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Abstract

Let G = (V,E) be a connected graph and let k be a positive integer with
k ≤ rad(G). A subset D ⊆ V is called a distance k-dominating set of G if
for every v ∈ V − D, there exists a vertex u ∈ D such that d(u, v) ≤ k.
In this paper we study the fractional version of distance k-domination and
related parameters.
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1. Introduction

By a graph G = (V,E) we mean a finite, undirected and connected graph with
neither loops nor multiple edges. The order and size of G are denoted by n and m
respectively. For basic terminology in graphs we refer to Chartrand and Lesniak
[3]. For basic terminology in domination related concepts we refer to Haynes et
al. [9].

Let G = (V,E) be a graph. A subset D of V is called a dominating set of G
if every vertex in V −D is adjacent to at least one vertex in D. A dominating set
D is called a minimal dominating set if no proper subset of D is a dominating
set of G. The minimum (maximum) cardinality of a minimal dominating set of G
is called the domination number (upper domination number) of G and is denoted
by γ(G) (Γ(G)). Let A and B be two subsets of V. We say that B dominates A if
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every vertex in A−B is adjacent to at least one vertex in B. If B dominates A,
then we write B → A. Meir and Moon [12] introduced the concept of a k-packing
and distance k-domination in a graph as a natural generalisation of the concept
of domination. Let G = (V,E) be a graph and v ∈ V. For any positive integer k,
let Nk(v) = {u ∈ V : d(u, v) ≤ k} and Nk[v] = Nk(v) ∪ {v}. A set S ⊆ V is a
distance k-dominating set of G if Nk[v] ∩ S 6= ∅ for every vertex v ∈ V − S. The
minimum (maximum) cardinality among all minimal distance k-dominating sets
of G is called the distance k-domination number (upper distance k-domination
number) of G and is denoted by γk(G) (Γk(G)). A set S ⊆ V is said to be an
efficient distance k-dominating set of G if |Nk[v] ∩ S| = 1 for all v ∈ V − S.
Clearly, γ(G) = γ1(G). A distance k-dominating set of cardinality γk(G) (Γk(G))
is called a γk (Γk)-set. Hereafter, we shall use the term k-domination for distance
k-domination.

Note that, γk(G) = γ(Gk), where Gk is the kth power of G, which is obtained
from G by joining all pairs of distinct vertices u, v with d(u, v) ≤ k. A subset
S ⊆ V (G) of a graph G = (V,E) is said to be a k-packing ([12]) of G, if d(u, v) > k
for all pairs of distinct vertices u and v in S. The k-packing number ρk(G) is
defined to be the maximum cardinality of a k-packing set in G. The corona of a
graph G, denoted by G ◦K1, is the graph formed from a copy of G by attaching
to each vertex v a new vertex v′ and an edge {v, v′}. The Cartesian product of
graphs G and H, denoted by G�H, is the graph with vertex set V (G) × V (H)
and two vertices (u1, v1) and (u2, v2) are adjacent in G�H if and only if either
u1 = u2 and v1v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G). For a survey of results
on distance domination we refer to Chapter 12 of Haynes et al. [10].

Hedetniemi et al. [11] introduced the concept of fractional domination in
graphs. Grinstead and Slater [6] and Domke et al. [5] have presented several
results on fractional domination and related parameters in graphs. Arumugam
et al. [1] have investigated the fractional version of global domination in graphs.

