FRACTIONAL DISTANCE DOMINATION IN GRAPHS

S. Arumugam ${ }^{1,2}$, Varughese Mathew ${ }^{3}$ and K. Karuppasamy ${ }^{1}$
${ }^{1}$ National Centre for Advanced Research in Discrete Mathematics (n-CARDMATH)
Kalasalingam University, Anand Nagar, Krishnankoil-626 126, India
${ }^{2}$ School of Electrical Engineering and Computer Science
The University of Newcastle, NSW 2308, Australia
${ }^{3}$ Department of Mathematics, Mar Thoma College, Tiruvalla-689 103, India
e-mail: s.arumugam.klu@gmail.com
\{k_karuppasamy,varughese_m1\}@yahoo.co.in

Abstract

Let $G=(V, E)$ be a connected graph and let k be a positive integer with $k \leq \operatorname{rad}(G)$. A subset $D \subseteq V$ is called a distance k-dominating set of G if for every $v \in V-D$, there exists a vertex $u \in D$ such that $d(u, v) \leq k$. In this paper we study the fractional version of distance k-domination and related parameters.

Keywords: domination, distance k-domination, distance k-dominating function, k-packing, fractional distance k-domination .
2010 Mathematics Subject Classification: 05C69, 05C72.

1. INTRODUCTION

By a graph $G=(V, E)$ we mean a finite, undirected and connected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. For basic terminology in graphs we refer to Chartrand and Lesniak [3]. For basic terminology in domination related concepts we refer to Haynes et al. [9].

Let $G=(V, E)$ be a graph. A subset D of V is called a dominating set of G if every vertex in $V-D$ is adjacent to at least one vertex in D. A dominating set D is called a minimal dominating set if no proper subset of D is a dominating set of G. The minimum (maximum) cardinality of a minimal dominating set of G is called the domination number (upper domination number) of G and is denoted by $\gamma(G)(\Gamma(G))$. Let A and B be two subsets of V. We say that B dominates A if
every vertex in $A-B$ is adjacent to at least one vertex in B. If B dominates A, then we write $B \rightarrow A$. Meir and Moon [12] introduced the concept of a k-packing and distance k-domination in a graph as a natural generalisation of the concept of domination. Let $G=(V, E)$ be a graph and $v \in V$. For any positive integer k, let $N_{k}(v)=\{u \in V: d(u, v) \leq k\}$ and $N_{k}[v]=N_{k}(v) \cup\{v\}$. A set $S \subseteq V$ is a distance k-dominating set of G if $N_{k}[v] \cap S \neq \emptyset$ for every vertex $v \in V-S$. The minimum (maximum) cardinality among all minimal distance k-dominating sets of G is called the distance k-domination number (upper distance k-domination number) of G and is denoted by $\gamma_{k}(G)\left(\Gamma_{k}(G)\right)$. A set $S \subseteq V$ is said to be an efficient distance k-dominating set of G if $\left|N_{k}[v] \cap S\right|=1$ for all $v \in V-S$. Clearly, $\gamma(G)=\gamma_{1}(G)$. A distance k-dominating set of cardinality $\gamma_{k}(G)\left(\Gamma_{k}(G)\right)$ is called a $\gamma_{k}\left(\Gamma_{k}\right)$-set. Hereafter, we shall use the term k-domination for distance k-domination.

Note that, $\gamma_{k}(G)=\gamma\left(G^{k}\right)$, where G^{k} is the $k^{t h}$ power of G, which is obtained from G by joining all pairs of distinct vertices u, v with $d(u, v) \leq k$. A subset $S \subseteq V(G)$ of a graph $G=(V, E)$ is said to be a k-packing $([12])$ of G, if $d(u, v)>k$ for all pairs of distinct vertices u and v in S. The k-packing number $\rho_{k}(G)$ is defined to be the maximum cardinality of a k-packing set in G. The corona of a graph G, denoted by $G \circ K_{1}$, is the graph formed from a copy of G by attaching to each vertex v a new vertex v^{\prime} and an edge $\left\{v, v^{\prime}\right\}$. The Cartesian product of graphs G and H, denoted by $G \square H$, is the graph with vertex set $V(G) \times V(H)$ and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G \square H$ if and only if either $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$ or $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(G)$. For a survey of results on distance domination we refer to Chapter 12 of Haynes et al. [10].

Hedetniemi et al. [11] introduced the concept of fractional domination in graphs. Grinstead and Slater [6] and Domke et al. [5] have presented several results on fractional domination and related parameters in graphs. Arumugam et al. [1] have investigated the fractional version of global domination in graphs.

