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Abstract

Let G = (V, E) be a connected graph and let k be a positive integer with
k < rad(G). A subset D C V is called a distance k-dominating set of G if
for every v € V — D, there exists a vertex v € D such that d(u,v) < k.
In this paper we study the fractional version of distance k-domination and
related parameters.
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1. INTRODUCTION

By a graph G = (V, E) we mean a finite, undirected and connected graph with
neither loops nor multiple edges. The order and size of G are denoted by n and m
respectively. For basic terminology in graphs we refer to Chartrand and Lesniak
[3]. For basic terminology in domination related concepts we refer to Haynes et
al. [9].

Let G = (V, E) be a graph. A subset D of V is called a dominating set of G
if every vertex in V — D is adjacent to at least one vertex in D. A dominating set
D is called a minimal dominating set if no proper subset of D is a dominating
set of G. The minimum (maximum) cardinality of a minimal dominating set of G
is called the domination number (upper domination number) of G and is denoted
by 7(G) (I'(G)). Let A and B be two subsets of V. We say that B dominates A if
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every vertex in A — B is adjacent to at least one vertex in B. If B dominates A,
then we write B — A. Meir and Moon [12] introduced the concept of a k-packing
and distance k-domination in a graph as a natural generalisation of the concept
of domination. Let G = (V, E') be a graph and v € V. For any positive integer k,
let Ni(v) = {u € V : d(u,v) < k} and Ng[v] = Ni(v) U{v}. Aset S CV isa
distance k-dominating set of G if Ni[v] NS # ) for every vertex v € V — S. The
minimum (maximum) cardinality among all minimal distance k-dominating sets
of G is called the distance k-domination number (upper distance k-domination
number) of G and is denoted by 7(G) (I'x(G)). A set S C V is said to be an
efficient distance k-dominating set of G if |[Ny[v]N S| =1 for all v € V — S.
Clearly, v(G) = 71(G). A distance k-dominating set of cardinality v4(G) (I'x(G))
is called a v (I'y)-set. Hereafter, we shall use the term k-domination for distance
k-domination.

Note that, v, (G) = v(G*), where G is the k" power of G, which is obtained
from G by joining all pairs of distinct vertices w,v with d(u,v) < k. A subset
S C V(G) of agraph G = (V, E) is said to be a k-packing ([12]) of G, if d(u,v) > k
for all pairs of distinct vertices u and v in S. The k-packing number pi(G) is
defined to be the maximum cardinality of a k-packing set in G. The corona of a
graph G, denoted by G o K7, is the graph formed from a copy of G by attaching
to each vertex v a new vertex v’ and an edge {v,v'}. The Cartesian product of
graphs G and H, denoted by GOH, is the graph with vertex set V(G) x V(H)
and two vertices (u1,v;) and (ug,v2) are adjacent in GOH if and only if either
u; = ug and vivy € E(H) or v; = ve and ujug € E(G). For a survey of results
on distance domination we refer to Chapter 12 of Haynes et al. [10].

Hedetniemi et al. [11] introduced the concept of fractional domination in
graphs. Grinstead and Slater [6] and Domke et al. [5] have presented several
results on fractional domination and related parameters in graphs. Arumugam
et al. [1] have investigated the fractional version of global domination in graphs.

Let G = (V, E) be a graph. Let g : V' — R be any function. For any subset S

of V,let g(S) = >_,cq 9(v). The weight of g is defined by |g| = g(V') = 3" v g(v).
For a subset S of V, the function yg: V — {0,1} defined by