Let G = (V,E) be a graph. Let g : V → R be any function. For any subset S
of V, let g(S) =

∑

v∈S g(v). The weight of g is defined by |g| = g(V ) =
∑

v∈V g(v).
For a subset S of V, the function χS : V → {0, 1} defined by

χS(v) =

{

1 if v ∈ S,
0 if v /∈ S,

is called the characteristic function of S.
A function g : V → [0, 1] is called a dominating function (DF ) of the graph

G = (V,E) if g(N [v]) =
∑

u∈N [v] g(u) ≥ 1 for all v ∈ V. For functions f, g from
V → [0, 1] we write f ≤ g if f(v) ≤ g(v) for all v ∈ V. Further, we write f < g if
f ≤ g and f(v) < g(v) for some v ∈ V. A DF g of G is minimal (MDF ) if f is
not a DF for all functions f : V → [0, 1] with f < g.
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The fractional domination number γf (G) and the upper fractional domination
number Γf (G) are defined as follows:

γf (G) = min{|g| : g is a minimal dominating function of G},
Γf (G) = max{|g| : g is a minimal dominating function of G}.

For a dominating function f of G, the boundary set Bf and the positive set Pf are
defined by Bf = {u ∈ V (G) : f(N [u]) = 1} and Pf = {u ∈ V (G) : f(u) > 0}. A
function g : V → [0, 1] is called a packing function (PF ) of the graph G = (V,E)
if g(N [v]) =

∑

u∈N [v] g(u) ≤ 1 for all v ∈ V. The lower fractional packing number
pf (G) and the fractional packing number Pf (G) are defined as follows:

pf (G) = min{|g| : g is a maximal packing function of G},
Pf (G) = max{|g| : g is a maximal packing function of G}.

It was observed in Chapter 3 of [10] that for every graph G, 1 ≤ γf (G) = Pf (G) ≤
γ(G) ≤ Γ(G) ≤ Γf (G). We need the following theorems:

Theorem 1.1 [5]. For a graph G, pf (G) ≤ ρ2(G) ≤ Pf (G).

Theorem 1.2 [2]. A DF f of G is an MDF if and only if Bf → Pf .

Theorem 1.3 [2]. If f and g are MDFs of G and 0 < λ < 1 then hλ =
λf + (1− λ)g is an MDF of G if and only if Bf ∩ Bg → Pf ∪ Pg.

Theorem 1.4 [5]. If G is an r-regular graph of order n, then γf (G) = n
r+1 .

Theorem 1.5 [4]. Let G be a block graph. Then for any integer k ≥ 1, we have
ρ2k(G) = γk(G).

For other families of graphs satisfying ρ2(G) = γ(G), we refer to Rubalcaba et
al. [13].

Definition 1.6 [15]. A linear Benzenoid chain B(h) of length h is the graph
obtained from P2�Ph+1 by subdividing exactly once each edge of the two copies
of Ph+1. Hence B(h) is a subgraph of P2�P2h+1. The graph B(4) is given in
Figure 1.
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Figure 1. B(4).

Theorem 1.7 [15]. For the linear benzenoid chain B(h), we have

γk(B(h)) =

{

⌈h+1
k

⌉ if k 6= 2,

⌈h+2
k

⌉ if k = 2.
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We refer to Scheinerman and Ullman [14] for fractionalization techniques of var-
ious graph parameters. Hattingh et al. [8] introduced the distance k-dominating
function and proved that the problem of computing the upper distance fractional
domination number is NP-complete. In this paper we present further results on
fractional distance k-domination.

2. Distance k-dominating Function

Hattingh et al. [8] introduced the following concept of fractional distance k-
domination.

Definition 2.1. A function g : V → [0, 1] is called a distance k-dominating
function or simply a k-dominating function (kDF ) of a graph G = (V,E), if for
every v ∈ V, g(Nk[v]) =

∑

u∈Nk[v]
g(u) ≥ 1. A k-dominating function (kDF ) g

of a graph G is called a minimal k-dominating function (MkDF ) if f is not a
k-dominating function of G for all functions f : V → [0, 1] with f < g. The
fractional k-domination number γkf (G) and the upper fractional k-domination
number Γkf (G) are defined as follows:

γkf (G) = min{|g| : g is an MkDF of G},
Γkf (G) = max{|g| : g is an MkDF of G}.

