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Abstract

The neighborhood graph N(G) of a simple undirected graph G = (V,E)
is the graph (V,EN ) where EN = {{a, b} | a 6= b , {x, a} ∈ E and {x, b} ∈ E

for some x ∈ V }. It is well-known that the neighborhood graph N(G) is
connected if and only if the graph G is connected and non-bipartite.

We present some results concerning the k-iterated neighborhood graph

Nk(G) := N(N(. . . N(G))) of G. In particular we investigate conditions for
G and k such that Nk(G) becomes a complete graph.

Keywords: neighborhood graph, 2-step graph, neighborhood completeness
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1. Introduction and Definitions

All graphs considered here are undirected and finite without loops and multiple
edges.

Definition. The neighborhood graph N(G) of a graph G = (V,E) is the graph
(V,EN ) where EN = {{a, b} | a 6= b , {x, a} ∈ E and {x, b} ∈ E for some x ∈ V }.
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Several aspects of neighborhood graphs were investigated in the last thirty years
(cf. [1–3, 5, 6, 9–14, 16]). Some of these papers use the notation 2-step graph or
competition graph instead of neighborhood graph. As the latter name indicates,
the neighborhood graph N(G) of an undirected graph G is closely related to the
competition graph C(D) of a digraph D. Surveys of competition graphs can be
found in Kim [7], Lundgren [8] and Roberts [15].

With dG(x, y) and d(x : G) we denote the distance of x, y ∈ V in G and
the degree of x ∈ V in G, respectively. Further we use the neighborhood sets
NG(x) = {z ∈ V | {x, z} ∈ E} and NG(x, y) = NG(x) ∩ NG(y). Definitions not
explicitly given here can be found in [4].

First, we summarize some simple results on neighborhood graphs from the
literature mentioned above.

Proposition 1. Let G = (V,E) be a connected graph and N(G) = (V,EN ) its

neighborhood graph. Then the following hold:

(a) N(G) has at most two connected components.

(b) N(G) is connected if and only if G is non-bipartite.

(c) If G is 2-connected and non-bipartite, then N(G) is also 2-connected and

non-bipartite.

(d) For each n ≥ 5 and p ≥ 2 with 2p ≤ n there is a p-connected, non-bipartite

graph G with n vertices, such that the neighborhood graph N(G) has connec-
tivity 2.

(e) For the path Pn with n vertices: N(Pn) ∼= P⌈n

2
⌉ ∪ P⌊n

2
⌋.

(f) For the cycle Cn with n vertices: N(C2k+1) ∼= C2k+1, N(C2k) ∼= Ck∪Ck (for
k ≥ 3) and N(C4) ∼= P2 ∪ P2.

(g) For the complete graph Kn with n vertices: N(Kn) ∼= Kn, n 6= 2 (note
that G = C2n+1 and G = Kn, n 6= 2, are the only connected graphs with

N(G) ∼= G (cf. Brigham and Dutton [3])).

(h) For the complete bipartite graph Km,n with m+ n vertices:

N(Km,n) ∼= Km ∪Kn.

(i) For the wheel Wn with n+ 1 vertices: N(Wn) ∼= Kn+1.

Properties (e)–(i) lead to the question what happens if the construction of the
neighborhood graph is iterated:

Definition. For a positive integer k ∈ IN+, the k-iterated neighborhood graph

Nk(G) of a graph G is the neighborhood graph of Nk−1(G), where N0(G) := G.

In this paper we consider the following problems:

Problem 1. What is the structure of Nk(G), for large k?
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Problem 2. Under which conditions Nk(G) ∼= Kn, for sufficiently large k?

Problem 3. If G fulfils the conditions mentioned in Problem 2, what is the
minimum k such that Nk(G) ∼= Kn?

The answers of Problems 1 and 2 follow from the results of Exoo and Harary [5];
we discuss these problems in the (short) Section 2. Section 3 contains the main
results of this paper. There we determine the minimum k mentioned in Problem
3 for a certain class of graphs and give upper bounds for k being better than
those from [5].

2. The Structure of Nk(G) for Large k

Summarizing the results of Lemma 1–3 of [5] we obtain immediately the follow-
ing theorem solving Problem 2. Here we present another (short) proof using
arguments which prepare several ideas used in Section 3.

Theorem 2. Let G = (V,E) be a graph with n > 1 vertices. Then there exists

k ∈ IN with Nk(G) ∼= Kn if and only if G is connected, non-bipartite and G 6∼=
C2p+1 (for p > 1).

Proof. Let n = |V | > 1. If G is an odd cycle C2p+1, p > 1, or bipartite or
not connected then, by Proposition 1 (b) and (f), Nk(G) 6∼= Kn for all k ∈ IN.
Therefore the three conditions (connected, non-bipartite and G 6∼= C2p+1, p > 1)
are necessary for the existence of k ∈ IN with Nk(G) ∼= Kn.

