-3,5,6,9-14,16])$. Some of these papers use the notation 2-step graph or competition graph instead of neighborhood graph. As the latter name indicates, the neighborhood graph $N(G)$ of an undirected graph G is closely related to the competition graph $C(D)$ of a digraph D. Surveys of competition graphs can be found in $\operatorname{Kim}[7]$, Lundgren [8] and Roberts [15].

With $d_{G}(x, y)$ and $d(x: G)$ we denote the distance of $x, y \in V$ in G and the degree of $x \in V$ in G, respectively. Further we use the neighborhood sets $N_{G}(x)=\{z \in V \mid\{x, z\} \in E\}$ and $N_{G}(x, y)=N_{G}(x) \cap N_{G}(y)$. Definitions not explicitly given here can be found in [4].

First, we summarize some simple results on neighborhood graphs from the literature mentioned above.

Proposition 1. Let $G=(V, E)$ be a connected graph and $N(G)=\left(V, E_{N}\right)$ its neighborhood graph. Then the following hold:
(a) $N(G)$ has at most two connected components.
(b) $N(G)$ is connected if and only if G is non-bipartite.
(c) If G is 2-connected and non-bipartite, then $N(G)$ is also 2-connected and non-bipartite.
(d) For each $n \geq 5$ and $p \geq 2$ with $2 p \leq n$ there is a p-connected, non-bipartite graph G with n vertices, such that the neighborhood graph $N(G)$ has connectivity 2.
(e) For the path P_{n} with n vertices: $N\left(P_{n}\right) \cong P_{\left\lceil\frac{n}{2}\right\rceil} \cup P_{\left\lfloor\frac{n}{2}\right\rfloor}$.
(f) For the cycle C_{n} with n vertices: $N\left(C_{2 k+1}\right) \cong C_{2 k+1}, N\left(C_{2 k}\right) \cong C_{k} \cup C_{k}$ (for $k \geq 3)$ and $N\left(C_{4}\right) \cong P_{2} \cup P_{2}$.
(g) For the complete graph K_{n} with n vertices: $N\left(K_{n}\right) \cong K_{n}, n \neq 2$ (note that $G=C_{2 n+1}$ and $G=K_{n}, n \neq 2$, are the only connected graphs with $N(G) \cong G(c f$. Brigham and Dutton [3])).
(h) For the complete bipartite graph $K_{m, n}$ with $m+n$ vertices: $N\left(K_{m, n}\right) \cong K_{m} \cup K_{n}$.
(i) For the wheel W_{n} with $n+1$ vertices: $N\left(W_{n}\right) \cong K_{n+1}$.

Properties (e)-(i) lead to the question what happens if the construction of the neighborhood graph is iterated:

Definition. For a positive integer $k \in \mathbb{N}^{+}$, the k-iterated neighborhood graph $N^{k}(G)$ of a graph G is the neighborhood graph of $N^{k-1}(G)$, where $N^{0}(G):=G$.

In this paper we consider the following problems:
Problem 1. What is the structure of $N^{k}(G)$, for large k ?

Problem 2. Under which conditions $N^{k}(G) \cong K_{n}$, for sufficiently large k ?
Problem 3. If G fulfils the conditions mentioned in Problem 2, what is the minimum k such that $N^{k}(G) \cong K_{n}$?
The answers of Problems 1 and 2 follow from the results of Exoo and Harary [5]; we discuss these problems in the (short) Section 2. Section 3 contains the main results of this paper. There we determine the minimum k mentioned in Problem 3 for a certain class of graphs and give upper bounds for k being better than those from [5].

2. The Structure of $N^{k}(G)$ for Large k

Summarizing the results of Lemma 1-3 of [5] we obtain immediately the following theorem solving Problem 2. Here we present another (short) proof using arguments which prepare several ideas used in Section 3.

Theorem 2. Let $G=(V, E)$ be a graph with $n>1$ vertices. Then there exists $k \in I N$ with $N^{k}(G) \cong K_{n}$ if and only if G is connected, non-bipartite and $G \neq$ $C_{2 p+1}($ for $p>1)$.
Proof. Let $n=|V|>1$. If G is an odd cycle $C_{2 p+1}, p>1$, or bipartite or not connected then, by Proposition 1 (b) and (f), $N^{k}(G) \not \not K_{n}$ for all $k \in \mathbb{N}$. Therefore the three conditions (connected, non-bipartite and $G \not \neq C_{2 p+1}, p>1$) are necessary for the existence of $k \in \mathbb{N}$ with $N^{k}(G) \cong K_{n}$.

Now let G fulfil these conditions and $v \in V$ be a vertex with the degree $d(v: G)=p \geq 3$. Then the neighborhood $N_{G}(v)$ induces a p-clique K_{p} in the neighborhood graph $N^{1}(G)$.

We prove that for $k, p \in \mathbb{N}^{+}$with $3 \leq p<n$ the existence of a p-clique K_{p} in $N^{k}(G)$ implies the existence of a $(p+1)$-clique K_{p+1} in $N^{k+2}(G)$.

By Proposition 1(b), $N^{k}(G)$ is connected. Since $p<n$, there is a vertex u in the p-clique K_{p} having a neighbor $u^{\prime} \in V(G) \backslash V\left(K_{p}\right)$ in $N^{k}(G)$. Consequently, in $N^{k+1}(G)$ - in addition to K_{p} - the set $\left(V\left(K_{p}\right) \backslash\{u\}\right) \cup\left\{u^{\prime}\right\}$ induces a second p-clique. Therefore, in $N^{k+2}(G)$ also the vertices u and u^{\prime} are adjacent (in $N^{k+1}(G)$ they have common neighbors in $V\left(K_{p}\right) \backslash\{u\}$) and $V\left(K_{p}\right) \cup\left\{u^{\prime}\right\}$ induces a $(p+1)$-clique (cf. Figure 1)).

Proposition 1 and Theorem 2 imply the following corollary, which solves Problem 1 (the result is established in [5] and also mentioned in [3]).

Corollary 3. For an arbitrary graph $G=(V, E)$ and sufficiently large $k \in \mathbb{N}$, $N^{k}(G)$ consists of odd cycles and (possibly trivial) complete graphs.

Figure 1. An example with $p=5$.