[ 1 ifvels,
xs(v) = { 0 ifvées,
is called the characteristic function of S.
A function g : V' — [0, 1] is called a dominating function (DF’) of the graph
G = (V,E) if g(N[v]) = >yenp 9(w) = 1 for all v € V. For functions f,g from
V — [0, 1] we write f < g if f(v) < g(v) for all v € V. Further, we write f < g if
f <gand f(v) < g(v) for some v € V. A DF g of G is minimal (M DF) if f is
not a DF for all functions f: V — [0,1] with f < g.
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The fractional domination number v¢(G) and the upper fractional domination
number I ¢(G) are defined as follows:
v¢(G) = min{|g| : g is a minimal dominating function of G},
I't(G) = max{|g| : g is a minimal dominating function of G'}.
For a dominating function f of G, the boundary set By and the positive set Py are
defined by By = {u € V(G) : f(N[u]) =1} and Py = {u € V(G) : f(u) > 0}. A
function g : V- — [0, 1] is called a packing function (PF) of the graph G = (V, E)
if g(N[v]) = Xuenp 9(w) < 1 for all v € V. The lower fractional packing number
pf(G) and the fractional packing number Pr(G) are defined as follows:
pf(G) = min{|g| : ¢ is a maximal packing function of G},
P¢(G) = max{|g| : g is a maximal packing function of G'}.
It was observed in Chapter 3 of [10] that for every graph G, 1 < v4(G) = Pf(G) <
7(G) <T'(G) <T'4(G). We need the following theorems:

Theorem 1.1 [5]. For a graph G, ps(G) < p2(G) < Py(G).
Theorem 1.2 [2]. A DF f of G is an MDF if and only if By — P;.

Theorem 1.3 [2]. If f and g are MDFs of G and 0 < X\ < 1 then hy =
A+ (1 =X)g is an MDF of G if and only if By N By — Py UPy.

n

Theorem 1.4 [5]. If G is an r-regular graph of order n, then v;(G) = 5.

Theorem 1.5 [4]. Let G be a block graph. Then for any integer k > 1, we have
p2k(G) = 1 (G).

For other families of graphs satisfying p2(G) = 7(G), we refer to Rubalcaba et
al. [13].

Definition 1.6 [15]. A linear Benzenoid chain B(h) of length h is the graph
obtained from P>0P, 1 by subdividing exactly once each edge of the two copies
of Py4+1. Hence B(h) is a subgraph of P>[0P5p41. The graph B(4) is given in
Figure 1.

[ ]

Figure 1. B(4).
Theorem 1.7 [15]. For the linear benzenoid chain B(h), we have

[ ik # 2,

1
w(Bh) = { Lh] J075
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We refer to Scheinerman and Ullman [14] for fractionalization techniques of var-
ious graph parameters. Hattingh et al. [8] introduced the distance k-dominating
function and proved that the problem of computing the upper distance fractional
domination number is NP-complete. In this paper we present further results on
fractional distance k-domination.

2. DISTANCE k-DOMINATING FUNCTION

Hattingh et al. [8] introduced the following concept of fractional distance k-
domination.

Definition 2.1. A function g : V' — [0,1] is called a distance k-dominating
function or simply a k-dominating function (kDF') of a graph G = (V, E), if for
every v € V, g(Ng[v]) = X en,9(w) = 1. A k-dominating function (kDF) g
of a graph G is called a minimal k-dominating function (MkDF) if f is not a
k-dominating function of G for all functions f : V — [0,1] with f < g. The
fractional k-domination number v,¢(G) and the upper fractional k-domination
number I'y s (G) are defined as follows:

Yef(G) = min{|g| : g is an MEDF of G},

Iyt (G) = max{|g| : g is an MEDF of G}.

We observe that if k& > rad(G), then A(G¥) = n — 1 and ~¢(G) = 1. Hence
throughout this paper, we assume that k < rad(G).

Lemma 2.2 [8]. Let f be a k-dominating function of a graph G = (V, E). Then
f is minimal k-dominating if and only if whenever f(v) > 0 there exists some
u € Ni[v] such that f(Ng[u]) = 1.

Remark 2.3. The characteristic function of a y;-set and that of a I'g-set of a
graph G are MkDZF's of G. Hence it follows that 1 < v,¢(G) < 1(G) < T'y(G) <

ir(G).