We observe that if k ≥ rad(G), then ∆(Gk) = n − 1 and γkf (G) = 1. Hence
throughout this paper, we assume that k < rad(G).

Lemma 2.2 [8]. Let f be a k-dominating function of a graph G = (V,E). Then
f is minimal k-dominating if and only if whenever f(v) > 0 there exists some
u ∈ Nk[v] such that f(Nk[u]) = 1.

Remark 2.3. The characteristic function of a γk-set and that of a Γk-set of a
graph G are MkDF s of G. Hence it follows that 1 ≤ γkf (G) ≤ γk(G) ≤ Γk(G) ≤
Γkf (G).

Definition 2.4. A function g : V → [0, 1] is called a distance k-packing func-
tion or simply a k-packing function of a graph G = (V,E), if for every v ∈ V,
g(Nk[v]) ≤ 1. A k-packing function g of a graph G is maximal if f is not a k-
packing function of G for all functions f : V → [0, 1] with f > g. The fractional
k-packing number pkf (G) and the upper fractional k-packing number Pkf (G) are
defined as follows:

pkf (G) = min{|g| : g is a maximal k-packing function of G},
Pkf (G) = max{|g| : g is a maximal k-packing function of G}.

Observation 2.5. The fractional k-domination number γkf (G) is the optimal
solution of the following linear programming problem (LPP).
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Minimize z =
∑n

i=1 f(vi) , subject to
∑

u∈Nk[v]
f(u) ≥ 1 and 0 ≤ f(v) ≤ 1 for all v ∈ V.

The dual of the above LPP is

Maximize z =
∑n

i=1 f(vi), subject to
∑

u∈Nk[v]
f(u) ≤ 1 and 0 ≤ f(v) ≤ 1 for all v ∈ V.

The optimal solution of the dual LPP is the upper fractional k-packing num-
ber Pkf (G). It follows from the strong duality theorem that Pkf (G) = γkf (G).
Hence if there exists a minimal k-dominating function g and a maximal k-packing
function h with |g| = |h|, then Pkf (G) = |h| = |g| = γkf (G).

Lemma 2.6. For any graph G of order n we have γkf (G) ≤ n
k+1 and the bound

is sharp.

Proof. Since |Nk[u]| ≥ k + 1 for all u ∈ V, it follows that the constant function
f defined on V by f(v) = 1

k+1 for all v ∈ V, is a k-dominating function with
|f | = n

k+1 . Hence γkf (G) ≤ n
k+1 . To prove the sharpness of this bound, consider

the graph G consisting of a cycle of length 2k with a path of length k attached to
each vertex of the cycle. Clearly n = 2k(k + 1). Further the set S of all pendant
vertices ofG forms an efficient k-dominating set ofG and hence

∑

u∈Nk[v]
f(u) = 1

for all v ∈ V where f is the characteristic function of S. Hence γk(G) = γkf (G) =
2k = n

k+1 .

Observation 2.7. We observe that γkf (G) = γf (G
k). Hence the following is an

immediate consequence of Theorem 1.2.

Let G be a graph and let A,B ⊆ V. We say that A, k-dominates B if Nk[v]∩A 6= ∅
for all v ∈ B and we write A →k B. Now for any kDF f of G let Pf = {u ∈
V (G) : f(u) > 0} and Bf = {u ∈ V (G) : f(Nk[u]) = 1}. Then f is an MkDF of
G if and only if Bf →k Pf .

Observation 2.8. If f and g are kDFs of a graph G = (V,E) and λ ∈ (0, 1),
then the convex combination of f and g defined by hλ(v) = λf(v) + (1− λ)g(v)
for all v ∈ V is a kDF of G. However, the convex combination of two MkDFs
of a graph G need not be minimal, as shown in the following example.