3. The Neighborhood Completeness Number

Now we turn to Problem 3. To determine the minimum k such that $N^{k}(G)$ is complete could be interesting in connection with graph algorithms; this motivates the definition:

Definition. For $G=(V, E)$ connected, non-bipartite and $G \not \approx C_{2 p+1}$ (for $p>1$), we define the neighborhood completeness number of G by

$$
c n(G):=\min \left\{k \in \mathbb{N} \mid N^{k}(G) \cong K_{n}\right\}
$$

The only result concerning the neighborhood completeness number can be found in [5]. Let G be a connected graph with n vertices which is neither bipartite nor an odd cycle. If C is a cycle of length $2 k+1$ in G, d is the maximum least distance from a vertex not on C to a vertex on C and $r:=\log _{2} d$, then $N^{r+2 k+1}(G)=K_{n}$. Hence

$$
\begin{equation*}
c n(G) \leq r+2 k+1 \tag{EH}
\end{equation*}
$$

The sharpness of this bound will be discussed at the end of Subsection 3.2. Before, in Subsection 3.1, we determine the neighborhood completeness number for a special class of graphs. This result is used in the following to improve the bound (EH) for $c n(G)$ for arbitrary non-bipartite graphs G.

3.1. A special class of graphs: l-cliques with a tail

Definition. For $l \geq 3$ and $s \geq 1$, let K_{l}^{s} be the graph (V, E) defined by

$$
\begin{aligned}
& V=\{1,2, \ldots, l, l+1, \ldots, l+s\} \\
& E=\{\{i, j\} \mid 1 \leq i<j \leq l\} \cup\{\{l, l+1\},\{l+1, l+2\}, \ldots,\{l+s-1, l+s\}\}
\end{aligned}
$$

Hence, K_{l}^{s} consists of a complete graph K_{l} with l vertices and a "tail" of length s (cf. Figure 2). We start with a lemma describing several structural properties of $N^{k}\left(K_{l}^{s}\right)$, for $l \geq 3$.

We denote by $\left\langle v_{1}, v_{2}, \ldots, v_{t}\right\rangle=\left\langle v_{1}, v_{2}, \ldots, v_{t}\right\rangle_{N^{k}(G)}$ the subgraph of $N^{k}(G)$ induced by the vertices $v_{1}, v_{2}, \ldots, v_{t} \in V\left(N^{k}(G)\right)$.

Figure 2. An example to Lemma 4.
Lemma 4. Let $k, l, s \in I N$ with $l \geq 3$ and $s \geq 1$. Then the following hold for $N^{k}\left(K_{l}^{s}\right)$:
(a) If $2^{k}-1 \leq s$, then there are exactly $2^{k} l$-cliques containing the $(l-1)$-clique $\langle 1,2, \ldots, l-1\rangle$, namely $\langle 1,2, \ldots, l-1, l\rangle,\langle 1,2, \ldots, l-1, l+1\rangle, \ldots,\langle 1,2, \ldots$, $\left.l-1, l+2^{k}-1\right\rangle$.
(b) If $2^{k} \leq s$, then all the edges between $\left\{1,2, \ldots, l+2^{k}-1\right\}$ and $\left\{l+2^{k}, l+\right.$ $\left.2^{k}+1, \ldots, l+s\right\}$ have the form $\left\{x, x+2^{k}\right\}$.
These edges exist for all $x \in\left\{l, l+1, \ldots, l+\min \left\{2^{k}-1, s-2^{k}\right\}\right\}$.
(c) If $2^{k}-1 \leq s$, then $\left\langle l+2^{k}-1, l+2^{k}, \ldots, l+s\right\rangle$ is the union of the vertex disjoint paths $\left(y, y+2^{k}, y+2 \cdot 2^{k}, y+3 \cdot 2^{k}, \ldots\right)$, where $y \in\left\{l+2^{k}-1\right.$, $\left.l+2^{k}, \ldots, l+\min \left\{2^{k+1}-2, s-2^{k}\right\}\right\}$.
(Therefore, these paths contain only edges of the form $\left\{x, x+2^{k}\right\}$, where $\left.x \in\left\{l+2^{k}-1, l+2^{k}, \ldots, l+s-2^{k}\right\}.\right)$
(d) If $k \geq 1$ and $2^{k-1}-1 \leq s$, then $\left\langle 1,2, \ldots, l+2^{k-1}-1\right\rangle$ is a maximal clique.

Before proving Lemma 4, as an example we consider K_{3}^{10} (cf. Figure 2).
Note that the dashed edges $\{3,8\}$ and $\{4,7\}$ in $N^{3}\left(K_{3}^{10}\right)$ (and corresponding edges in $N^{k}\left(K_{3}^{10}\right)(k>3)$ will be of no account in our investigations. In reference to the Lemma, these edges connect a vertex of the maximum clique of $N^{k}\left(K_{3}^{10}\right)$ (cf. (d)) with a vertex from the set $\left\{2^{k-1}+l, 2^{k-1}+l+1, \ldots, 2^{k}+l-1\right\}$, which
is contained in one of the triangles (i.e. l-cliques with $l=3$, cf. (a)), but not in the maximum clique.

Obviously, in $N^{k+1}\left(K_{3}^{10}\right)$ these edges "disappear" since they are included in the maximum clique of $N^{k+1}\left(K_{3}^{10}\right)$.

Now we verify Lemma 4 by induction on k :
Proof. Let $n:=l+s$.
$k=0$.
(a) Because $N^{0}\left(K_{l}^{s}\right)=K_{l}^{s}$ there is exactly $2^{0}=1 l$-clique, namely $\langle 1,2, \ldots, l\rangle$.
(b) The only edge between $\{1,2, \ldots, l\}$ and $\{l+1, l+2, \ldots, n\}$ is $\{l, l+1\}$.
(c) $\langle l, l+1, \ldots, n\rangle$ is the path $(l, l+1, \ldots, n)$.
(d) Not applicable.
$k=1$.
(a) There are $2^{1}=2 l$-cliques: $\langle 1,2, \ldots, l-1, l\rangle$ and $\langle 1,2, \ldots, l-1, l+1\rangle$.
(b) The edges between $\{1,2, \ldots, l+1\}$ and $\{l+2, l+3, \ldots, n\}$ are $\{l, l+2\}$ and $\{l+1, l+3\}$.
(c) $\langle l+1, l+2, \ldots, n\rangle$ is the (disjoint) union of the paths $(l+1, l+3, l+5, \ldots)$ and $(l+2, l+4, l+6, \ldots)$.
(d) $\langle 1,2, \ldots, l\rangle$ is a maximum - and, therefore, also maximal - clique.
$k \geq 2$.
Induction hypotheses: (a)-(d) are true for all $k^{\prime} \leq k-1$.
For technical reasons and a better comprehension of the following, we formulate the induction hypotheses for $k^{\prime}=k-1$ in detail.