Let $G=(V, E)$ be a graph. Let $g: V \rightarrow \mathbb{R}$ be any function. For any subset S of V, let $g(S)=\sum_{v \in S} g(v)$. The weight of g is defined by $|g|=g(V)=\sum_{v \in V} g(v)$. For a subset S of V, the function $\chi_{S}: V \rightarrow\{0,1\}$ defined by

$$
\chi_{S}(v)= \begin{cases}1 & \text { if } v \in S, \\ 0 & \text { if } v \notin S,\end{cases}
$$

is called the characteristic function of S.
A function $g: V \rightarrow[0,1]$ is called a dominating function $(D F)$ of the graph $G=(V, E)$ if $g(N[v])=\sum_{u \in N[v]} g(u) \geq 1$ for all $v \in V$. For functions f, g from $V \rightarrow[0,1]$ we write $f \leq g$ if $f(v) \leq g(v)$ for all $v \in V$. Further, we write $f<g$ if $f \leq g$ and $f(v)<g(v)$ for some $v \in V$. A $D F g$ of G is minimal (MDF) if f is not a $D F$ for all functions $f: V \rightarrow[0,1]$ with $f<g$.

The fractional domination number $\gamma_{f}(G)$ and the upper fractional domination number $\Gamma_{f}(G)$ are defined as follows:

$$
\begin{aligned}
\gamma_{f}(G) & =\min \{|g|: g \text { is a minimal dominating function of } G\}, \\
\Gamma_{f}(G) & =\max \{|g|: g \text { is a minimal dominating function of } G\} .
\end{aligned}
$$

For a dominating function f of G, the boundary set \mathcal{B}_{f} and the positive set \mathcal{P}_{f} are defined by $\mathcal{B}_{f}=\{u \in V(G): f(N[u])=1\}$ and $\mathcal{P}_{f}=\{u \in V(G): f(u)>0\}$. A function $g: V \rightarrow[0,1]$ is called a packing function $(P F)$ of the graph $G=(V, E)$ if $g(N[v])=\sum_{u \in N[v]} g(u) \leq 1$ for all $v \in V$. The lower fractional packing number $p_{f}(G)$ and the fractional packing number $P_{f}(G)$ are defined as follows:

$$
p_{f}(G)=\min \{|g|: g \text { is a maximal packing function of } G\}
$$

$P_{f}(G)=\max \{|g|: g$ is a maximal packing function of $G\}$.
It was observed in Chapter 3 of [10] that for every graph $G, 1 \leq \gamma_{f}(G)=P_{f}(G) \leq$ $\gamma(G) \leq \Gamma(G) \leq \Gamma_{f}(G)$. We need the following theorems:

Theorem 1.1 [5]. For a graph $G, p_{f}(G) \leq \rho_{2}(G) \leq P_{f}(G)$.
Theorem $1.2[2]$. A DF f of G is an $M D F$ if and only if $\mathcal{B}_{f} \rightarrow \mathcal{P}_{f}$.
Theorem 1.3 [2]. If f and g are MDFs of G and $0<\lambda<1$ then $h_{\lambda}=$ $\lambda f+(1-\lambda) g$ is an $M D F$ of G if and only if $\mathcal{B}_{f} \cap \mathcal{B}_{g} \rightarrow \mathcal{P}_{f} \cup \mathcal{P}_{g}$.

Theorem 1.4 [5]. If G is an r-regular graph of order n, then $\gamma_{f}(G)=\frac{n}{r+1}$.
Theorem 1.5 [4]. Let G be a block graph. Then for any integer $k \geq 1$, we have $\rho_{2 k}(G)=\gamma_{k}(G)$.

For other families of graphs satisfying $\rho_{2}(G)=\gamma(G)$, we refer to Rubalcaba et al. [13].

Definition 1.6 [15]. A linear Benzenoid chain $B(h)$ of length h is the graph obtained from $P_{2} \square P_{h+1}$ by subdividing exactly once each edge of the two copies of P_{h+1}. Hence $B(h)$ is a subgraph of $P_{2} \square P_{2 h+1}$. The graph $B(4)$ is given in Figure 1.

Figure 1. $B(4)$.
Theorem 1.7 [15]. For the linear benzenoid chain $B(h)$, we have

$$
\gamma_{k}(B(h))= \begin{cases}\left\lceil\frac{h+1}{k}\right\rceil & \text { if } k \neq 2 \\ \left\lceil\frac{h+2}{k}\right\rceil & \text { if } k=2\end{cases}
$$

We refer to Scheinerman and Ullman [14] for fractionalization techniques of various graph parameters. Hattingh et al. [8] introduced the distance k-dominating function and proved that the problem of computing the upper distance fractional domination number is NP-complete. In this paper we present further results on fractional distance k-domination.

2. Distance k-dominating Function

Hattingh et al. [8] introduced the following concept of fractional distance k domination.

Definition 2.1. A function $g: V \rightarrow[0,1]$ is called a distance k-dominating function or simply a k-dominating function $(k D F)$ of a graph $G=(V, E)$, if for every $v \in V, g\left(N_{k}[v]\right)=\sum_{u \in N_{k}[v]} g(u) \geq 1$. A k-dominating function ($k D F$) g of a graph G is called a minimal k-dominating function $(M k D F)$ if f is not a k-dominating function of G for all functions $f: V \rightarrow[0,1]$ with $f<g$. The fractional k-domination number $\gamma_{k f}(G)$ and the upper fractional k-domination number $\Gamma_{k f}(G)$ are defined as follows:

$$
\begin{aligned}
\gamma_{k f}(G) & =\min \{|g|: g \text { is an } M k D F \text { of } G\}, \\
\Gamma_{k f}(G) & =\max \{|g|: g \text { is an } M k D F \text { of } G\} .
\end{aligned}
$$

We observe that if $k \geq \operatorname{rad}(G)$, then $\Delta\left(G^{k}\right)=n-1$ and $\gamma_{k f}(G)=1$. Hence throughout this paper, we assume that $k<\operatorname{rad}(G)$.