Definition 2.4. A function g : V' — [0,1] is called a distance k-packing func-
tion or simply a k-packing function of a graph G = (V, E), if for every v € V,
g(Ng[v]) < 1. A k-packing function g of a graph G is mazimal if f is not a k-
packing function of G for all functions f : V' — [0, 1] with f > g. The fractional
k-packing number py¢(G) and the upper fractional k-packing number Py¢(G) are
defined as follows:

prf(G) = min{|g| : ¢ is a maximal k-packing function of G},

P¢(G) = max{|g| : g is a maximal k-packing function of G}.

Observation 2.5. The fractional k-domination number . 7(G) is the optimal
solution of the following linear programming problem (LPP).
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Minimize z =Y ;" | f(v;) , subject to
2 uenyp] f(w) 2 1and 0 < f(v) <1forallveV.
The dual of the above LPP is

Maximize z = Y, f(v;), subject to
2uenyp] f(w) £1and 0 < f(v) <1forallveV.

The optimal solution of the dual LPP is the upper fractional k-packing num-
ber Pyt (G). It follows from the strong duality theorem that Ppr(G) = ¢ (G).
Hence if there exists a minimal k-dominating function g and a maximal k-packing
function h with |g| = |h|, then Py;(G) = |h| = |g| = ks (G).

n

Lemma 2.6. For any graph G of order n we have v,¢(G) < w41 and the bound
18 sharp.

Proof. Since |Ni[u]| > k + 1 for all u € V, it follows that the constant function

f defined on V by f(v) = T}rl for all v € V| is a k-dominating function with
|f] = #47- Hence y5(G) < #5. To prove the sharpness of this bound, consider
the graph G consisting of a cycle of length 2k with a path of length k attached to
each vertex of the cycle. Clearly n = 2k(k + 1). Further the set S of all pendant
vertices of G forms an efficient k-dominating set of G and hence _ ¢y, 1,1 f(u) =1
for all v € V where f is the characteristic function of S. Hence vi(G) = 4 £(G) =

2k::ki+l. ]

Observation 2.7. We observe that 7y £(G) = v7(G*). Hence the following is an
immediate consequence of Theorem 1.2.

Let G be a graph and let A, B C V. We say that A, k-dominates B if Np[v]NA # ()
for all v € B and we write A =, B. Now for any kDF f of G let Py = {u €
V(G) : f(u) >0} and By = {u € V(G) : f(Nig[u]) = 1}. Then f is an MkDF of
G if and only if By — Py.

Observation 2.8. If f and g are kDF's of a graph G = (V, E) and X\ € (0,1),
then the convex combination of f and g defined by hy(v) = Af(v) + (1 — N)g(v)
for all v € V is a kDF of G. However, the convex combination of two MkDUF's
of a graph GG need not be minimal, as shown in the following example.

Consider the cycle G = C7 = (ujug...uyu;) with & = 2. The function

f:V(G) — [0,1] defined by
1 ifx e {u,us},

)= { 0 otherwise,
is a minimal 2-dominating function of G with Py = {u1, us}, By = {u1, ug, us, us}.

Also, the function g : V(G) — [0, 1] defined by

|1 ifx e {us, ue},
9(w) = { 0 otherwise,
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is a minimal 2-dominating function of G with Py = {us, ue}, By = {u2, us, ug, ur}.
Let h = 3f+ 1g. Then h(u1) = h(uz) = h(us) = h(ug) = %, h(uz) = h(us) =
h(uz) = 0, h(Na[u;]) = 3 for i # 2 and h(Na[ug]) = 1. Hence Pj, = {u1, us, us, ug}
and By, = {u2}. Since us,ug ¢ Na[uz] we have By does not 2-dominate Py, and
hence the KD F h is not minimal.

Observation 2.9. If f and g are MkDF's of G and 0 < A < 1, then hy = Af +
(1 =X)gisan MkDF of G if and only if Bf N By = Py U Py.

Observation 2.10. For the cycle C,,, the graph G = CF is 2k-regular and hence
it follows from Theorem 1.4 that vxr(Cpn) = 5757

We now proceed to determine the fractional k-domination number of several
families of graphs.