In $N^{k-1}\left(K_{l}^{s}\right)$ it holds:
(a') If $2^{k-1}+l-1 \leq n$, then there are exactly $2^{k-1} l$-cliques over the $(l-1)$-clique $\langle 1,2, \ldots, l-1\rangle$, namely $\langle 1,2, \ldots, l-1, l\rangle,\langle 1,2, \ldots, l-1, l+1\rangle, \ldots,\langle 1,2, \ldots$, $\left.l-1,2^{k-1}+l-1\right\rangle$
(b^{\prime}) Between $\left\{1,2, \ldots, 2^{k-1}+l-1\right\}$ and $\left\{2^{k-1}+l, 2^{k-1}+l+1, \ldots, n\right\}$ there are only edges of the form $\left\{x, x+2^{k-1}\right\}$.
These edges exist for all $x \in\left\{l, l+1, \ldots, \min \left\{2^{k-1}+l-1, n-2^{k-1}\right\}\right\}$.
$\left(\mathrm{c}^{\prime}\right)\left\langle 2^{k-1}+l-1,2^{k-1}+l, \ldots, n\right\rangle_{N^{k-1}\left(K_{l}^{s}\right)}$ is the union of the vertex disjoint paths $\left(y, y+2^{k-1}, y+2 \cdot 2^{k-1}, y+3 \cdot 2^{k-1}, \ldots\right)$, where $y \in\left\{2^{k-1}+l-1,2^{k-1}+l, \ldots\right.$, $\left.\min \left\{2^{k}+l-2, n-2^{k-1}\right\}\right\}$.
(Therefore, these paths contain only edges of the form $\left\{x, x+2^{k-1}\right\}$, where $x \in\left\{2^{k-1}+l-1,2^{k-1}+l, \ldots, n-2^{k-1}\right\}$.)
$\left(\mathrm{d}^{\prime}\right)$ If $2^{k-2}+l-1 \leq n$, then $\left\langle 1,2, \ldots, 2^{k-2}+l-1\right\rangle_{N^{k-1}\left(K_{l}^{s}\right)}$ is a maximal clique.

Induction steps.

At first, we mention the following.
(o) In $N^{k}\left(K_{l}^{s}\right)$, there exist the edges $\left\{x, x+2^{k}\right\}$ for each $x \in\left\{1,2, \ldots, n-2^{k}\right\}$.

Verification of (\circ).
For $x \geq l$, in $N^{k}\left(K_{l}^{s}\right)$ the existence of $\left\{x, x+2^{k}\right\}$ follows from the existence of the edges $\left\{x, x+2^{k-1}\right\},\left\{x+2^{k-1},\left(x+2^{k-1}\right)+2^{k-1}=x+2^{k}\right\}$ in $N^{k-1}\left(K_{l}^{s}\right)$ (cf. the induction hypotheses $\left(\mathrm{b}^{\prime}\right)$, $\left(\mathrm{c}^{\prime}\right)$), since, obviously, x and $x+2^{k}$ are common neighbors of $x+2^{k-1}$ in $N^{k-1}\left(K_{l}^{s}\right)$.

For $x \in\{1,2, \ldots, l-1\}$, additionally to (b^{\prime}) and (c^{\prime}) also (a^{\prime}) is needed to ensure $\left\{x, x+2^{k-1}\right\},\left\{x+2^{k-1}, x+2^{k}\right\} \in E\left(N^{k-1}\left(K_{l}^{s}\right)\right)$.
Now we show (a)-(d).
(a) Let $2^{k}+l-1 \leq n$. Since the $2^{k-1} l$-cliques $\langle 1,2, \ldots, l-1, l\rangle,\langle 1,2, \ldots, l-$ $1, l+1\rangle, \ldots,\left\langle 1,2, \ldots, l-1,2^{k-1}+l-1\right\rangle$ from $N^{k-1}\left(K_{l}^{s}\right)($ cf. (a')) are complete subgraphs, they exist also in $N^{k}\left(K_{l}^{s}\right)$. Because of (a^{\prime}) and (o) in $N^{k-1}\left(K_{l}^{s}\right)$ each vertex $x \in\left\{l, l+1, \ldots, 2^{k-1}+l-1\right\}$ has at least the neighbors $1,2, \ldots, l-1$ and $x+2^{k-1}$. Hence, in $N^{k}\left(K_{l}^{s}\right)$ there are the l-cliques $\left\langle 1,2, \ldots, l-1,2^{k-1}+\right.$ $l\rangle,\left\langle 1,2, \ldots, l-1,2^{k-1}+l+1\right\rangle, \ldots,\left\langle 1,2, \ldots, l-1,2^{k}+l-1\right\rangle$. In $N^{k}\left(K_{l}^{s}\right)$, there are no other l-cliques over the ($l-1$)-clique $\langle 1,2, \ldots, l-1\rangle$, since (a^{\prime}), (b^{\prime}) imply that, in $N^{k-1}\left(K_{l}^{s}\right)$, all neighbors x of the vertices $1,2, \ldots, l-1$ are contained in $\left\{1,2, \ldots, 2^{k-1}+l-1\right\}$ and, moreover, every vertex $x \in\left\{1,2, \ldots, 2^{k-1}+l-1\right\}$ in the set $\left\{2^{k-1}+l, 2^{k-1}+l+1, \ldots, n\right\}$ has only the neighbor $y=x+2^{k-1}$. Therefore, owing to $y=x+2^{k-1} \leq 2^{k-1}+2^{k-1}+l-1=2^{k}+l-1$, in $N^{k}\left(K_{l}^{s}\right)$, the l-cliques $\langle 1,2, \ldots, l-1, l\rangle,\langle 1,2, \ldots, l-1, l+1\rangle, \ldots,\left\langle 1,2, \ldots, l-1,2^{k}+l-1\right\rangle$ include all these neighbors y, which are the only possible candidates for building l-cliques containing the vertices $1,2, \ldots, l-1$. This completes the proof of (a).
(b) Without loss of generality, let $2^{k}+l \leq n$, otherwise there is nothing to show. Because of (o) it suffices to show that the edges of the form $\left\{x, x+2^{k}\right\}$, where $x \in\left\{l, l+1, \ldots, \min \left\{2^{k}+l-1, n-2^{k}\right\}\right\}$, are the only edges between the sets $\left\{1,2, \ldots, 2^{k}+l-1\right\}$ and $\left\{2^{k}+l, 2^{k}+l+1, \ldots, n\right\}$.

In $N^{k-1}\left(K_{l}^{s}\right)$, between $z \in\left\{1,2, \ldots, 2^{k-1}+l-1\right\}$ and $\left\{2^{k-1}+l, 2^{k-1}+\right.$ $l+1, \ldots, n\}$ there are only edges of the form $\left\{z, z+2^{k-1}\right\}$ (cf. (b')). This implies, for the end vertices of such edges, $z \in\left\{l, l+1, \ldots, 2^{k-1}+l-1\right\}$ and $z+2^{k-1} \in\left\{2^{k-1}+l, 2^{k-1}+l+1, \ldots, 2^{k}+l-1\right\}$.