Lemma 2.2 [8]. Let f be a k-dominating function of a graph $G=(V, E)$. Then f is minimal k-dominating if and only if whenever $f(v)>0$ there exists some $u \in N_{k}[v]$ such that $f\left(N_{k}[u]\right)=1$.

Remark 2.3. The characteristic function of a γ_{k}-set and that of a Γ_{k}-set of a graph G are $M k D F$ s of G. Hence it follows that $1 \leq \gamma_{k f}(G) \leq \gamma_{k}(G) \leq \Gamma_{k}(G) \leq$ $\Gamma_{k f}(G)$.

Definition 2.4. A function $g: V \rightarrow[0,1]$ is called a distance k-packing function or simply a k-packing function of a graph $G=(V, E)$, if for every $v \in V$, $g\left(N_{k}[v]\right) \leq 1$. A k-packing function g of a graph G is maximal if f is not a k packing function of G for all functions $f: V \rightarrow[0,1]$ with $f>g$. The fractional k-packing number $p_{k f}(G)$ and the upper fractional k-packing number $P_{k f}(G)$ are defined as follows:

$$
\begin{gathered}
p_{k f}(G)=\min \{|g|: g \text { is a maximal k-packing function of } G\}, \\
P_{k f}(G)=\max \{|g|: g \text { is a maximal k-packing function of } G\} .
\end{gathered}
$$

Observation 2.5. The fractional k-domination number $\gamma_{k f}(G)$ is the optimal solution of the following linear programming problem (LPP).

$$
\begin{aligned}
\text { Minimize } z= & \sum_{i=1}^{n} f\left(v_{i}\right), \text { subject to } \\
& \sum_{u \in N_{k}[v]} f(u) \geq 1 \text { and } 0 \leq f(v) \leq 1 \text { for all } v \in V
\end{aligned}
$$

The dual of the above LPP is

$$
\begin{aligned}
& \text { Maximize } z= \sum_{i=1}^{n} f\left(v_{i}\right), \text { subject to } \\
& \sum_{u \in N_{k}[v]} f(u) \leq 1 \text { and } 0 \leq f(v) \leq 1 \text { for all } v \in V .
\end{aligned}
$$

The optimal solution of the dual LPP is the upper fractional k-packing number $P_{k f}(G)$. It follows from the strong duality theorem that $P_{k f}(G)=\gamma_{k f}(G)$. Hence if there exists a minimal k-dominating function g and a maximal k-packing function h with $|g|=|h|$, then $P_{k f}(G)=|h|=|g|=\gamma_{k f}(G)$.

Lemma 2.6. For any graph G of order n we have $\gamma_{k f}(G) \leq \frac{n}{k+1}$ and the bound is sharp.

Proof. Since $\left|N_{k}[u]\right| \geq k+1$ for all $u \in V$, it follows that the constant function f defined on V by $f(v)=\frac{1}{k+1}$ for all $v \in V$, is a k-dominating function with $|f|=\frac{n}{k+1}$. Hence $\gamma_{k f}(G) \leq \frac{n}{k+1}$. To prove the sharpness of this bound, consider the graph G consisting of a cycle of length $2 k$ with a path of length k attached to each vertex of the cycle. Clearly $n=2 k(k+1)$. Further the set S of all pendant vertices of G forms an efficient k-dominating set of G and hence $\sum_{u \in N_{k}[v]} f(u)=1$ for all $v \in V$ where f is the characteristic function of S. Hence $\gamma_{k}(G)=\gamma_{k f}(G)=$ $2 k=\frac{n}{k+1}$.

Observation 2.7. We observe that $\gamma_{k f}(G)=\gamma_{f}\left(G^{k}\right)$. Hence the following is an immediate consequence of Theorem 1.2.

Let G be a graph and let $A, B \subseteq V$. We say that A, k-dominates B if $N_{k}[v] \cap A \neq \emptyset$ for all $v \in B$ and we write $A \rightarrow_{k} B$. Now for any $k D F f$ of G let $\mathcal{P}_{f}=\{u \in$ $V(G): f(u)>0\}$ and $\mathcal{B}_{f}=\left\{u \in V(G): f\left(N_{k}[u]\right)=1\right\}$. Then f is an $M k D F$ of G if and only if $\mathcal{B}_{f} \rightarrow_{k} \mathcal{P}_{f}$.

Observation 2.8. If f and g are $k D F s$ of a graph $G=(V, E)$ and $\lambda \in(0,1)$, then the convex combination of f and g defined by $h_{\lambda}(v)=\lambda f(v)+(1-\lambda) g(v)$ for all $v \in V$ is a $k D F$ of G. However, the convex combination of two $M k D F s$ of a graph G need not be minimal, as shown in the following example.