P ition 2.11. For the h b = 2z .
roposition or the hypercube Qp, Yir(Qn) ()
Proof. For any two vertices x = (z1,22,...,2y) and y = (Y1,Y2, ..., Yn) in Qp,

d(x,y) < k if and only if 2 and y differ in at most k coordinates and hence Q¥
is r-regular where r = (?) + (g) + e+ (Z) Hence by Theorem 1.4, we have
n 2"

_ 2" _
s (Qn) = 2351 = Gy @ () "
Proposition 2.12. For the graph G = P,L1C,,, we have

8 .
_J = ifn=4 and k = 2,
s () { L ifn > 5.
Proof. If n =4 and k = 2, then G? is a 6-regular graph and hence vo¢(G) = %.
If n > 5, G¥ is a (4k — 1)-regular graph and hence 3 (G) = 4k37?+1 = o~ |

Theorem 2.13. Let G = Cy, 0 K1. Then ¢ (G) = 555

Proof. Let C), = (viva...vyv1). Let u; be the pendant vertex adjacent to wv;.
Clearly, |Ng[u;) NV (Cy)| = 2k — 1 and Ni[w;] C Ni[v;], 1 < i < n. Hence the
function g : V(G) — [0, 1] defined by

(z) = 0 if £ = uy,
g\r) = Tlfl ifx:%'

is a minimal k-dominating function of G' with |g| = 5. Also we have |Ni[v;] N
{uj : 1 <j<n}|=2k—-1,1<1i<n. Hence the function h : V(G) — [0, 1]
defined by
L fr=u
hz) =J 21 ! is
() { 0 if v =wv;
is a maximal k-packing function of G with |h| = 5. Hence by Observation 2.5,

we have ;.1 (G) = 57 |
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Theorem 2.14. For the grid G = P,00P,, we have

n(n+2k) ., _
Yf(G) = { 2k(nFE) if n = 0 (mod 2k),
(%1 otherwise.
Proof. Let Py = (up,u1) and P, = (vo, v1, ..., vn—1), so that V(G) = {(us, ) :

Case 1. n =0 (mod 2k). Let n = 2kp, p > 1. Define f : V(G) — [0, 1] by

—g)) ifj=(k—1) (mod 2k),
F(uirvg)) = (gpr)(Lsp) +1) if j =k (mod 2k),
0 otherwise.

Then f is a k-dominating function of G. Also, since f((uo,v;)) = f((u1,v;)) for
all j, we have | f| = 2032720 f((u0,v)))) = sz [(p+ (p— 1)+ +3+2+ 1)+ (1+

24+3+---+p)] = 2%(;7:11) = Z,(c?:fg)) Now consider the function h : V(G) — [0, 1]

defined by

(1) — Lg5)) if j =0 (mod 2k),
Wi 0) = (or) (L) +1) i 5 = (2k = 1) (mod 2k),
0 otherwise.
Then h is a k-packing function of G with |h| = 2ggjj11) = 212(& 122]2)). Hence

n(n+2k
s (G) = ey,

Case2. n %0 (mod 2k). Let n =2kq+7r, 1 <r<2k—1.Let S=51US;
and

g {(uo,v;) : 7 =0 (mod 4k)} if1 <r<k,

YT {(uo,vy) 15 = (k—1) (mod 4k)} ifk4+1<r<2k-—1.
g, — {(u1,v5) : j = 2k (mod 4k)} ifl1<r<k,

27 {(ug,v) 5= Bk —1) (mod 4k)} ifk+1<r<2k—1.

Let f be the characteristic function of S. Since d(z,y) > 2k + 1 for all z,y € S,
it follows that f(Ng[u]) = 1 for all uw € V(G). Thus f is both a minimal k-
dominating function and a maximal k-packing function of G and hence v ¢(G) =

[F1=151= T3] L
A special case of the above theorem gives the following result of Hare [7].
Corollary 2.15. For the grid graph G = P,UP,, we have

n(n+2) if n is even

5] if n is odd.
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3. GRAPHS WITH v4£(G) = v (G)

In this section we obtain several families of graphs for which the fractional k-
domination number and the k-domination number are equal.