Now let G fulfil these conditions and v ∈ V be a vertex with the degree
d(v : G) = p ≥ 3. Then the neighborhood NG(v) induces a p-clique Kp in the
neighborhood graph N1(G).

We prove that for k, p ∈ IN+ with 3 ≤ p < n the existence of a p-clique Kp

in Nk(G) implies the existence of a (p+ 1)-clique Kp+1 in Nk+2(G).
By Proposition 1(b), Nk(G) is connected. Since p < n, there is a vertex u in

the p-clique Kp having a neighbor u′ ∈ V (G) \ V (Kp) in Nk(G). Consequently,
in Nk+1(G) — in addition to Kp — the set (V (Kp) \ {u}) ∪ {u′} induces a
second p-clique. Therefore, in Nk+2(G) also the vertices u and u′ are adjacent
(in Nk+1(G) they have common neighbors in V (Kp) \ {u}) and V (Kp) ∪ {u′}
induces a (p+ 1)-clique (cf. Figure 1)).

Proposition 1 and Theorem 2 imply the following corollary, which solves Problem
1 (the result is established in [5] and also mentioned in [3]).

Corollary 3. For an arbitrary graph G = (V,E) and sufficiently large k ∈ IN,

Nk(G) consists of odd cycles and (possibly trivial) complete graphs.
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Figure 1. An example with p = 5.

3. The Neighborhood Completeness Number

Now we turn to Problem 3. To determine the minimum k such that Nk(G) is
complete could be interesting in connection with graph algorithms; this motivates
the definition:

Definition. For G = (V,E) connected, non-bipartite and G 6∼= C2p+1 (for p > 1),
we define the neighborhood completeness number of G by

cn(G) := min{k ∈ IN |Nk(G) ∼= Kn}.

The only result concerning the neighborhood completeness number can be found
in [5]. Let G be a connected graph with n vertices which is neither bipartite nor
an odd cycle. If C is a cycle of length 2k+1 in G, d is the maximum least distance
from a vertex not on C to a vertex on C and r := log2d, then N r+2k+1(G) = Kn.
Hence

(EH) cn(G) ≤ r + 2k + 1.

The sharpness of this bound will be discussed at the end of Subsection 3.2. Before,
in Subsection 3.1, we determine the neighborhood completeness number for a
special class of graphs. This result is used in the following to improve the bound
(EH) for cn(G) for arbitrary non-bipartite graphs G.

3.1. A special class of graphs: l-cliques with a tail

Definition. For l ≥ 3 and s ≥ 1, let Ks
l be the graph (V,E) defined by

V = {1, 2, . . . , l, l + 1, . . . , l + s},

E = {{i, j} | 1 ≤ i < j ≤ l} ∪ {{l, l + 1}, {l + 1, l + 2}, . . . , {l + s− 1, l + s}}.

Hence, Ks
l consists of a complete graph Kl with l vertices and a ”tail” of length

s (cf. Figure 2). We start with a lemma describing several structural properties
of Nk(Ks

l ), for l ≥ 3.
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We denote by 〈v1, v2, . . . , vt〉 = 〈v1, v2, . . . , vt〉Nk(G) the subgraph of Nk(G) in-

duced by the vertices v1, v2, . . . , vt ∈ V (Nk(G)).
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Figure 2. An example to Lemma 4.

Lemma 4. Let k, l, s ∈ IN with l ≥ 3 and s ≥ 1. Then the following hold for

Nk(Ks
l ):

(a) If 2k − 1 ≤ s, then there are exactly 2k l-cliques containing the (l− 1)-clique
〈1, 2, . . . , l−1〉, namely 〈1, 2, . . . , l−1, l〉, 〈1, 2, . . . , l−1, l+1〉, . . . , 〈1, 2, . . . ,
l − 1, l + 2k − 1〉.

(b) If 2k ≤ s, then all the edges between {1, 2, . . . , l + 2k − 1} and {l + 2k, l +
2k + 1, . . . , l + s} have the form {x, x+ 2k}.
These edges exist for all x ∈ {l, l + 1, . . . , l +min{2k − 1, s− 2k}}.

(c) If 2k − 1 ≤ s, then 〈l + 2k − 1, l + 2k, . . . , l + s〉 is the union of the vertex

disjoint paths (y, y + 2k, y + 2 · 2k, y + 3 · 2k, . . .), where y ∈ {l + 2k − 1,
l + 2k, . . . , l +min{2k+1 − 2, s− 2k}}.
(Therefore, these paths contain only edges of the form {x, x + 2k}, where

x ∈ {l + 2k − 1, l + 2k, . . . , l + s− 2k}.)