Now let $x+2^{k} \in\left\{2^{k}+l, 2^{k}+l+1, \ldots, n\right\}$ with $x \in\left\{l, l+1, \ldots, 2^{k}+l-1\right\}$ and assume $y \in\left\{1,2, \ldots, 2^{k}+l-1\right\} \backslash\{x\}$ is another neighbor of $x+2^{k}$ in $N^{k}\left(K_{l}^{s}\right)$. Then, in $N^{k-1}\left(K_{l}^{s}\right)$, there are vertices z and z^{\prime} such that z is a common neighbor of x and $x+2^{k}$, as well as z^{\prime} is a common neighbor of y and $x+2^{k}$. Clearly, $x+2^{k}>2^{k-1}+l-1$ and, consequently, owing to (b^{\prime}) and (c^{\prime}) this implies $z=x+2^{k}-2^{k-1}$ or $z=x+2^{k}+2^{k-1}$. Since z is also a neighbor of x in $N^{k-1}\left(K_{l}^{s}\right)$, the only possibility is $z=x+2^{k}-2^{k-1}=x+2^{k-1} \in\left\{2^{k-1}+l, 2^{k-1}+l+1, \ldots, n\right\}$.

Analogously, we obtain $z^{\prime}=x+2^{k-1}$. Consequently, $z=z^{\prime}=x+2^{k-1}$ has the three pairwise distinct neighbors $x, y, x+2^{k}$ in $N^{k-1}\left(K_{l}^{s}\right)$, in contradiction to $z \geq 2^{k-1}+l$ and (b^{\prime}) and (c^{\prime}), what excludes other neighbors than $z-2^{k-1}$,
$z+2^{k-1}$. Thus (b) holds.
(c) Due to (o), the existence (and, obviously, the disjointness) of the paths ($y, y+$ $\left.2^{k}, y+2 \cdot 2^{k}, y+3 \cdot 2^{k}, \ldots\right)$ is clear, for all $y \in\left\{2^{k}+l-1,2^{k}+l, \ldots, \min \left\{2^{k+1}+\right.\right.$ $\left.\left.l-2, n-2^{k}\right\}\right\}$.

Assume, there are $x, x^{\prime} \in\left\{2^{k}+l-1,2^{k}+l, \ldots, n\right\}$ with $x<x^{\prime}, x^{\prime} \neq x+$ 2^{k}, and $\left\{x, x^{\prime}\right\} \in E\left(N^{k}\left(K_{l}^{s}\right)\right)$. Then, in $N^{k-1}\left(K_{l}^{s}\right)$, there must be a common neighbor z of x and x^{\prime}.

If $z \leq 2^{k-1}+l-1$, then (because of $\left(\mathrm{b}^{\prime}\right)$) the only edge in $N^{k-1}\left(K_{l}^{s}\right)$ between z and vertices in $\left\{2^{k-1}+l, 2^{k-1}+l+1, \ldots, n\right\}$ is the edge $\left\{z, z+2^{k-1}\right\}$. This implies the contradiction $x=z+2^{k-1}=x^{\prime}$.

If $z>2^{k-1}+l-1$, then (because of $\left(\mathrm{b}^{\prime}\right)$ and ($\left.\left.\mathrm{c}^{\prime}\right)\right) x<x^{\prime}$ induces $x=z-2^{k-1}$ and $x^{\prime}=z+2^{k-1}$ and, therefore, $x^{\prime}=x+2 \cdot 2^{k-1}=x+2^{k}$ incompatible with the assumption.
(d) Let $2^{k-1}+l-1 \leq n$. In $N^{k-1}\left(K_{l}^{s}\right)$ the vertices $2,3, \ldots, 2^{k-1}+l-1$ are common neighbors of 1 (because of ($\left.\mathrm{a}^{\prime}\right)$). Hence, $\left\langle 2,3,4, \ldots, 2^{k-1}+l-1\right\rangle_{N^{k}\left(K_{l}^{s}\right)}$ is a clique. Analogously, we obtain that $\left\langle 1,3,4,5, \ldots, 2^{k-1}+l-1\right\rangle_{N^{k}\left(K_{l}^{s}\right)}$ is a clique. Because, in $N^{k-1}\left(K_{l}^{s}\right)$, the vertex 3 is a common neighbor of the vertices 1 and 2, it follows $\{1,2\} \in E\left(N^{k}\left(K_{l}^{s}\right)\right)$, and $\left\langle 1,2, \ldots, 2^{k-1}+l-1\right\rangle_{N^{k}\left(K_{l}^{s}\right)}$ is a clique.

Assume, the clique $\left\langle 1,2, \ldots, 2^{k-1}+l-1\right\rangle_{N^{k}\left(K_{l}^{s}\right)}$ is not maximal.
In $N^{k}\left(K_{l}^{s}\right)$, let $z \geq 2^{k-1}+l$ be the smallest vertex being adjacent to all vertices $x \in\left\{1,2, \ldots, 2^{k-1}+l-1\right\}$.

In $N^{k-1}\left(K_{l}^{s}\right)$, it follows that z has to have a common neighbor with every vertex $x \in\left\{1,2, \ldots, 2^{k-1}+l-1\right\}$. The induction hypotheses (b^{\prime}) and (c^{\prime}) imply that there are at most two neighbors of z in $N^{k-1}\left(K_{l}^{s}\right)$, namely $z-2^{k-1}$ and $z+2^{k-1}$.

In $N^{k-1}\left(K_{l}^{s}\right)$, because of $\left(\mathrm{b}^{\prime}\right)$ and $z+2^{k-1}>\left(2^{k-1}+l-1\right)+2^{k-1}$, the vertex $z+2^{k-1}$ has no neighbor in the set $\left\{1,2, \ldots, 2^{k-1}+l-1\right\}$. Therefore, $z-2^{k-1}$ is adjacent to all vertices $x \in\left\{1,2, \ldots, 2^{k-1}+l-1\right\}$. Since $z-2^{k-1}$ cannot be adjacent to itself, this implies $z-2^{k-1} \geq 2^{k-1}+l$. Hence, $z-2^{k-1}>2^{k-2}+l-1$ and $\left\langle 1,2, \ldots, 2^{k-2}+l-1, z-2^{k-1}\right\rangle_{N^{k-1}\left(K_{l}^{s}\right)}$ is a clique in $N^{k-1}\left(K_{l}^{s}\right)$. This contradicts the maximality of the clique $\left\langle 1,2, \ldots, 2^{k-2}+l-1\right\rangle_{N^{k-1}\left(K_{l}^{s}\right)}$ (cf. (d $\left.\left.\mathrm{d}^{\prime}\right)\right)$.