Consider the cycle $G=C_{7}=\left(u_{1} u_{2} \ldots u_{7} u_{1}\right)$ with $k=2$. The function $f: V(G) \rightarrow[0,1]$ defined by

$$
f(x)= \begin{cases}1 & \text { if } x \in\left\{u_{1}, u_{5}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

is a minimal 2-dominating function of G with $\mathcal{P}_{f}=\left\{u_{1}, u_{5}\right\}, \mathcal{B}_{f}=\left\{u_{1}, u_{2}, u_{4}, u_{5}\right\}$. Also, the function $g: V(G) \rightarrow[0,1]$ defined by

$$
g(x)= \begin{cases}1 & \text { if } x \in\left\{u_{3}, u_{6}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

is a minimal 2-dominating function of G with $\mathcal{P}_{g}=\left\{u_{3}, u_{6}\right\}, \mathcal{B}_{g}=\left\{u_{2}, u_{3}, u_{6}, u_{7}\right\}$. Let $h=\frac{1}{2} f+\frac{1}{2} g$. Then $h\left(u_{1}\right)=h\left(u_{3}\right)=h\left(u_{5}\right)=h\left(u_{6}\right)=\frac{1}{2}, h\left(u_{2}\right)=h\left(u_{4}\right)=$ $h\left(u_{7}\right)=0, h\left(N_{2}\left[u_{i}\right]\right)=\frac{3}{2}$ for $i \neq 2$ and $h\left(N_{2}\left[u_{2}\right]\right)=1$. Hence $\mathcal{P}_{h}=\left\{u_{1}, u_{3}, u_{5}, u_{6}\right\}$ and $\mathcal{B}_{h}=\left\{u_{2}\right\}$. Since $u_{5}, u_{6} \notin N_{2}\left[u_{2}\right]$ we have \mathcal{B}_{h} does not 2-dominate \mathcal{P}_{h} and hence the $k D F h$ is not minimal.
Observation 2.9. If f and g are MkDFs of G and $0<\lambda<1$, then $h_{\lambda}=\lambda f+$ $(1-\lambda) g$ is an $M k D F$ of G if and only if $\mathcal{B}_{f} \cap \mathcal{B}_{g} \rightarrow_{k} \mathcal{P}_{f} \cup \mathcal{P}_{g}$.
Observation 2.10. For the cycle C_{n}, the graph $G=C_{n}^{k}$ is $2 k$-regular and hence it follows from Theorem 1.4 that $\gamma_{k f}\left(C_{n}\right)=\frac{n}{2 k+1}$.
We now proceed to determine the fractional k-domination number of several families of graphs.
Proposition 2.11. For the hypercube $Q_{n}, \gamma_{k f}\left(Q_{n}\right)=\frac{2^{n}}{\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{k}}$.
Proof. For any two vertices $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ in Q_{n}, $d(x, y) \leq k$ if and only if x and y differ in at most k coordinates and hence Q_{n}^{k} is r-regular where $r=\left(\begin{array}{l}n \\ 1\end{array} 2^{n}+\binom{n}{2}+\cdots+\binom{n}{k}\right.$. Hence by Theorem 1.4, we have $\gamma_{k f}\left(Q_{n}\right)=\frac{2^{n}}{r+1}=\frac{2^{n}}{\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{k}}$.
Proposition 2.12. For the graph $G=P_{2} \square C_{n}$, we have

$$
\gamma_{k f}(G)= \begin{cases}\frac{8}{7} & \text { if } n=4 \text { and } k=2, \\ \frac{n}{2 k} & \text { if } n \geq 5 .\end{cases}
$$

Proof. If $n=4$ and $k=2$, then G^{2} is a 6 -regular graph and hence $\gamma_{2 f}(G)=\frac{8}{7}$. If $n \geq 5, G^{k}$ is a $(4 k-1)$-regular graph and hence $\gamma_{k f}(G)=\frac{2 n}{4 k-1+1}=\frac{n}{2 k}$.
Theorem 2.13. Let $G=C_{n} \circ K_{1}$. Then $\gamma_{k f}(G)=\frac{n}{2 k-1}$.
Proof. Let $C_{n}=\left(v_{1} v_{2} \ldots v_{n} v_{1}\right)$. Let u_{i} be the pendant vertex adjacent to v_{i}. Clearly, $\left|N_{k}\left[u_{i}\right] \cap V\left(C_{n}\right)\right|=2 k-1$ and $N_{k}\left[u_{i}\right] \subset N_{k}\left[v_{i}\right], 1 \leq i \leq n$. Hence the function $g: V(G) \rightarrow[0,1]$ defined by

$$
g(x)= \begin{cases}0 & \text { if } x=u_{i}, \\ \frac{1}{2 k-1} & \text { if } x=v_{i}\end{cases}
$$

is a minimal k-dominating function of G with $|g|=\frac{n}{2 k-1}$. Also we have $\mid N_{k}\left[v_{i}\right] \cap$ $\left\{u_{j}: 1 \leq j \leq n\right\} \mid=2 k-1,1 \leq i \leq n$. Hence the function $h: V(G) \rightarrow[0,1]$ defined by

$$
h(x)= \begin{cases}\frac{1}{2 k-1} & \text { if } x=u_{i}, \\ 0 & \text { if } x=v_{i}\end{cases}
$$

is a maximal k-packing function of G with $|h|=\frac{n}{2 k-1}$. Hence by Observation 2.5, we have $\gamma_{k f}(G)=\frac{n}{2 k-1}$.