Lemma 3.1. If a graph G has an efficient k-dominating set, then v.;(G) =
Ve(G).

Proof. Let D be an efficient k-dominating set of G. Then |Ny[u]N D| =1 for all
u € V(G). Hence the characteristic function of D is both a minimal k-dominating
function and a maximal k-packing function of G and so vy (G) = v, (G). |

Lemma 3.2. For any graph G, v,¢(G) = 1 if and only if v(G) = 1.

Proof. Suppose 7;(G) = 1. Since v,r(G) < v (G), it follows that v.r(G) = 1.
Conversely, let v,(G) = 1. Then 7/(G*) = 1 and hence 7(G*) = 1. Since
¥(G*) = v (G) the result follows. |

Lemma 3.3. For any graph G, prs(G) < par(G) < Pr¢(G).

Proof. Let u € V(G). Since Ni[u] = Ngklu], we have pir(G) = ps(GF),
Prf(G) = Pr(G*) and pai(G) = pa(G*).
Hence the result follows from Theorem 1.1. ]

Corollary 3.4. For any graph G, 1 < pi¢(GQ) < pai(G) < Pif(G) = vip(G) <
W(G) < Tr(G) < Tryp(G).

Corollary 3.5. If G is any graph with pa,(G) = Y (G), then vi¢(G) = v (G).
Corollary 3.6. If G is a block graph, then vi5(G) = i (G).

Proof. 1t follows from Theorem 1.5 that pax(G) = 7%(G) and hence the result
follows. u

Corollary 3.7. For any tree T, we have vi5(T) = v (T).

Theorem 3.8. For the graph G = P110P, where n =1 (mod (k+ 1)), k > 1,
we have v (G) = W (G) = [ 47 ]-

Proof. Let n = (k+1)g+1,q¢> 1. Clearly |V(G)| = n(k+1) = (k+1)%¢+ (k
1). Let Pyy1 = (ug,ui,u,...,ux) and P, = (vg,v1,...,v,—1) so that V(G)
{(usv):0<i<k, 0<j5<n—1}

Now let S; = {(’UJO,’UZ‘) 1 =0 (mod 2<k+1))}, Sy = {(uk,vi) -
(k+1) (mod 2(k+1))} and S = 51 U Ssy. Clearly, d(z,y) = 2k + 1)r, r > 1,
for all z,y € S and [S| = [{i5] = ¢ + 1. Also, (up,vo) and exactly one of

I+
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the vertices (ug,vn—1) or (ug,v,—1) are in S and each of these two vertices k-
dominates (kH)QM vertices of G. Also, if u € Ng[x] N Ni[y], where x,y € S,
then d(u,z) < k, d(u,y) < k and so d(z,y) < d(z,u) + d(u,y) < 2k, which is
a contradiction. Thus Ni[z] N Ni[y] = 0 for all z,y € S. Each of the remaining
vertices of S k-dominates (k + 1) vertices of G. Further, |V (G)| — (k+1)(k +2)
is a multiple of (k + 1)? and hence it follows that S is an efficient k-dominating
set of G. Hence, by Lemma 3.1, we have v4¢(G) = %(G) = |S] = [ 57 ]. |

Theorem 3.9. For the graph G = P300P,, we have v25(G) = 72(G) = [§].

Proof. If n = 1 (mod 3), then the result follows from Theorem 3.8. Suppose
n =0 (mod 3) or 2 (mod 3). Let n = 3¢, ¢ > 1 orn =3¢+ 2, ¢ > 0. Let
P3 = (ug,u1,uz) and P, = (vo,v1,...,Up—1) so that V(G) = {(u;,v;) : 0 <@ <
2,0<j<n—1} Now D = {(u1,v) : j =1 (mod 3)} is a ye-set of G with
|D| = [5] and hence 72(G) = [5]. Further f = xp is a 2-dominating function
of G with |f| = [%]. Also let S; = {(uo,v;j) : j =0 (mod 6)}, So = {(u2,v;) :
j=3(mod 6)} and S = S;US,. Then g = xg is a 2-packing function of G with
9l = [2]. Hence 7/(G) = [3]. .