(d) If k ≥ 1 and 2k−1 − 1 ≤ s, then 〈1, 2, . . . , l + 2k−1 − 1〉 is a maximal clique.

Before proving Lemma 4, as an example we consider K10
3 (cf. Figure 2).

Note that the dashed edges {3, 8} and {4, 7} in N3(K10
3 ) (and corresponding

edges in Nk(K10
3 ) (k > 3) will be of no account in our investigations. In reference

to the Lemma, these edges connect a vertex of the maximum clique of Nk(K10
3 )

(cf. (d)) with a vertex from the set {2k−1 + l, 2k−1 + l+ 1, . . . , 2k + l− 1}, which
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is contained in one of the triangles (i.e. l-cliques with l = 3, cf. (a)), but not in
the maximum clique.

Obviously, in Nk+1(K10
3 ) these edges “disappear” since they are included in

the maximum clique of Nk+1(K10
3 ).

Now we verify Lemma 4 by induction on k:

Proof. Let n := l + s.

k = 0.
(a) Because N0(Ks

l ) = Ks
l there is exactly 20 = 1 l-clique, namely 〈1, 2, . . . , l〉.

(b) The only edge between {1, 2, . . . , l} and {l + 1, l + 2, . . . , n} is {l, l + 1}.
(c) 〈l, l + 1, . . . , n〉 is the path (l, l + 1, . . . , n).
(d) Not applicable.

k = 1.
(a) There are 21 = 2 l-cliques: 〈1, 2, . . . , l − 1, l〉 and 〈1, 2, . . . , l − 1, l + 1〉.
(b) The edges between {1, 2, . . . , l+ 1} and {l+ 2, l+ 3, . . . , n} are {l, l+ 2} and

{l + 1, l + 3}.
(c) 〈l + 1, l + 2, . . . , n〉 is the (disjoint) union of the paths (l + 1, l + 3, l + 5, . . .)

and (l + 2, l + 4, l + 6, . . .).
(d) 〈1, 2, . . . , l〉 is a maximum — and, therefore, also maximal — clique.

k ≥ 2.

Induction hypotheses: (a)–(d) are true for all k′ ≤ k − 1.

For technical reasons and a better comprehension of the following, we formulate
the induction hypotheses for k′ = k − 1 in detail.

In Nk−1(Ks
l ) it holds:

(a′) If 2k−1+ l−1 ≤ n, then there are exactly 2k−1 l-cliques over the (l−1)-clique
〈1, 2, . . . , l− 1〉, namely 〈1, 2, . . . , l− 1, l〉, 〈1, 2, . . . , l− 1, l+1〉, . . . , 〈1, 2, . . . ,
l − 1, 2k−1 + l − 1〉.

(b′) Between {1, 2, . . . , 2k−1 + l− 1} and {2k−1 + l, 2k−1 + l+ 1, . . . , n} there are
only edges of the form {x, x+ 2k−1}.
These edges exist for all x ∈ {l, l + 1, . . . ,min{2k−1 + l − 1, n− 2k−1}}.

(c′) 〈2k−1+ l−1, 2k−1+ l, . . . , n〉Nk−1(Ks

l
) is the union of the vertex disjoint paths

(y, y+2k−1, y+2 ·2k−1, y+3 ·2k−1, . . .), where y ∈ {2k−1+ l−1, 2k−1+ l, . . . ,

min{2k + l − 2, n− 2k−1}}.
(Therefore, these paths contain only edges of the form {x, x+ 2k−1}, where
x ∈ {2k−1 + l − 1, 2k−1 + l, . . . , n− 2k−1}.)

(d′) If 2k−2 + l− 1 ≤ n, then 〈1, 2, . . . , 2k−2 + l− 1〉Nk−1(Ks

l
) is a maximal clique.

Induction steps.

At first, we mention the following.
(◦) In Nk(Ks

l ), there exist the edges {x, x+ 2k} for each x ∈ {1, 2, . . . , n− 2k}.
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Verification of (◦).
For x ≥ l, in Nk(Ks

l ) the existence of {x, x + 2k} follows from the existence of
the edges {x, x+2k−1}, {x+2k−1, (x+2k−1) + 2k−1 = x+2k} in Nk−1(Ks

l ) (cf.
the induction hypotheses (b′), (c′)), since, obviously, x and x + 2k are common
neighbors of x+ 2k−1 in Nk−1(Ks

l ).

For x ∈ {1, 2, . . . , l − 1}, additionally to (b′) and (c′) also (a′) is needed to
ensure {x, x+ 2k−1}, {x+ 2k−1, x+ 2k} ∈ E(Nk−1(Ks

l )).

Now we show (a)–(d).