Theorem 2.14. For the grid $G=P_{2} \square P_{n}$, we have

$$
\gamma_{k f}(G)= \begin{cases}\frac{n(n+2 k)}{2 k(n+k)} & \text { if } n \equiv 0(\bmod 2 k), \\ \left\lceil\frac{n}{2 k}\right\rceil & \text { otherwise } .\end{cases}
$$

Proof. Let $P_{2}=\left(u_{0}, u_{1}\right)$ and $P_{n}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$, so that $V(G)=\left\{\left(u_{i}, v_{j}\right)\right.$: $i=0,1,0 \leq j \leq n-1\}$.

Case 1. $\quad n \equiv 0(\bmod 2 k)$. Let $n=2 k p, p>1$. Define $f: V(G) \rightarrow[0,1]$ by

$$
f\left(\left(u_{i}, v_{j}\right)\right)= \begin{cases}\left(\frac{1}{2 p+1}\right)\left(p-\left\lfloor\frac{j}{2 k}\right\rfloor\right) & \text { if } j \equiv(k-1)(\bmod 2 k), \\ \left(\frac{1}{2 p+1}\right)\left(\left\lfloor\frac{j}{2 k}\right\rfloor+1\right) & \text { if } j \equiv k(\bmod 2 k), \\ 0 & \text { otherwise. }\end{cases}
$$

Then f is a k-dominating function of G. Also, since $f\left(\left(u_{0}, v_{j}\right)\right)=f\left(\left(u_{1}, v_{j}\right)\right)$ for all j, we have $|f|=2\left(\sum_{j=0}^{n-1} f\left(\left(u_{0}, v_{j}\right)\right)\right)=\frac{2}{2 p+1}[(p+(p-1)+\cdots+3+2+1)+(1+$ $2+3+\cdots+p)]=\frac{2 p(p+1)}{2 p+1}=\frac{n(n+2 k)}{2 k(n+2)}$. Now consider the function $h: V(G) \rightarrow[0,1]$ defined by

$$
h\left(\left(u_{i}, v_{j}\right)\right)= \begin{cases}\left(\frac{1}{22+1}\right)\left(p-\left\lfloor\frac{j}{2 k}\right\rfloor\right) & \text { if } j \equiv 0(\bmod 2 k), \\ \left(\frac{1}{2 p+1}\right)\left(\left\lfloor\frac{j}{2 k}\right\rfloor+1\right) & \text { if } j \equiv(2 k-1)(\bmod 2 k), \\ 0 & \text { otherwise. }\end{cases}
$$

Then h is a k-packing function of G with $|h|=\frac{2 p(p+1)}{2 p+1}=\frac{n(n+2 k)}{2 k(n+2 k)}$. Hence $\gamma_{k f}(G)=\frac{n(n+2 k)}{2 k(n+k)}$.

Case 2. $n \not \equiv 0(\bmod 2 k)$. Let $n=2 k q+r, 1 \leq r \leq 2 k-1$. Let $S=S_{1} \cup S_{2}$ and

$$
\begin{aligned}
& S_{1}=\left\{\begin{array}{lc}
\left\{\left(u_{0}, v_{j}\right): j \equiv 0(\bmod 4 k)\right\} & \text { if } 1 \leq r \leq k, \\
\left\{\left(u_{0}, v_{j}\right): j \equiv(k-1)(\bmod 4 k)\right\} & \text { if } k+1 \leq r \leq 2 k-1 .
\end{array}\right. \\
& S_{2}= \begin{cases}\left\{\left(u_{1}, v_{j}\right): j \equiv 2 k(\bmod 4 k)\right\} & \text { if } 1 \leq r \leq k, \\
\left\{\left(u_{1}, v_{j}\right): j \equiv(3 k-1)(\bmod 4 k)\right\} & \text { if } k+1 \leq r \leq 2 k-1 .\end{cases}
\end{aligned}
$$

Let f be the characteristic function of S. Since $d(x, y) \geq 2 k+1$ for all $x, y \in S$, it follows that $f\left(N_{k}[u]\right)=1$ for all $u \in V(G)$. Thus f is both a minimal k dominating function and a maximal k-packing function of G and hence $\gamma_{k f}(G)=$ $|f|=|S|=\left\lceil\frac{n}{2 k}\right\rceil$.

A special case of the above theorem gives the following result of Hare [7].
Corollary 2.15. For the grid graph $G=P_{2} \square P_{n}$, we have

$$
\gamma_{f}(G)= \begin{cases}\frac{n(n+2)}{2(n+1)} & \text { if } n \text { is even } \\ \left\lceil\frac{n}{2}\right\rceil & \text { if } n \text { is odd }\end{cases}
$$

3. Graphs with $\gamma_{k f}(G)=\gamma_{k}(G)$

In this section we obtain several families of graphs for which the fractional k domination number and the k-domination number are equal.