Observation 3.10. The graph G = P3[JP5 does not have an efficient 2-domina-
ting set. In fact the set S = {(uo,vo), (u2,v3)} efficiently 2-dominates 14 vertices
of G and the vertex (ug,v4) is not 2-dominated by S. Further if S is any 2-
dominating set of G with |S| = 72(G) = 2, then at least one vertex of G is
2-dominated by both vertices of S. This shows that the converse of Lemma 3.1 is
not true.

Theorem 3.11. For the linear benzenoid chain G = B(h), we have
h ; —
241 ifk=2and h=0 (mod 2)
= prg 2 Y
Vs (G) = 1 (G) { ) ifk >3 and h=[£] (mod k).

Proof. Since G = B(h) is a subgraph of P,00Py, 1, we take V(G) = {(us,v;) :
i=0,1, 0 <j < 2h}, where Py = (ug,u1) and Popiq = (vo,v1,...,v9;). Clearly,
|[V(G)| = 4h+ 2. Any vertex u € V(G) k-dominates at most 4k vertices of G and
hence v;(G) > [44£2].

Case 1. k=2and h =0 (mod 2). In this case we have 2(G) > [%] =
B 4 1. Now let Sy = {(uo,v;) : j = 0 (mod 8)}, S = {(u1,v;) : j = 4 (mod 8)}
and S = S1USs. Clearly, for any z,y € S, d(x,y) > 5 and hence Na[z]NNa[y] = 0.
Also |S| = [2]%1] = % + 1. Now (ug,v9) and exactly one of the vertices (ug, vap)
or (uy,vay) is in S and each of these two vertices 2-dominates exactly 5 vertices
of G. Each of the remaining vertices of S 2-dominates 8 vertices of GG. Further
[V(G)|—10 = 4h—8 = 8(% — 1), which is a multiple of 8 and hence it follows that
S is an efficient 2-dominating set of G. Hence 724(G) = 72(G) = |S| = & + 1.
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Case 2. k>3 and h = |%] (mod k). Let h = kg + | %], ¢ > 1. In this case
we have v, (G) > [4}}1—2‘2] = [%] Now let S1 = {(uo,v;) : j = (k — 1) (mod 4k)},
Sy = {(u1,v;) : j = (3k—1) (mod 4k)} and S = S1USy. Clearly, d(z,y) = (2k+
)r, r>1for all z,y € S, hence Ni[z] N Ni[y] = 0. Also |S| = (W} = [47.

Now, when k is odd, exactly one of the vertices (ug,vap) or (ug,vep) is in S
and it k-dominates 2k + 1 vertices. When k is even, exactly one of the vertices
(up,vop—1) or (u1,ven—1) are in S and it k-dominates 2k + 3 vertices. The vertex
(up, vg—1) k-dominates 4k — 1 vertices. In both cases the number of vertices of G
which are not k-dominated by these two vertices is a multiple of 4k and each of
the remaining vertices of S k-dominates 4k vertices of GG. Hence it follows that S
is an efficient A-dominating set of G so that v,¢(G) = 1(G) = |S] = (%} |

Conclusion. In this paper we have determined the fractional k-domination
number of several families of graphs. We have also obtained several families of
graphs for which v¢(G) = 7% (G). The study of the fractional version of distance
k-irredundance and distance k-independence remains open. Slater has mentioned
several efficiency parameters such as redundance and influence in Chapter 1 of
[10]. One can investigate these parameters for fractional distance domination.
The following are some interesting problems for further investigation.

1. Characterize the class of graphs G for which vf(G) = 5.
2. Characterize the class of graphs G with v, (G) = v (G).

3. Determine v ¢(P.0Fs) for r,s > 4.
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