(a) Let 2k + l − 1 ≤ n. Since the 2k−1 l-cliques 〈1, 2, . . . , l − 1, l〉, 〈1, 2, . . . , l −
1, l + 1〉, . . . , 〈1, 2, . . . , l − 1, 2k−1 + l − 1〉 from Nk−1(Ks

l ) (cf. (a′)) are complete
subgraphs, they exist also in Nk(Ks

l ). Because of (a′) and (◦) in Nk−1(Ks
l ) each

vertex x ∈ {l, l + 1, . . . , 2k−1 + l − 1} has at least the neighbors 1, 2, . . . , l − 1
and x + 2k−1. Hence, in Nk(Ks

l ) there are the l-cliques 〈1, 2, . . . , l − 1, 2k−1 +
l〉, 〈1, 2, . . . , l− 1, 2k−1 + l+ 1〉, . . . , 〈1, 2, . . . , l− 1, 2k + l− 1〉. In Nk(Ks

l ), there
are no other l-cliques over the (l− 1)-clique 〈1, 2, . . . , l− 1〉, since (a′), (b′) imply
that, in Nk−1(Ks

l ), all neighbors x of the vertices 1, 2, . . . , l − 1 are contained in
{1, 2, . . . , 2k−1 + l − 1} and, moreover, every vertex x ∈ {1, 2, . . . , 2k−1 + l − 1}
in the set {2k−1 + l, 2k−1 + l + 1, . . . , n} has only the neighbor y = x + 2k−1.
Therefore, owing to y = x+ 2k−1 ≤ 2k−1 + 2k−1 + l− 1 = 2k + l− 1, in Nk(Ks

l ),
the l-cliques 〈1, 2, . . . , l− 1, l〉, 〈1, 2, . . . , l− 1, l+1〉, . . . , 〈1, 2, . . . , l− 1, 2k + l− 1〉
include all these neighbors y, which are the only possible candidates for building
l-cliques containing the vertices 1, 2, . . . , l − 1. This completes the proof of (a).

(b) Without loss of generality, let 2k + l ≤ n, otherwise there is nothing to show.
Because of (◦) it suffices to show that the edges of the form {x, x + 2k}, where
x ∈ {l, l + 1, . . . ,min{2k + l − 1, n − 2k}}, are the only edges between the sets
{1, 2, . . . , 2k + l − 1} and {2k + l, 2k + l + 1, . . . , n}.

In Nk−1(Ks
l ), between z ∈ {1, 2, . . . , 2k−1 + l − 1} and {2k−1 + l, 2k−1 +

l + 1, . . . , n} there are only edges of the form {z, z + 2k−1} (cf. (b′)). This
implies, for the end vertices of such edges, z ∈ {l, l + 1, . . . , 2k−1 + l − 1} and
z + 2k−1 ∈ {2k−1 + l, 2k−1 + l + 1, . . . , 2k + l − 1}.

Now let x+2k ∈ {2k+ l, 2k+ l+1, . . . , n} with x ∈ {l, l+1, . . . , 2k+ l−1} and
assume y ∈ {1, 2, . . . , 2k + l − 1} \ {x} is another neighbor of x+ 2k in Nk(Ks

l ).

Then, in Nk−1(Ks
l ), there are vertices z and z′ such that z is a common neighbor

of x and x + 2k, as well as z′ is a common neighbor of y and x + 2k. Clearly,
x + 2k > 2k−1 + l − 1 and, consequently, owing to (b′) and (c′) this implies
z = x+2k−2k−1 or z = x+2k+2k−1. Since z is also a neighbor of x in Nk−1(Ks

l ),
the only possibility is z = x+2k−2k−1 = x+2k−1 ∈ {2k−1+l, 2k−1+l+1, . . . , n}.

Analogously, we obtain z′ = x + 2k−1. Consequently, z = z′ = x + 2k−1 has
the three pairwise distinct neighbors x, y, x+ 2k in Nk−1(Ks

l ), in contradiction
to z ≥ 2k−1 + l and (b′) and (c′), what excludes other neighbors than z − 2k−1,
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z + 2k−1. Thus (b) holds.

(c) Due to (◦), the existence (and, obviously, the disjointness) of the paths (y, y+
2k, y + 2 · 2k, y + 3 · 2k, . . .) is clear, for all y ∈ {2k + l− 1, 2k + l, . . . ,min{2k+1 +
l − 2, n− 2k}}.

Assume, there are x, x′ ∈ {2k + l − 1, 2k + l, . . . , n} with x < x′, x′ 6= x +
2k, and {x, x′} ∈ E(Nk(Ks

l )). Then, in Nk−1(Ks
l ), there must be a common

neighbor z of x and x′.

If z ≤ 2k−1+ l−1, then (because of (b′)) the only edge in Nk−1(Ks
l ) between

z and vertices in {2k−1 + l, 2k−1 + l + 1, . . . , n} is the edge {z, z + 2k−1}. This
implies the contradiction x = z + 2k−1 = x′.