Lemma 3.1. If a graph G has an efficient k-dominating set, then $\gamma_{k f}(G)=$ $\gamma_{k}(G)$.

Proof. Let D be an efficient k-dominating set of G. Then $\left|N_{k}[u] \cap D\right|=1$ for all $u \in V(G)$. Hence the characteristic function of D is both a minimal k-dominating function and a maximal k-packing function of G and so $\gamma_{k f}(G)=\gamma_{k}(G)$.

Lemma 3.2. For any graph $G, \gamma_{k f}(G)=1$ if and only if $\gamma_{k}(G)=1$.
Proof. Suppose $\gamma_{k}(G)=1$. Since $\gamma_{k f}(G) \leq \gamma_{k}(G)$, it follows that $\gamma_{k f}(G)=1$. Conversely, let $\gamma_{k f}(G)=1$. Then $\gamma_{f}\left(G^{k}\right)=1$ and hence $\gamma\left(G^{k}\right)=1$. Since $\gamma\left(G^{k}\right)=\gamma_{k}(G)$ the result follows.

Lemma 3.3. For any graph $G, p_{k f}(G) \leq \rho_{2 k}(G) \leq P_{k f}(G)$.
Proof. Let $u \in V(G)$. Since $N_{k}[u]=N_{G^{k}}[u]$, we have $p_{k f}(G)=p_{f}\left(G^{k}\right)$, $P_{k f}(G)=P_{f}\left(G^{k}\right)$ and $\rho_{2 k}(G)=\rho_{2}\left(G^{k}\right)$.

Hence the result follows from Theorem 1.1.
Corollary 3.4. For any graph $G, 1 \leq p_{k f}(G) \leq \rho_{2 k}(G) \leq P_{k f}(G)=\gamma_{k f}(G) \leq$ $\gamma_{k}(G) \leq \Gamma_{k}(G) \leq \Gamma_{k f}(G)$.

Corollary 3.5. If G is any graph with $\rho_{2 k}(G)=\gamma_{k}(G)$, then $\gamma_{k f}(G)=\gamma_{k}(G)$.
Corollary 3.6. If G is a block graph, then $\gamma_{k f}(G)=\gamma_{k}(G)$.
Proof. It follows from Theorem 1.5 that $\rho_{2 k}(G)=\gamma_{k}(G)$ and hence the result follows.

Corollary 3.7. For any tree T, we have $\gamma_{k f}(T)=\gamma_{k}(T)$.
Theorem 3.8. For the graph $G=P_{k+1} \square P_{n}$ where $n \equiv 1(\bmod (k+1)), k \geq 1$, we have $\gamma_{k f}(G)=\gamma_{k}(G)=\left\lceil\frac{n}{k+1}\right\rceil$.

Proof. Let $n=(k+1) q+1, q \geq 1$. Clearly $|V(G)|=n(k+1)=(k+1)^{2} q+(k+$ 1). Let $P_{k+1}=\left(u_{0}, u_{1}, u_{2}, \ldots, u_{k}\right)$ and $P_{n}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ so that $V(G)=$ $\left\{\left(u_{i}, v_{j}\right): 0 \leq i \leq k, 0 \leq j \leq n-1\right\}$.

Now let $S_{1}=\left\{\left(u_{0}, v_{i}\right): i \equiv 0(\bmod 2(k+1))\right\}, S_{2}=\left\{\left(u_{k}, v_{i}\right): i \equiv\right.$ $(k+1)(\bmod 2(k+1))\}$ and $S=S_{1} \cup S_{2}$. Clearly, $d(x, y)=(2 k+1) r, r \geq 1$, for all $x, y \in S$ and $|S|=\left\lceil\frac{n}{k+1}\right\rceil=q+1$. Also, $\left(u_{0}, v_{0}\right)$ and exactly one of
the vertices $\left(u_{0}, v_{n-1}\right)$ or $\left(u_{k}, v_{n-1}\right)$ are in S and each of these two vertices k dominates $\frac{(k+1)(k+2)}{2}$ vertices of G. Also, if $u \in N_{k}[x] \cap N_{k}[y]$, where $x, y \in S$, then $d(u, x) \leq k, d(u, y) \leq k$ and so $d(x, y) \leq d(x, u)+d(u, y) \leq 2 k$, which is a contradiction. Thus $N_{k}[x] \cap N_{k}[y]=\emptyset$ for all $x, y \in S$. Each of the remaining vertices of $S k$-dominates $(k+1)^{2}$ vertices of G. Further, $|V(G)|-(k+1)(k+2)$ is a multiple of $(k+1)^{2}$ and hence it follows that S is an efficient k-dominating set of G. Hence, by Lemma 3.1, we have $\gamma_{k f}(G)=\gamma_{k}(G)=|S|=\left\lceil\frac{n}{k+1}\right\rceil$.