Consider the cycle G = C7 = (u1u2 . . . u7u1) with k = 2. The function
f : V (G) → [0, 1] defined by

f(x) =

{

1 if x ∈ {u1, u5},
0 otherwise,

is a minimal 2-dominating function ofG with Pf = {u1, u5}, Bf = {u1, u2, u4, u5}.
Also, the function g : V (G) → [0, 1] defined by

g(x) =

{

1 if x ∈ {u3, u6},
0 otherwise,
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is a minimal 2-dominating function of G with Pg = {u3, u6}, Bg = {u2, u3, u6, u7}.
Let h = 1

2f + 1
2g. Then h(u1) = h(u3) = h(u5) = h(u6) = 1

2 , h(u2) = h(u4) =
h(u7) = 0, h(N2[ui]) =

3
2 for i 6= 2 and h(N2[u2]) = 1. Hence Ph = {u1, u3, u5, u6}

and Bh = {u2}. Since u5, u6 /∈ N2[u2] we have Bh does not 2-dominate Ph and
hence the kDF h is not minimal.

Observation 2.9. If f and g are MkDFs of G and 0 < λ < 1, then hλ = λf +
(1− λ)g is an MkDF of G if and only if Bf ∩ Bg →k Pf ∪ Pg.

Observation 2.10. For the cycle Cn, the graph G = Ck
n is 2k-regular and hence

it follows from Theorem 1.4 that γkf (Cn) =
n

2k+1 .

We now proceed to determine the fractional k-domination number of several
families of graphs.

Proposition 2.11. For the hypercube Qn, γkf (Qn) =
2n

(n
0
)+(n

1
)+(n

2
)+···+(n

k
)
.

Proof. For any two vertices x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Qn,
d(x, y) ≤ k if and only if x and y differ in at most k coordinates and hence Qk

n

is r-regular where r =
(

n
1

)

+
(

n
2

)

+ · · · +
(

n
k

)

. Hence by Theorem 1.4, we have
γkf (Qn) =

2n

r+1 = 2n

(n
0
)+(n

1
)+(n

2
)+···+(n

k
)
.

Proposition 2.12. For the graph G = P2�Cn, we have

γkf (G) =

{

8
7 if n = 4 and k = 2,
n
2k if n ≥ 5.

Proof. If n = 4 and k = 2, then G2 is a 6-regular graph and hence γ2f (G) = 8
7 .

If n ≥ 5, Gk is a (4k − 1)-regular graph and hence γkf (G) = 2n
4k−1+1 = n

2k .

Theorem 2.13. Let G = Cn ◦K1. Then γkf (G) = n
2k−1 .

Proof. Let Cn = (v1v2 . . . vnv1). Let ui be the pendant vertex adjacent to vi.
Clearly, |Nk[ui] ∩ V (Cn)| = 2k − 1 and Nk[ui] ⊂ Nk[vi], 1 ≤ i ≤ n. Hence the
function g : V (G) → [0, 1] defined by

g(x) =

{

0 if x = ui,
1

2k−1 if x = vi

is a minimal k-dominating function of G with |g| = n
2k−1 . Also we have |Nk[vi] ∩

{uj : 1 ≤ j ≤ n}| = 2k − 1, 1 ≤ i ≤ n. Hence the function h : V (G) → [0, 1]
defined by

h(x) =

{

1
2k−1 if x = ui,

0 if x = vi

is a maximal k-packing function of G with |h| = n
2k−1 . Hence by Observation 2.5,

we have γkf (G) = n
2k−1 .
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Theorem 2.14. For the grid G = P2�Pn, we have

γkf (G) =

{

n(n+2k)
2k(n+k) if n ≡ 0 (mod 2k),

⌈ n
2k⌉ otherwise.

Proof. Let P2 = (u0, u1) and Pn = (v0, v1, . . . , vn−1), so that V (G) = {(ui, vj) :
i = 0, 1, 0 ≤ j ≤ n− 1}.