If z > 2k−1+ l−1, then (because of (b′) and (c′)) x < x′ induces x = z−2k−1

and x′ = z + 2k−1 and, therefore, x′ = x + 2 · 2k−1 = x + 2k incompatible with
the assumption.

(d) Let 2k−1 + l − 1 ≤ n. In Nk−1(Ks
l ) the vertices 2, 3, . . . , 2k−1 + l − 1 are

common neighbors of 1 (because of (a′)). Hence, 〈2, 3, 4, . . . , 2k−1 + l − 1〉Nk(Ks

l
)

is a clique. Analogously, we obtain that 〈1, 3, 4, 5, . . . , 2k−1 + l − 1〉Nk(Ks

l
) is a

clique. Because, in Nk−1(Ks
l ), the vertex 3 is a common neighbor of the vertices

1 and 2, it follows {1, 2} ∈ E(Nk(Ks
l )), and 〈1, 2, . . . , 2k−1 + l − 1〉Nk(Ks

l
) is a

clique.

Assume, the clique 〈1, 2, . . . , 2k−1 + l − 1〉Nk(Ks

l
) is not maximal.

In Nk(Ks
l ), let z ≥ 2k−1 + l be the smallest vertex being adjacent to all

vertices x ∈ {1, 2, . . . , 2k−1 + l − 1}.

In Nk−1(Ks
l ), it follows that z has to have a common neighbor with every

vertex x ∈ {1, 2, . . . , 2k−1 + l− 1}. The induction hypotheses (b′) and (c′) imply
that there are at most two neighbors of z in Nk−1(Ks

l ), namely z − 2k−1 and
z + 2k−1.

In Nk−1(Ks
l ), because of (b

′) and z+2k−1 > (2k−1+ l−1)+2k−1, the vertex
z + 2k−1 has no neighbor in the set {1, 2, . . . , 2k−1 + l − 1}. Therefore, z − 2k−1

is adjacent to all vertices x ∈ {1, 2, . . . , 2k−1 + l − 1}. Since z − 2k−1 cannot be
adjacent to itself, this implies z−2k−1 ≥ 2k−1+l. Hence, z−2k−1 > 2k−2+l−1 and
〈1, 2, . . . , 2k−2+ l−1, z−2k−1〉Nk−1(Ks

l
) is a clique in Nk−1(Ks

l ). This contradicts

the maximality of the clique 〈1, 2, . . . , 2k−2 + l − 1〉Nk−1(Ks

l
) (cf. (d

′)).

Therefore, the clique 〈1, 2, . . . , 2k−1 + l − 1〉Nk(Ks

l
) is maximal and the proof

of (d) is complete.

Theorem 5. For l ≥ 3 and s ≥ 1, cn(Ks
l ) = ⌈1 + log2(s+ 1)⌉.

Proof. Let n = l+ s. For 2k−1 + l− 1 ≤ n, from part (d) of Lemma 4 it follows
that 〈1, 2, . . . , 2k−1 + l − 1〉Nk(Ks

l
) is a maximal clique in Nk(Ks

l ).
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This implies that Nk(Ks
l ) is complete if and only if 2k−1 + l − 1 ≥ n, which is

equivalent to k − 1 ≥ log2(n − l + 1) = log2(s + 1), i.e. k ≥ 1 + log2(s + 1).
Therefore, cn(Ks

l ) = ⌈1 + log2(s+ 1)⌉.

3.2. The general case

In this section, let G = (V,E) be connected, non-bipartite and not an odd cycle.
For the first definition we suppose that G contains an l-clique (l ≥ 3).

Definition. Let Kl be an l-clique (l ≥ 3) in G = (V,E) and W = {w1, . . . , wq} a
system of paths in G such that V \V (Kl) ⊆ V (W) :=

⋃q
i=1 V (wi) and every path

wi ∈ W has exactly one end vertex vi in common with Kl, for i ∈ {1, . . . , q}. The
subgraph GKl,W = Kl ∪ w1 ∪ · · · ∪ wq = (V,E′) with V = V (Kl) ∪ V (w1) ∪
· · · ∪ V (wq) and E′ = E(Kl) ∪ E(w1) ∪ · · · ∪ E(wq) ⊆ E will be referred to as
a Kl-path-covering of G. The paths w1, . . . , wq are called tails.

Note that the tails are not necessarily disjoint. Moreover, they cover all vertices
of G−Kl (and, additionally, the end vertices v1, . . . , vq ∈ (

⋃q
i=1 V (wi)) ∩ V (Kl))

but not necessarily all edges of G−Kl (cf. Figure 3).

w1

w3

w3

w2w2

w2w1

w3

w1

w2

w3

Figure 3. A K5-path-covering GK5,W = K5 ∪ w1 ∪ w2 ∪ w3.