Therefore, the clique $\left\langle 1,2, \ldots, 2^{k-1}+l-1\right\rangle_{N^{k}\left(K_{l}^{s}\right)}$ is maximal and the proof of (d) is complete.

Theorem 5. For $l \geq 3$ and $s \geq 1$, cn $\left(K_{l}^{s}\right)=\left\lceil 1+\log _{2}(s+1)\right\rceil$.
Proof. Let $n=l+s$. For $2^{k-1}+l-1 \leq n$, from part (d) of Lemma 4 it follows that $\left\langle 1,2, \ldots, 2^{k-1}+l-1\right\rangle_{N^{k}\left(K_{l}^{s}\right)}$ is a maximal clique in $N^{k}\left(K_{l}^{s}\right)$.

This implies that $N^{k}\left(K_{l}^{s}\right)$ is complete if and only if $2^{k-1}+l-1 \geq n$, which is equivalent to $k-1 \geq \log _{2}(n-l+1)=\log _{2}(s+1)$, i.e. $k \geq 1+\log _{2}(s+1)$. Therefore, $c n\left(K_{l}^{s}\right)=\left\lceil 1+\log _{2}(s+1)\right\rceil$.

3.2. The general case

In this section, let $G=(V, E)$ be connected, non-bipartite and not an odd cycle. For the first definition we suppose that G contains an l-clique $(l \geq 3)$.

Definition. Let K_{l} be an l-clique $(l \geq 3)$ in $G=(V, E)$ and $\mathcal{W}=\left\{w_{1}, \ldots, w_{q}\right\}$ a system of paths in G such that $V \backslash V\left(K_{l}\right) \subseteq V(\mathcal{W}):=\bigcup_{i=1}^{q} V\left(w_{i}\right)$ and every path $w_{i} \in \mathcal{W}$ has exactly one end vertex v_{i} in common with K_{l}, for $i \in\{1, \ldots, q\}$. The subgraph $G_{K_{l}, \mathcal{W}}=K_{l} \cup w_{1} \cup \cdots \cup w_{q}=\left(V, E^{\prime}\right)$ with $V=V\left(K_{l}\right) \cup V\left(w_{1}\right) \cup$ $\cdots \cup V\left(w_{q}\right)$ and $E^{\prime}=E\left(K_{l}\right) \cup E\left(w_{1}\right) \cup \cdots \cup E\left(w_{q}\right) \subseteq E$ will be referred to as a K_{l}-path-covering of G. The paths w_{1}, \ldots, w_{q} are called tails.

Note that the tails are not necessarily disjoint. Moreover, they cover all vertices of $G-K_{l}$ (and, additionally, the end vertices $\left.v_{1}, \ldots, v_{q} \in\left(\bigcup_{i=1}^{q} V\left(w_{i}\right)\right) \cap V\left(K_{l}\right)\right)$ but not necessarily all edges of $G-K_{l}$ (cf. Figure 3).

Figure 3. A K_{5}-path-covering $G_{K_{5}, \mathcal{W}}=K_{5} \cup w_{1} \cup w_{2} \cup w_{3}$.
K_{l}-path-coverings are suitable auxiliaries to give an upper bound for the neighborhood completeness number of arbitrary graphs. In the case of connected graphs containing an l-clique $(l \geq 3)$, this upper bound is the same as in the previous subsection.

Obviously, if the connected graph G contains an l-clique $K_{l}(l \geq 3)$, then there is also a K_{l}-path-covering $G_{K_{l}, \mathcal{W}}$ in G and vice versa.

Theorem 6. Let $G_{K_{l}, \mathcal{W}}=K_{l} \cup w_{1} \cup \cdots \cup w_{q}$ be a K_{l}-path-covering of a graph $G=(V, E)$. If s is the maximum length of the tails w_{1}, \ldots, w_{q}, then $c n(G) \leq\left\lceil 1+\log _{2}(s+1)\right\rceil$.
Proof. It suffices to show that $c n\left(G_{K_{l}, \mathcal{W}}\right) \leq\left\lceil 1+\log _{2}(s+1)\right\rceil$.
So let $u, v \in V$ be arbitrary vertices of $G_{K_{l}, \mathcal{W}}$ and $t:=\left\lceil 1+\log _{2}(s+1)\right\rceil$. Without loss of generality, let w_{x} and w_{y} be tails such that $u \in V\left(K_{l}\right) \cup V\left(w_{x}\right)$ and $v \in V\left(K_{l}\right) \cup V\left(w_{y}\right)$, respectively. (Note that also the special cases $u \in V\left(K_{l}\right) \backslash$ $V\left(w_{x}\right)$ or $v \in V\left(K_{l}\right) \backslash V\left(w_{y}\right)$ or $w_{x}=w_{y}$ or $w_{x} \neq w_{y}$ and $V\left(w_{x}\right) \cap V\left(w_{y}\right) \neq \emptyset$ are possible.)

Since $K_{l} \cup w_{x} \cong K_{l}^{r_{x}}$, where $r_{x} \leq s$ denotes the length of the path w_{x}, by Theorem 5 it follows that $N^{t}\left(K_{l} \cup w_{x}\right)$ is complete. Consequently, due to Lemma 4(a), in $N^{t-1}\left(K_{l} \cup w_{x}\right)$ the vertex u has at least $l-1$ neighbors in the vertex set $V\left(K_{l}\right)$. Clearly, the same holds for the vertex v in $N^{t-1}\left(K_{l} \cup w_{y}\right)$. Because of $l \geq 3$, in $N^{t-1}\left(K_{l} \cup w_{x} \cup w_{y}\right)$ the vertices u and v have at least $l-2 \geq 1$ common neighbors (in $V\left(K_{l}\right)$). Therefore, they are adjacent in $N^{t}\left(G_{K_{l}, \mathcal{W}}\right)$. So $N^{t}\left(G_{K_{l}, \mathcal{W}}\right)$ is complete.