Case 1. n ≡ 0 (mod 2k). Let n = 2kp, p > 1. Define f : V (G) → [0, 1] by

f((ui, vj)) =











( 1
2p+1)(p− ⌊ j

2k⌋) if j ≡ (k − 1) (mod 2k),

( 1
2p+1)(⌊

j
2k⌋+ 1) if j ≡ k (mod 2k),

0 otherwise.

Then f is a k-dominating function of G. Also, since f((u0, vj)) = f((u1, vj)) for
all j, we have |f | = 2(

∑n−1
j=0 f((u0, vj))) =

2
2p+1 [(p+(p−1)+ · · ·+3+2+1)+(1+

2+3+ · · ·+ p)] = 2p(p+1)
2p+1 = n(n+2k)

2k(n+2) . Now consider the function h : V (G) → [0, 1]
defined by

h((ui, vj)) =











( 1
2p+1)(p− ⌊ j

2k⌋) if j ≡ 0 (mod 2k),

( 1
2p+1)(⌊

j
2k⌋+ 1) if j ≡ (2k − 1) (mod 2k),

0 otherwise.

Then h is a k-packing function of G with |h| = 2p(p+1)
2p+1 = n(n+2k)

2k(n+2k) . Hence

γkf (G) = n(n+2k)
2k(n+k) .

Case 2. n 6≡ 0 (mod 2k). Let n = 2kq + r, 1 ≤ r ≤ 2k − 1. Let S = S1 ∪ S2

and

S1 =

{

{(u0, vj) : j ≡ 0 (mod 4k)} if 1 ≤ r ≤ k,
{(u0, vj) : j ≡ (k − 1) (mod 4k)} if k + 1 ≤ r ≤ 2k − 1.

S2 =

{

{(u1, vj) : j ≡ 2k (mod 4k)} if 1 ≤ r ≤ k,
{(u1, vj) : j ≡ (3k − 1) (mod 4k)} if k + 1 ≤ r ≤ 2k − 1.

Let f be the characteristic function of S. Since d(x, y) ≥ 2k + 1 for all x, y ∈ S,
it follows that f(Nk[u]) = 1 for all u ∈ V (G). Thus f is both a minimal k-
dominating function and a maximal k-packing function of G and hence γkf (G) =
|f | = |S| = ⌈ n

2k⌉.

A special case of the above theorem gives the following result of Hare [7].

Corollary 2.15. For the grid graph G = P2�Pn, we have

γf (G) =







n(n+2)
2(n+1) if n is even,

⌈n2 ⌉ if n is odd.
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3. Graphs with γkf (G) = γk(G)

In this section we obtain several families of graphs for which the fractional k-
domination number and the k-domination number are equal.

Lemma 3.1. If a graph G has an efficient k-dominating set, then γkf (G) =
γk(G).

Proof. Let D be an efficient k-dominating set of G. Then |Nk[u]∩D| = 1 for all
u ∈ V (G). Hence the characteristic function of D is both a minimal k-dominating
function and a maximal k-packing function of G and so γkf (G) = γk(G).

Lemma 3.2. For any graph G, γkf (G) = 1 if and only if γk(G) = 1.

Proof. Suppose γk(G) = 1. Since γkf (G) ≤ γk(G), it follows that γkf (G) = 1.
Conversely, let γkf (G) = 1. Then γf (G

k) = 1 and hence γ(Gk) = 1. Since
γ(Gk) = γk(G) the result follows.

Lemma 3.3. For any graph G, pkf (G) ≤ ρ2k(G) ≤ Pkf (G).

Proof. Let u ∈ V (G). Since Nk[u] = NGk [u], we have pkf (G) = pf (G
k),

Pkf (G) = Pf (G
k) and ρ2k(G) = ρ2(G

k).

Hence the result follows from Theorem 1.1.

Corollary 3.4. For any graph G, 1 ≤ pkf (G) ≤ ρ2k(G) ≤ Pkf (G) = γkf (G) ≤
γk(G) ≤ Γk(G) ≤ Γkf (G).