Kl-path-coverings are suitable auxiliaries to give an upper bound for the neigh-
borhood completeness number of arbitrary graphs. In the case of connected
graphs containing an l-clique (l ≥ 3), this upper bound is the same as in the
previous subsection.
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Obviously, if the connected graph G contains an l-clique Kl (l ≥ 3), then there
is also a Kl-path-covering GKl,W in G and vice versa.

Theorem 6. Let GKl,W = Kl ∪ w1 ∪ · · · ∪ wq be a Kl-path-covering of a

graph G = (V,E). If s is the maximum length of the tails w1, . . . , wq, then

cn(G) ≤ ⌈1 + log2(s+ 1)⌉.

Proof. It suffices to show that cn(GKl,W) ≤ ⌈1 + log2(s+ 1)⌉.
So let u, v ∈ V be arbitrary vertices of GKl,W and t := ⌈1 + log2(s + 1)⌉.

Without loss of generality, let wx and wy be tails such that u ∈ V (Kl)∪V (wx) and
v ∈ V (Kl) ∪ V (wy), respectively. (Note that also the special cases u ∈ V (Kl) \
V (wx) or v ∈ V (Kl) \ V (wy) or wx = wy or wx 6= wy and V (wx) ∩ V (wy) 6= ∅
are possible.)

Since Kl ∪ wx
∼= Krx

l , where rx ≤ s denotes the length of the path wx, by
Theorem 5 it follows that N t(Kl ∪ wx) is complete. Consequently, due to Lemma
4(a), in N t−1(Kl ∪ wx) the vertex u has at least l − 1 neighbors in the vertex
set V (Kl). Clearly, the same holds for the vertex v in N t−1(Kl ∪ wy). Because
of l ≥ 3, in N t−1(Kl ∪ wx ∪ wy) the vertices u and v have at least l − 2 ≥ 1
common neighbors (in V (Kl)). Therefore, they are adjacent in N t(GKl,W). So
N t(GKl,W) is complete.

To obtain a class of graphs where the bound of Theorem 6 is sharp, we consider
graphs Ĝ having a Kl-path-covering with a longest tail wi, such that only the
end vertex vi ∈ V (Kl) of wi has neighbors in V (Ĝ) \ V (wi); more precisely:

Corollary 7. Let ĜKl,W = Kl ∪ w1 ∪ · · · ∪ wq be a Kl-path-covering of a graph

Ĝ = (V,E). If the length of the tail w1 is equal to the maximum tail length s of

w1, . . . , wq and all vertices of V (w1) \ V (Kl) except the end vertex, which has the

degree one, have the degree two in Ĝ, then cn(Ĝ) = ⌈1 + log2(s+ 1)⌉.

Proof. If w1 = (u1, u2, . . . , us+1) and V (Kl) ∩ V (w1) = {u1}, then Ĝ = U ∪ w1,
where U = 〈V (Ĝ) \ {u2, u3, . . . , us+1}〉Ĝ. With l := |V (Ĝ)| − s, the graph Ĝ is
isomorphic to an edge-deleted subgraph of Ks

l , i.e. to a subgraph containing all

l+ s vertices of Ks
l . Because of cn(Ks

l ) = ⌈1+ log2(s+1)⌉, cn(Ĝ) ≥ cn(Ks
l ) and

Theorem 6 we obtain the assertion.

For graphs G containing an l-clique Kl (l ≥ 3), Theorem 6 gives an upper bound
for the neighborhood completeness number cn(G). Now we consider graphs with-
out such cliques. So let G be a triangle-free graph. The basic idea is the following:

Since G is non-bipartite and is not isomorphic to an odd cycle, there must
be a vertex v ∈ V (G) having a degree d := d(v : G) ≥ 3. The neighborhood
NG(v) of v in G induces a d-clique Kd in the neighborhood graph N(G). Let
N(G)Kd,W = Kd ∪ w1 ∪ · · · ∪ wq be a Kd-path-covering of N(G) and ŝ be the
maximum tail length of N(G)Kd,W .
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Then, owing to Theorem 6,

(∗) cn(G) = cn(N(G)) + 1 ≤ ⌈1 + log2(ŝ+ 1)⌉+ 1.

Following this idea, in Theorem 8 we give a bound for cn(G) which uses only
parameters of the graph G, not of its neighborhood graph N(G). First, for a
cycle C in G let l(C) be the length of C and smax(C) := max{dG(C, v) | v ∈ V },
where dG(C, v) := min{dG(x, v) |x ∈ V (C)}, i.e. smax(C) is the maximum
distance of any vertex in G from the cycle C.

Theorem 8. Let G = (V,E) be triangle-free, connected, non-bipartite and not an

odd cycle. Moreover, let s′ := min
{

l(C)−1
2 +

⌈
smax(C)

2

⌉
| C is an odd cycle in G

}
.