To obtain a class of graphs where the bound of Theorem 6 is sharp, we consider graphs \widehat{G} having a K_{l}-path-covering with a longest tail w_{i}, such that only the end vertex $v_{i} \in V\left(K_{l}\right)$ of w_{i} has neighbors in $V(\widehat{G}) \backslash V\left(w_{i}\right)$; more precisely:
Corollary 7. Let $\widehat{G}_{K_{l}, \mathcal{W}}=K_{l} \cup w_{1} \cup \cdots \cup w_{q}$ be a K_{l}-path-covering of a graph $\widehat{G}=(V, E)$. If the length of the tail w_{1} is equal to the maximum tail length s of w_{1}, \ldots, w_{q} and all vertices of $V\left(w_{1}\right) \backslash V\left(K_{l}\right)$ except the end vertex, which has the degree one, have the degree two in \widehat{G}, then cn $(\widehat{G})=\left\lceil 1+\log _{2}(s+1)\right\rceil$.
Proof. If $w_{1}=\left(u_{1}, u_{2}, \ldots, u_{s+1}\right)$ and $V\left(K_{l}\right) \cap V\left(w_{1}\right)=\left\{u_{1}\right\}$, then $\widehat{G}=U \cup w_{1}$, where $U=\left\langle V(\widehat{G}) \backslash\left\{u_{2}, u_{3}, \ldots, u_{s+1}\right\}\right\rangle_{\widehat{G}}$. With $l:=|V(\widehat{G})|-s$, the graph \widehat{G} is isomorphic to an edge-deleted subgraph of K_{l}^{s}, i.e. to a subgraph containing all $l+s$ vertices of K_{l}^{s}. Because of $c n\left(K_{l}^{s}\right)=\left\lceil 1+\log _{2}(s+1)\right\rceil, c n(\widehat{G}) \geq c n\left(K_{l}^{s}\right)$ and Theorem 6 we obtain the assertion.

For graphs G containing an l-clique $K_{l}(l \geq 3)$, Theorem 6 gives an upper bound for the neighborhood completeness number $c n(G)$. Now we consider graphs without such cliques. So let G be a triangle-free graph. The basic idea is the following:

Since G is non-bipartite and is not isomorphic to an odd cycle, there must be a vertex $v \in V(G)$ having a degree $d:=d(v: G) \geq 3$. The neighborhood $N_{G}(v)$ of v in G induces a d-clique K_{d} in the neighborhood graph $N(G)$. Let $N(G)_{K_{d}, \mathcal{W}}=K_{d} \cup w_{1} \cup \cdots \cup w_{q}$ be a K_{d}-path-covering of $N(G)$ and \hat{s} be the maximum tail length of $N(G)_{K_{d}, \mathcal{W}}$.

Then, owing to Theorem 6,

$$
\begin{equation*}
c n(G)=c n(N(G))+1 \leq\left\lceil 1+\log _{2}(\hat{s}+1)\right\rceil+1 . \tag{*}
\end{equation*}
$$

Following this idea, in Theorem 8 we give a bound for $\operatorname{cn}(G)$ which uses only parameters of the graph G, not of its neighborhood graph $N(G)$. First, for a cycle C in G let $l(C)$ be the length of C and $s_{\max }(C):=\max \left\{d_{G}(C, v) \mid v \in V\right\}$, where $d_{G}(C, v):=\min \left\{d_{G}(x, v) \mid x \in V(C)\right\}$, i.e. $s_{\max }(C)$ is the maximum distance of any vertex in G from the cycle C.

Theorem 8. Let $G=(V, E)$ be triangle-free, connected, non-bipartite and not an odd cycle. Moreover, let $s^{\prime}:=\min \left\{\left.\frac{l(C)-1}{2}+\left\lceil\frac{s_{\max }(C)}{2}\right\rceil \right\rvert\, C\right.$ is an odd cycle in $\left.G\right\}$. Then, $c n(G) \leq\left\lceil 2+\log _{2}\left(s^{\prime}+1\right)\right\rceil$.

Proof. Because of Theorem 6 and (*), it suffices to show that there is a K_{d}-path-covering $(d \geq 3)$ of $N(G)$ with the maximum tail length $\hat{s} \leq s^{\prime}$.

Let \widetilde{C} be an odd cycle in G such that $s^{\prime}=\frac{l(\widetilde{C})-1}{2}+\left[\frac{s_{\max }(\widetilde{C})}{2}\right]$, where s^{\prime} is defined as above.

Moreover, let $\mathcal{W}_{\widetilde{C}}=\left\{\widetilde{w_{1}}, \ldots, \widetilde{w_{p}}\right\}$ be a system of paths of length at most $s_{\max }(\widetilde{C})$ in G such that $V \backslash V(\widetilde{C}) \subseteq V\left(\mathcal{W}_{\widetilde{C}}\right):=\bigcup_{i=1}^{p} V\left(\widetilde{w_{i}}\right)$ and every path $\widetilde{w}_{i} \in \mathcal{W}_{\widetilde{C}}$ has exactly one end vertex v_{i} in common with \widetilde{C}, for $i \in\{1, \ldots, p\}$.

In the following, we investigate the subgraph $U:=\widetilde{C} \cup \widetilde{w_{1}} \cup \cdots \cup \widetilde{w_{p}}$ of G. Obviously, it suffices to prove the existence of a K_{d}-path-covering $(d \geq 3)$ of $N(U)$ with a maximum tail length $\hat{s} \leq s^{\prime}$.

For this end, let $v \in V(\widetilde{C}) \cap V\left(\widetilde{w_{1}}\right)$ and $d:=d(v: U) \geq 3$ be the degree of v in U.

Furthermore, let $K_{d}=\left\langle N_{U}(v)\right\rangle_{N(U)}$ be the d-clique induced in the neighborhood graph $N(U)$ by the neighborhood $N_{U}(v)$ of v in U.
At first we verify that the distance of each vertex $u \in V$ from K_{d} in $N(U)$ is at most s^{\prime}, i.e.

$$
(* *) \quad \hat{s}=\max \left\{d_{N(U)}\left(K_{d}, u\right) \mid u \in V\right\} \leq s^{\prime},
$$

where $d_{N(U)}\left(K_{d}, u\right):=\min \left\{d_{N(U)}(x, u) \mid x \in V\left(K_{d}\right)\right\}$.
Let $v^{\prime} \in V$ be a vertex with $d_{N(U)}\left(K_{d}, v^{\prime}\right)=\hat{s}$. If $v^{\prime} \in N_{U}(v)$, then $d_{N(U)}\left(K_{d}, v^{\prime}\right)=0$ and there is nothing to prove.

If $v^{\prime} \in V(\widetilde{C}) \backslash N_{U}(v)$, then in $\langle V(\widetilde{C})\rangle_{U}$ there is path of even length $t \leqq l(\widetilde{C})-1$ from one vertex in $N_{U}(v) \cap V(\widetilde{C})$ to the vertex v^{\prime}; therefore $\hat{s} \leq \frac{t}{2} \leq \frac{l(\widetilde{\widetilde{C}})-1}{2} \leq s^{\prime}$.

Now let $v^{\prime} \in V\left(\mathcal{W}_{\widetilde{C}}\right) \backslash\left(V(\widetilde{C}) \cup N_{U}(v)\right)$; in detail, let $v^{\prime} \in V\left(\widetilde{w_{j}}\right) \backslash(V(\widetilde{C}) \cup$ $N_{U}(v)$), where $j \in\{1,2, \ldots, p\}$.