Corollary 3.5. If G is any graph with ρ2k(G) = γk(G), then γkf (G) = γk(G).

Corollary 3.6. If G is a block graph, then γkf (G) = γk(G).

Proof. It follows from Theorem 1.5 that ρ2k(G) = γk(G) and hence the result
follows.

Corollary 3.7. For any tree T, we have γkf (T ) = γk(T ).

Theorem 3.8. For the graph G = Pk+1�Pn where n ≡ 1 (mod (k + 1)), k ≥ 1,
we have γkf (G) = γk(G) = ⌈ n

k+1⌉.

Proof. Let n = (k+1)q+1, q ≥ 1. Clearly |V (G)| = n(k+1) = (k+1)2q+(k+
1). Let Pk+1 = (u0, u1, u2, . . . , uk) and Pn = (v0, v1, . . . , vn−1) so that V (G) =
{(ui, vj) : 0 ≤ i ≤ k, 0 ≤ j ≤ n− 1}.

Now let S1 = {(u0, vi) : i ≡ 0 (mod 2(k + 1))}, S2 = {(uk, vi) : i ≡
(k + 1) (mod 2(k + 1))} and S = S1 ∪ S2. Clearly, d(x, y) = (2k + 1)r, r ≥ 1,
for all x, y ∈ S and |S| = ⌈ n

k+1⌉ = q + 1. Also, (u0, v0) and exactly one of
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the vertices (u0, vn−1) or (uk, vn−1) are in S and each of these two vertices k-

dominates (k+1)(k+2)
2 vertices of G. Also, if u ∈ Nk[x] ∩ Nk[y], where x, y ∈ S,

then d(u, x) ≤ k, d(u, y) ≤ k and so d(x, y) ≤ d(x, u) + d(u, y) ≤ 2k, which is
a contradiction. Thus Nk[x] ∩ Nk[y] = ∅ for all x, y ∈ S. Each of the remaining
vertices of S k-dominates (k+1)2 vertices of G. Further, |V (G)| − (k+1)(k+2)
is a multiple of (k + 1)2 and hence it follows that S is an efficient k-dominating
set of G. Hence, by Lemma 3.1, we have γkf (G) = γk(G) = |S| = ⌈ n

k+1⌉.

Theorem 3.9. For the graph G = P3�Pn, we have γ2f (G) = γ2(G) = ⌈n3 ⌉.

Proof. If n ≡ 1 (mod 3), then the result follows from Theorem 3.8. Suppose
n ≡ 0 (mod 3) or 2 (mod 3). Let n = 3q, q ≥ 1 or n = 3q + 2, q ≥ 0. Let
P3 = (u0, u1, u2) and Pn = (v0, v1, . . . , vn−1) so that V (G) = {(ui, vj) : 0 ≤ i ≤
2, 0 ≤ j ≤ n − 1}. Now D = {(u1, vj) : j ≡ 1 (mod 3)} is a γ2-set of G with
|D| = ⌈n3 ⌉ and hence γ2(G) = ⌈n3 ⌉. Further f = χD is a 2-dominating function
of G with |f | = ⌈n3 ⌉. Also let S1 = {(u0, vj) : j ≡ 0 (mod 6)}, S2 = {(u2, vj) :
j ≡ 3 (mod 6)} and S = S1 ∪S2. Then g = χS is a 2-packing function of G with
|g| = ⌈n3 ⌉. Hence γ2f (G) = ⌈n3 ⌉.

Observation 3.10. The graph G = P3�P5 does not have an efficient 2-domina-
ting set. In fact the set S = {(u0, v0), (u2, v3)} efficiently 2-dominates 14 vertices
of G and the vertex (u0, v4) is not 2-dominated by S. Further if S is any 2-
dominating set of G with |S| = γ2(G) = 2, then at least one vertex of G is
2-dominated by both vertices of S. This shows that the converse of Lemma 3.1 is
not true.