Theorem 3.9. For the graph $G=P_{3} \square P_{n}$, we have $\gamma_{2 f}(G)=\gamma_{2}(G)=\left\lceil\frac{n}{3}\right\rceil$.
Proof. If $n \equiv 1(\bmod 3)$, then the result follows from Theorem 3.8. Suppose $n \equiv 0(\bmod 3)$ or $2(\bmod 3)$. Let $n=3 q, q \geq 1$ or $n=3 q+2, q \geq 0$. Let $P_{3}=\left(u_{0}, u_{1}, u_{2}\right)$ and $P_{n}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ so that $V(G)=\left\{\left(u_{i}, v_{j}\right): 0 \leq i \leq\right.$ $2,0 \leq j \leq n-1\}$. Now $D=\left\{\left(u_{1}, v_{j}\right): j \equiv 1(\bmod 3)\right\}$ is a γ_{2}-set of G with $|D|=\left\lceil\frac{n}{3}\right\rceil$ and hence $\gamma_{2}(G)=\left\lceil\frac{n}{3}\right\rceil$. Further $f=\chi_{D}$ is a 2-dominating function of G with $|f|=\left\lceil\frac{n}{3}\right\rceil$. Also let $S_{1}=\left\{\left(u_{0}, v_{j}\right): j \equiv 0(\bmod 6)\right\}, S_{2}=\left\{\left(u_{2}, v_{j}\right)\right.$: $j \equiv 3(\bmod 6)\}$ and $S=S_{1} \cup S_{2}$. Then $g=\chi_{S}$ is a 2-packing function of G with $|g|=\left\lceil\frac{n}{3}\right\rceil$. Hence $\gamma_{2 f}(G)=\left\lceil\frac{n}{3}\right\rceil$.

Observation 3.10. The graph $G=P_{3} \square P_{5}$ does not have an efficient 2-dominating set. In fact the set $S=\left\{\left(u_{0}, v_{0}\right),\left(u_{2}, v_{3}\right)\right\}$ efficiently 2-dominates 14 vertices of G and the vertex $\left(u_{0}, v_{4}\right)$ is not 2 -dominated by S. Further if S is any 2 dominating set of G with $|S|=\gamma_{2}(G)=2$, then at least one vertex of G is 2 -dominated by both vertices of S. This shows that the converse of Lemma 3.1 is not true.

Theorem 3.11. For the linear benzenoid chain $G=B(h)$, we have

$$
\gamma_{k f}(G)=\gamma_{k}(G)= \begin{cases}\frac{h}{2}+1 & \text { if } k=2 \text { and } h \equiv 0(\bmod 2), \\ \left\lceil\frac{h}{k}\right\rceil & \text { if } k \geq 3 \text { and } h \equiv\left\lfloor\frac{k}{2}\right\rfloor(\bmod k) .\end{cases}
$$

Proof. Since $G=B(h)$ is a subgraph of $P_{2} \square P_{2 h+1}$, we take $V(G)=\left\{\left(u_{i}, v_{j}\right)\right.$: $i=0,1,0 \leq j \leq 2 h\}$, where $P_{2}=\left(u_{0}, u_{1}\right)$ and $P_{2 h+1}=\left(v_{0}, v_{1}, \ldots, v_{2 h}\right)$. Clearly, $|V(G)|=4 h+2$. Any vertex $u \in V(G) k$-dominates at most $4 k$ vertices of G and hence $\gamma_{k}(G) \geq\left\lceil\frac{4 h+2}{4 k}\right\rceil$.

Case 1. $k=2$ and $h \equiv 0(\bmod 2)$. In this case we have $\gamma_{2}(G) \geq\left\lceil\frac{4 h+2}{8}\right\rceil=$ $\frac{h}{2}+1$. Now let $S_{1}=\left\{\left(u_{0}, v_{j}\right): j \equiv 0(\bmod 8)\right\}, S_{2}=\left\{\left(u_{1}, v_{j}\right): j \equiv 4(\bmod 8)\right\}$ and $S=S_{1} \cup S_{2}$. Clearly, for any $x, y \in S, d(x, y) \geq 5$ and hence $N_{2}[x] \cap N_{2}[y]=\emptyset$. Also $|S|=\left\lceil\frac{2 h+1}{4}\right\rceil=\frac{h}{2}+1$. Now (u_{0}, v_{0}) and exactly one of the vertices $\left(u_{0}, v_{2 h}\right)$ or ($u_{1}, v_{2 h}$) is in S and each of these two vertices 2 -dominates exactly 5 vertices of G. Each of the remaining vertices of $S 2$-dominates 8 vertices of G. Further $|V(G)|-10=4 h-8=8\left(\frac{h}{2}-1\right)$, which is a multiple of 8 and hence it follows that S is an efficient 2-dominating set of G. Hence $\gamma_{2 f}(G)=\gamma_{2}(G)=|S|=\frac{h}{2}+1$.