Then it is easy to see that in U there is a path of (even) length at most $(l(\widetilde{C})-1)+l\left(\widetilde{w_{j}}\right) \leq(l(\widetilde{C})-1)+s_{\max }(\widetilde{C})$ from v^{\prime} to one of the vertices in
$V(\widetilde{C}) \cap N_{U}(v)$. Therefore, in $N(U)$ there is a path of length at most $\frac{l(\widetilde{C})-1}{2}+$ $\left\lceil\frac{s_{\max }(\widetilde{C})}{2}\right\rceil=s^{\prime}$ from K_{d} to v^{\prime} and $(* *)$ is true.

Because of $(* *)$ in $N(U)$ there exists a system $\mathcal{W}=\left\{w_{1}, \ldots, w_{q}\right\}$ of paths of maximum length $\hat{s} \leq s^{\prime}$ such that $N(U)_{K_{d}, \mathcal{W}}=K_{d} \cup w_{1} \cup \cdots \cup w_{q}$ is a $K_{d^{-}}$ path-covering of $N(U)$ which has a maximum tail length $\hat{s} \leq s^{\prime}$; this completes the proof.

We conjecture that the bound given in Theorem 8 is sharp for many graphs C_{q}^{s} consisting of a cycle C of odd length $l(C)=q$ and a tail w of length $l(w)=s$. The computation of $\operatorname{cn}\left(C_{q}^{s}\right)$ for a set of pairs (q, s) lead to

Conjecture 9. If $q \geq 3$ is odd and $s \geq 1$, then $\operatorname{cn}\left(C_{q}^{s}\right)=\left\lceil 1+\log _{2}(s+q-2)\right\rceil$.
For $q=3$, Theorem 5 proves the conjecture, because of $K_{3}^{s}=C_{3}^{s}$ and $n-2=s+1$. In the case $q>3$ for C_{q}^{s} due to $l(C)=q$ odd and $s_{\max }(C)=s$ it follows $s^{\prime}=\frac{l(C)-1}{2}+\left\lceil\frac{s_{\max }(C)}{2}\right\rceil=\frac{q-1}{2}+\left\lceil\frac{s}{2}\right\rceil$. For s even (i.e. $n=q+s$ odd) we obtain $s^{\prime}=\frac{q+s-1}{2}=\frac{n-1}{2}$ and for s odd (i.e. n even) $s^{\prime}=\frac{q+s}{2}=\frac{n}{2}$.
Therefore,

$$
\begin{aligned}
\left\lceil 2+\log _{2}\left(s^{\prime}+1\right)\right\rceil & = \begin{cases}\left\lceil 2+\log _{2}\left(\frac{n+1}{2}\right)\right\rceil & \text { if } n \text { is odd } \\
\left\lceil 2+\log _{2}\left(\frac{n+2}{2}\right)\right\rceil & \text { if } n \text { is even }\end{cases} \\
& = \begin{cases}\left\lceil 1+\log _{2}(n+1)\right\rceil & \text { if } n \text { is odd, } \\
\left\lceil 1+\log _{2}(n+2)\right\rceil & \text { if } n \text { is even. }\end{cases}
\end{aligned}
$$

Provided that Conjecture 9 is true, for all odd $q>3$ and all $s \geq 1$ the bound in Theorem 8 is sharp for C_{q}^{s} if and only if

$$
\left\lceil\log _{2}(n-2)\right\rceil= \begin{cases}\left\lceil\log _{2}(n+1)\right\rceil & \text { if } n \text { is odd } \\ \left\lceil\log _{2}(n+2)\right\rceil & \text { if } n \text { is even }\end{cases}
$$

where $n=q+s$.
By computer, we verified Conjecture 9 (and, therefore, the sharpness of the bound in Theorem 8) for C_{q}^{s} if $q \in\{5,7,9,21\}$ and $s \in\{1,2, \ldots, 35-q\}$.
To give one of the examples in detail, consider C_{7}^{4}. By computer, we obtained $\operatorname{cn}\left(C_{7}^{4}\right)=5$ and from $q=7, s=4, n=11$ it follows $\left\lceil 1+\log _{2}(n-2)\right\rceil=$ $\left\lceil 1+\log _{2}(11-2)\right\rceil=5$ as well as $\left\lceil 1+\log _{2}(n+1)\right\rceil=\left\lceil 1+\log _{2}(11+1)\right\rceil=5$.

We close this subsection with the remark that, for infinitely many graphs, our results are better than the bound (EH) of Exoo and Harary [5] given at the beginning of Section 3. As a first example, consider K_{3}^{10} (cf. Figure 2). Then Theorem 5 yields $c n\left(K_{3}^{10}\right)=5$, but from (EH) we would obtain $c n\left(K_{3}^{10}\right) \leq$ $\left\lceil\log _{2} 10+3\right\rceil=7$. As a second example, for C_{21}^{4} Theorem 8 provides the bound $\operatorname{cn}\left(C_{21}^{4}\right) \leq\left\lceil 2+\log _{2} 13\right\rceil=6$, and from (EH) it follows $\mathrm{cn}\left(C_{21}^{4}\right) \leq\left\lceil\log _{2} 4+21\right\rceil=23$.

In general, with increasing length of the (odd) cycle considered in the graph, the bound (EH) becomes more blurred.

3.3. Neighborhood completeness number and diameter

We can observe that the diameter $\operatorname{diam}(G)$ (the maximum distance between two vertices in the graph G) is closely related to the neighborhood completeness number $c n(G)$. But at least in the class of graphs consisting of a clique $K_{l}(l \geq 3)$ and some vertex disjoint tails, the length $s(s \geq 1)$ of a longest tail is a more elegant measure to determine $\operatorname{cn}(G)$. For illustration, consider the graph $K_{l}^{s, s}$ consisting of an l-clique K_{l} with two (vertex disjoint) tails of length s. Because of $\operatorname{diam}\left(K_{l}^{s}\right)=s+1$ and $\operatorname{diam}\left(K_{l}^{s, s}\right)=2 s+1$ Corollary 7 implies

Remark 10. $c n\left(K_{l}^{s}\right)=\left\lceil 1+\log _{2}\left(\operatorname{diam}\left(K_{l}^{s}\right)\right)\right\rceil$ and $c n\left(K_{l}^{s, s}\right)=\left\lceil\log _{2}\left(\operatorname{diam}\left(K_{l}^{s, s}\right)+\right.\right.$ 1)].