Then, cn(G) ≤ ⌈2 + log2(s
′ + 1)⌉.

Proof. Because of Theorem 6 and (∗), it suffices to show that there is a
Kd-path-covering (d ≥ 3) of N(G) with the maximum tail length ŝ ≤ s′.

Let C̃ be an odd cycle in G such that s′ = l(C̃)−1
2 +

⌈
smax(C̃)

2

⌉
, where s′ is

defined as above.

Moreover, let W
C̃

= {w̃1, . . . , w̃p} be a system of paths of length at most

smax(C̃) in G such that V \ V (C̃) ⊆ V (W
C̃
) :=

⋃p
i=1 V (w̃i) and every path

w̃i ∈ W
C̃
has exactly one end vertex vi in common with C̃, for i ∈ {1, . . . , p}.

In the following, we investigate the subgraph U := C̃ ∪ w̃1 ∪ · · · ∪ w̃p of
G. Obviously, it suffices to prove the existence of a Kd-path-covering (d ≥ 3) of
N(U) with a maximum tail length ŝ ≤ s′.

For this end, let v ∈ V (C̃) ∩ V (w̃1) and d := d(v : U) ≥ 3 be the degree of v
in U .

Furthermore, let Kd = 〈NU (v)〉N(U) be the d-clique induced in the neighbor-
hood graph N(U) by the neighborhood NU (v) of v in U .

At first we verify that the distance of each vertex u ∈ V from Kd in N(U) is at
most s′, i.e.

(∗∗) ŝ = max{dN(U)(Kd, u) | u ∈ V } ≤ s′,

where dN(U)(Kd, u) := min{dN(U)(x, u) | x ∈ V (Kd)}.

Let v′ ∈ V be a vertex with dN(U)(Kd, v
′) = ŝ. If v′ ∈ NU (v), then

dN(U)(Kd, v
′) = 0 and there is nothing to prove.

If v′ ∈ V (C̃)\NU (v), then in 〈V (C̃)〉U there is path of even length t ≤ l(C̃)−1

from one vertex in NU (v) ∩ V (C̃) to the vertex v′; therefore ŝ ≤ t
2 ≤ l(C̃)−1

2 ≤ s′.

Now let v′ ∈ V (W
C̃
) \ (V (C̃) ∪ NU (v)); in detail, let v′ ∈ V (w̃j) \ (V (C̃) ∪

NU (v)), where j ∈ {1, 2, . . . , p}.
Then it is easy to see that in U there is a path of (even) length at most

(l(C̃) − 1) + l(w̃j) ≤ (l(C̃) − 1) + smax(C̃) from v′ to one of the vertices in
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V (C̃) ∩ NU (v). Therefore, in N(U) there is a path of length at most l(C̃)−1
2 +⌈

smax(C̃)
2

⌉
= s′ from Kd to v′ and (∗∗) is true.

Because of (∗∗) in N(U) there exists a system W = {w1, . . . , wq} of paths of
maximum length ŝ ≤ s′ such that N(U)Kd,W = Kd ∪ w1 ∪ · · · ∪ wq is a Kd-
path-covering of N(U) which has a maximum tail length ŝ ≤ s′; this completes
the proof.

We conjecture that the bound given in Theorem 8 is sharp for many graphs Cs
q

consisting of a cycle C of odd length l(C) = q and a tail w of length l(w) = s.
The computation of cn(Cs

q ) for a set of pairs (q, s) lead to

Conjecture 9. If q ≥ 3 is odd and s ≥ 1, then cn(Cs
q ) = ⌈1 + log2(s+ q − 2)⌉.

For q = 3, Theorem 5 proves the conjecture, because ofKs
3 = Cs

3 and n−2 = s+1.
In the case q > 3 for Cs

q due to l(C) = q odd and smax(C) = s it follows

s′ = l(C)−1
2 + ⌈ smax(C)

2 ⌉ = q−1
2 + ⌈ s2⌉. For s even (i.e. n = q + s odd) we obtain

s′ = q+s−1
2 = n−1

2 and for s odd (i.e. n even) s′ = q+s
2 = n

2 .

Therefore,

⌈2 + log2(s
′ + 1)⌉ =

{
⌈2 + log2(

n+1
2 )⌉ if n is odd,

⌈2 + log2(
n+2
2 )⌉ if n is even,

=

{
⌈1 + log2(n+ 1)⌉ if n is odd,
⌈1 + log2(n+ 2)⌉ if n is even.

Provided that Conjecture 9 is true, for all odd q > 3 and all s ≥ 1 the bound in
Theorem 8 is sharp for Cs

q if and only if

⌈log2(n− 2)⌉ =

{
⌈log2(n+ 1)⌉ if n is odd,
⌈log2(n+ 2)⌉ if n is even,

where n = q + s.