Case 2. $k \geq 3$ and $h \equiv\left\lfloor\frac{k}{2}\right\rfloor(\bmod k)$. Let $h=k q+\left\lfloor\frac{k}{2}\right\rfloor, q \geq 1$. In this case we have $\gamma_{k}(G) \geq\left\lceil\frac{4 h+2}{4 k}\right\rceil=\left\lceil\frac{h}{k}\right\rceil$. Now let $S_{1}=\left\{\left(u_{0}, v_{j}\right): j \equiv(k-1)(\bmod 4 k)\right\}$, $S_{2}=\left\{\left(u_{1}, v_{j}\right): j \equiv(3 k-1)(\bmod 4 k)\right\}$ and $S=S_{1} \cup S_{2}$. Clearly, $d(x, y)=(2 k+$ 1) $r, r \geq 1$ for all $x, y \in S$, hence $N_{k}[x] \cap N_{k}[y]=\emptyset$. Also $|S|=\left\lceil\frac{2 h-(k-1)}{2 k}\right\rceil=\left\lceil\frac{h}{k}\right\rceil$.

Now, when k is odd, exactly one of the vertices $\left(u_{0}, v_{2 h}\right)$ or $\left(u_{1}, v_{2 h}\right)$ is in S and it k-dominates $2 k+1$ vertices. When k is even, exactly one of the vertices $\left(u_{0}, v_{2 h-1}\right)$ or $\left(u_{1}, v_{2 h-1}\right)$ are in S and it k-dominates $2 k+3$ vertices. The vertex $\left(u_{0}, v_{k-1}\right) k$-dominates $4 k-1$ vertices. In both cases the number of vertices of G which are not k-dominated by these two vertices is a multiple of $4 k$ and each of the remaining vertices of $S k$-dominates $4 k$ vertices of G. Hence it follows that S is an efficient k-dominating set of G so that $\gamma_{k f}(G)=\gamma_{k}(G)=|S|=\left\lceil\frac{h}{k}\right\rceil$.

Conclusion. In this paper we have determined the fractional k-domination number of several families of graphs. We have also obtained several families of graphs for which $\gamma_{k f}(G)=\gamma_{k}(G)$. The study of the fractional version of distance k-irredundance and distance k-independence remains open. Slater has mentioned several efficiency parameters such as redundance and influence in Chapter 1 of [10]. One can investigate these parameters for fractional distance domination. The following are some interesting problems for further investigation.

1. Characterize the class of graphs G for which $\gamma_{k f}(G)=\frac{n}{k+1}$.
2. Characterize the class of graphs G with $\gamma_{k f}(G)=\gamma_{k}(G)$.
3. Determine $\gamma_{k f}\left(P_{r} \square P_{s}\right)$ for $r, s \geq 4$.

Acknowledgement

We are thankful to the National Board for Higher Mathematics, Mumbai, for its support through the project 48/5/2008/R\&D-II/561, awarded to the first author. The second author is thankful to the UGC, New Delhi for the award of FIP teacher fellowship during the $X I^{\text {th }}$ plan period. We are also thankful to the referees for their helpful suggestions.

References

[1] S. Arumugam, K. Karuppasamy and I. Sahul Hamid, Fractional global domination in graphs, Discuss. Math. Graph Theory 30 (2010) 33-44. doi:10.7151/dmgt. 1474
[2] E.J. Cockayne, G. Fricke, S.T. Hedetniemi and C.M. Mynhardt, Properties of minimal dominating functions of graphs, Ars Combin. 41 (1995) 107-115.
[3] G. Chartrand and L. Lesniak, Graphs \& Digraphs, Fourth Edition, Chapman \& Hall/CRC (2005).
[4] G.S. Domke, S.T. Hedetniemi and R.C. Laskar, Generalized packings and coverings of graphs, Congr. Numer. 62 (1988) 259-270.
[5] G.S. Domke, S.T. Hedetniemi and R.C. Laskar, Fractional packings, coverings, and irredundance in graphs, Congr. Numer. 66 (1988) 227-238.
[6] D.L. Grinstead and P.J. Slater, Fractional domination and fractional packings in graphs, Congr. Numer. 71 (1990) 153-172.
[7] E.O. Hare, k-weight domination and fractional domination of $P_{m} \times P_{n}$, Congr. Numer. 78 (1990) 71-80.
[8] J.H. Hattingh, M.A. Henning and J.L. Walters, On the computational complexity of upper distance fractional domination, Australas. J. Combin. 7 (1993) 133-144.
[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs: Advanced Topics (Marcel Dekker, New York, 1998).
[11] S.M. Hedetniemi, S.T. Hedetniemi and T.V. Wimer, Linear time resource allocation algorithms for trees, Technical report URI -014, Department of Mathematics, Clemson University (1987).
[12] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233.
[13] R.R. Rubalcaba, A. Schneider and P.J. Slater, A survey on graphs which have equal domination and closed neighborhood packing numbers, AKCE J. Graphs. Combin. 3 (2006) 93-114.
[14] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs (John Wiley \& Sons, New York, 1997).
[15] D. Vukičević and A. Klobučar, k-dominating sets on linear benzenoids and on the infinite hexagonal grid, Croatica Chemica Acta 80 (2007) 187-191.

Received 22 December 2010
Revised 12 August 2011
Accepted 16 August 2011