Hence, using the diameter, we obtain two different formulas for the neighborhood completeness numbers $c n\left(K_{l}^{s}\right)$ and $\operatorname{cn}\left(K_{l}^{s, s}\right)$. By contrast, using the length s of a longest tail as a parameter, we obtain one and the same formula for both types of graphs: Corollary 7 leads to $c n\left(K_{l}^{s}\right)=\left\lceil 1+\log _{2}(s+1)\right\rceil=c n\left(K_{l}^{s, s}\right)$, since the length of a longest tail is the same (namely s) in both K_{l}^{s} and $K_{l}^{s, s}$.

A recent result of Schweitzer [17] immediately implies
Theorem 11 [17]. If G is connected, non-bipartite and not an odd cycle, then $\log _{2}(\operatorname{diam}(G)) \leq c n(G) \leq\left\lceil 2+\log _{2}(\operatorname{diam}(G))\right\rceil$.

Note that $2+\log _{2}(\operatorname{diam}(G))$ is not an upper bound for $c n(G)$: taking the above example C_{7}^{4} we obtain $\operatorname{diam}\left(C_{7}^{4}\right)=7$ and $\operatorname{cn}\left(C_{7}^{4}\right)=5>2+\log _{2}(7)$.

For special classes of graphs the upper bound in Theorem 11 follows from our results. Additionally to K_{l}^{s} and $K_{l}^{s, s}$ (cf. Remark 10) we mention the following two classes:
(A) Consider the graphs \widehat{G} being investigated in Corollary 7, which have a K_{l}-path-covering with a longest tail w_{1} of length $s=l\left(w_{1}\right)$, such that only the end vertex $v_{1} \in V\left(K_{l}\right)$ of w_{1} has neighbors in $V(\widehat{G}) \backslash V\left(w_{1}\right)$. The diameter of such a graph is at least $s+1$, consequently $\operatorname{cn}(\widehat{G})=\left\lceil 1+\log _{2}(s+1)\right\rceil<$ $\left\lceil 2+\log _{2}(\operatorname{diam}(\widehat{G}))\right\rceil$.
(B) Similarly, using Theorem 8 we obtain a corresponding result for certain triangle-free, connected, non-bipartite graphs being no odd cycles.

Let G be a unicyclic graph consisting of a cycle C of odd length $q>3$ and several trees (one with at least two vertices), where each of the trees has exactly one end vertex in common with C.

Moreover, let $\mathcal{W}_{C}=\left\{w_{1}, \ldots, w_{p}\right\}$ be a system of paths of length at most $s:=s_{\max }(C)$ in G such that $V \backslash V(C) \subseteq V\left(\mathcal{W}_{C}\right):=\bigcup_{i=1}^{p} V\left(w_{i}\right)$ and every path $w_{i} \in \mathcal{W}_{C}$ has exactly one end vertex v_{i} in common with C, for $i \in\{1, \ldots, p\}$. Since at least one of the trees in G is nontrivial, $s \geq 2$ is valid.

Then $\operatorname{diam}(G) \geq \frac{q-1}{2}+s>\frac{q-1}{2}+\left\lceil\frac{s}{2}\right\rceil=\frac{l(C)-1}{2}+\left\lceil\frac{s_{\max }(C)}{2}\right\rceil=s^{\prime}$. Theorem 8 implies $c n(G) \leq\left\lceil 2+\log _{2}\left(s^{\prime}+1\right)\right\rceil \leq\left\lceil 2+\log _{2}(\operatorname{diam}(G))\right\rceil$.

Acknowledgements

The authors would like to thank the referees for their valuable suggestions and detailed hints.

References

[1] B.D. Acharya and M.N. Vartak, Open neighborhood graphs, Indian Institute of Technology, Department of Mathematics, Research Report No. 7 (Bombay 1973).
[2] J.W. Boland, R.C. Brigham and R.D. Dutton, Embedding arbitrary graphs in neighborhood graphs, J. Combin. Inform. System Sci. 12 (1987) 101-112.
[3] R.C. Brigham and R.D. Dutton, On neighborhood graphs, J. Combin. Inform. System Sci. 12 (1987) 75-85.
[4] R. Diestel, Graph Theory, Second Edition, (Springer, 2000).
[5] G. Exoo and F. Harary, Step graphs, J. Combin. Inform. System Sci. 5 (1980) 52-53.
[6] H.J. Greenberg, J.R. Lundgren and J.S. Maybee, The inversion of 2-step graphs, J. Combin. Inform. System Sci. 8 (1983) 33-43.
[7] S.R. Kim, The competition number and its variants, in: Quo Vadis, Graph Theory?, J. Gimbel, J.W. Kennedy, L.V. Quintas (Eds.), Ann. Discrete Math. 55 (1993) 313326.
[8] J.R. Lundgren, Food webs, competition graphs, competition-common enemy graphs and niche graphs, in: Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, F. Roberts (Ed.) (Springer, New York 1989) IMA 17 221-243.
[9] J.R. Lundgren, S.K. Merz, J.S. Maybee and C.W. Rasmussen, A characterization of graphs with interval two-step graphs, Linear Algebra Appl. 217 (1995) 203-223. doi:10.1016/0024-3795(94)00173-B
[10] J.R. Lundgren, S.K. Merz and C.W. Rasmussen, Chromatic numbers of competition graphs, Linear Algebra Appl. 217 (1995) 225-239. doi:10.1016/0024-3795(94)00227-5
[11] J.R. Lundgren and C. Rasmussen, Two-step graphs of trees, Discrete Math. 119 (1993) 123-139.
doi:10.1016/0012-365X(93)90122-A
[12] J.R. Lundgren, C.W. Rasmussen and J.S. Maybee, Interval competition graphs of symmetric digraphs, Discrete Math. 119 (1993) 113-122. doi:10.1016/0012-365X(93)90121-9
[13] M.M. Miller, R.C. Brigham and R.D. Dutton, An equation involving the neighborhood (two step) and line graphs, Ars Combin. 52 (1999) 33-50.
[14] M. Pfützenreuter, Konkurrenzgraphen von ungerichteten Graphen (Bachelor thesis, University of Lübeck, 2006).
[15] F.S. Roberts, Competition graphs and phylogeny graphs, in: Graph Theory and Combinatorial Biology, Proceedings of International Colloquium Balatonlelle (1996), Bolyai Society of Mathematical Studies, L. Lovász (Ed.) (Budapest, 1999) 7, 333362.
[16] I. Schiermeyer, M. Sonntag and H.-M. Teichert, Structural properties and hamiltonicity of neighborhood graphs, Graphs Combin. 26 (2010) 433-456. doi:10.1007/s00373-010-0909-x
[17] P. Schweitzer (Max-Planck-Institute for Computer Science, Saarbrücken, Germany), unpublished script (2010).

Revised 14 July 2011
Accepted 18 July 2011