Theorem 3.11. For the linear benzenoid chain G = B(h), we have

γkf (G) = γk(G) =

{

h
2 + 1 if k = 2 and h ≡ 0 (mod 2),

⌈h
k
⌉ if k ≥ 3 and h ≡ ⌊k2⌋ (mod k).

Proof. Since G = B(h) is a subgraph of P2�P2h+1, we take V (G) = {(ui, vj) :
i = 0, 1, 0 ≤ j ≤ 2h}, where P2 = (u0, u1) and P2h+1 = (v0, v1, . . . , v2h). Clearly,
|V (G)| = 4h+2. Any vertex u ∈ V (G) k-dominates at most 4k vertices of G and
hence γk(G) ≥ ⌈4h+2

4k ⌉.

Case 1. k = 2 and h ≡ 0 (mod 2). In this case we have γ2(G) ≥ ⌈4h+2
8 ⌉ =

h
2 + 1. Now let S1 = {(u0, vj) : j ≡ 0 (mod 8)}, S2 = {(u1, vj) : j ≡ 4 (mod 8)}
and S = S1∪S2. Clearly, for any x, y ∈ S, d(x, y) ≥ 5 and hence N2[x]∩N2[y] = ∅.
Also |S| = ⌈2h+1

4 ⌉ = h
2 + 1. Now (u0, v0) and exactly one of the vertices (u0, v2h)

or (u1, v2h) is in S and each of these two vertices 2-dominates exactly 5 vertices
of G. Each of the remaining vertices of S 2-dominates 8 vertices of G. Further
|V (G)|−10 = 4h−8 = 8(h2 −1), which is a multiple of 8 and hence it follows that

S is an efficient 2-dominating set of G. Hence γ2f (G) = γ2(G) = |S| = h
2 + 1.
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Case 2. k ≥ 3 and h ≡ ⌊k2⌋ (mod k). Let h = kq + ⌊k2⌋, q ≥ 1. In this case

we have γk(G) ≥ ⌈4h+2
4k ⌉ = ⌈h

k
⌉. Now let S1 = {(u0, vj) : j ≡ (k − 1) (mod 4k)},

S2 = {(u1, vj) : j ≡ (3k−1) (mod 4k)} and S = S1∪S2. Clearly, d(x, y) = (2k+

1)r, r ≥ 1 for all x, y ∈ S, hence Nk[x]∩Nk[y] = ∅. Also |S| = ⌈2h−(k−1)
2k ⌉ = ⌈h

k
⌉.

Now, when k is odd, exactly one of the vertices (u0, v2h) or (u1, v2h) is in S
and it k-dominates 2k + 1 vertices. When k is even, exactly one of the vertices
(u0, v2h−1) or (u1, v2h−1) are in S and it k-dominates 2k+3 vertices. The vertex
(u0, vk−1) k-dominates 4k− 1 vertices. In both cases the number of vertices of G
which are not k-dominated by these two vertices is a multiple of 4k and each of
the remaining vertices of S k-dominates 4k vertices of G. Hence it follows that S
is an efficient k-dominating set of G so that γkf (G) = γk(G) = |S| = ⌈h

k
⌉.

Conclusion. In this paper we have determined the fractional k-domination
number of several families of graphs. We have also obtained several families of
graphs for which γkf (G) = γk(G). The study of the fractional version of distance
k-irredundance and distance k-independence remains open. Slater has mentioned
several efficiency parameters such as redundance and influence in Chapter 1 of
[10]. One can investigate these parameters for fractional distance domination.
The following are some interesting problems for further investigation.

1. Characterize the class of graphs G for which γkf (G) = n
k+1 .

2. Characterize the class of graphs G with γkf (G) = γk(G).

3. Determine γkf (Pr�Ps) for r, s ≥ 4.
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