By computer, we verified Conjecture 9 (and, therefore, the sharpness of the
bound in Theorem 8) for Cs

q if q ∈ {5, 7, 9, 21} and s ∈ {1, 2, . . . , 35− q}.
To give one of the examples in detail, consider C4

7 . By computer, we obtained
cn(C4

7 ) = 5 and from q = 7, s = 4, n = 11 it follows ⌈1 + log2(n − 2)⌉ =
⌈1 + log2(11− 2)⌉ = 5 as well as ⌈1 + log2(n+ 1)⌉ = ⌈1 + log2(11 + 1)⌉ = 5.

We close this subsection with the remark that, for infinitely many graphs,
our results are better than the bound (EH) of Exoo and Harary [5] given at
the beginning of Section 3. As a first example, consider K10

3 (cf. Figure 2).
Then Theorem 5 yields cn(K10

3 ) = 5, but from (EH) we would obtain cn(K10
3 ) ≤

⌈log210 + 3⌉ = 7. As a second example, for C4
21 Theorem 8 provides the bound

cn(C4
21) ≤ ⌈2+log213⌉ = 6, and from (EH) it follows cn(C4

21) ≤ ⌈log24+21⌉ = 23.

In general, with increasing length of the (odd) cycle considered in the graph,
the bound (EH) becomes more blurred.
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3.3. Neighborhood completeness number and diameter

We can observe that the diameter diam(G) (the maximum distance between
two vertices in the graph G) is closely related to the neighborhood completeness
number cn(G). But at least in the class of graphs consisting of a clique Kl (l ≥ 3)
and some vertex disjoint tails, the length s (s ≥ 1) of a longest tail is a more
elegant measure to determine cn(G). For illustration, consider the graph K

s,s
l

consisting of an l-clique Kl with two (vertex disjoint) tails of length s. Because
of diam(Ks

l ) = s+ 1 and diam(Ks,s
l ) = 2s+ 1 Corollary 7 implies

Remark 10. cn(Ks
l ) = ⌈1+log2(diam(Ks

l ))⌉ and cn(Ks,s
l ) = ⌈log2(diam(Ks,s

l )+
1)⌉.

Hence, using the diameter, we obtain two different formulas for the neighborhood
completeness numbers cn(Ks

l ) and cn(Ks,s
l ). By contrast, using the length s of a

longest tail as a parameter, we obtain one and the same formula for both types
of graphs: Corollary 7 leads to cn(Ks

l ) = ⌈1 + log2(s+ 1)⌉ = cn(Ks,s
l ), since the

length of a longest tail is the same (namely s) in both Ks
l and K

s,s
l .

A recent result of Schweitzer [17] immediately implies

Theorem 11 [17]. If G is connected, non-bipartite and not an odd cycle, then

log2(diam(G)) ≤ cn(G) ≤ ⌈2 + log2(diam(G))⌉.

Note that 2 + log2(diam(G)) is not an upper bound for cn(G): taking the above
example C4

7 we obtain diam(C4
7 ) = 7 and cn(C4

7 ) = 5 > 2 + log2(7).

For special classes of graphs the upper bound in Theorem 11 follows from our
results. Additionally to Ks

l and K
s,s
l (cf. Remark 10) we mention the following

two classes:

(A) Consider the graphs Ĝ being investigated in Corollary 7, which have a
Kl-path-covering with a longest tail w1 of length s = l(w1), such that only the
end vertex v1 ∈ V (Kl) of w1 has neighbors in V (Ĝ) \ V (w1). The diameter
of such a graph is at least s + 1, consequently cn(Ĝ) = ⌈1 + log2(s + 1)⌉ <

⌈2 + log2(diam(Ĝ))⌉.

(B) Similarly, using Theorem 8 we obtain a corresponding result for certain
triangle-free, connected, non-bipartite graphs being no odd cycles.

Let G be a unicyclic graph consisting of a cycle C of odd length q > 3 and
several trees (one with at least two vertices), where each of the trees has exactly
one end vertex in common with C.

Moreover, let WC = {w1, . . . , wp} be a system of paths of length at most
s := smax(C) in G such that V \ V (C) ⊆ V (WC) :=

⋃p
i=1 V (wi) and every path

wi ∈ WC has exactly one end vertex vi in common with C, for i ∈ {1, . . . , p}.
Since at least one of the trees in G is nontrivial, s ≥ 2 is valid.
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Then diam(G) ≥ q−1
2 + s > q−1

2 + ⌈ s2⌉ = l(C)−1
2 +

⌈
smax(C)

2

⌉
= s′. Theorem 8

implies cn(G) ≤ ⌈2 + log2(s
′ + 1)⌉ ≤ ⌈2 + log2(diam(G))⌉.
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