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040 01 Košice, Slovakia

e-mail: ludmila.bezegova@student.upjs.sk
jaroslav.ivanco@upjs.sk

Abstract

A graph is called degree-magic if it admits a labelling of the edges by
integers 1, 2, . . . , |E(G)| such that the sum of the labels of the edges incident

with any vertex v is equal to 1+|E(G)|
2 deg(v). Degree-magic graphs extend

supermagic regular graphs. In this paper we characterize complete tripartite
degree-magic graphs.
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1. Introduction

We consider finite undirected graphs without loops, multiple edges and isolated
vertices. If G is a graph, then V (G) and E(G) stand for the vertex set and the
edge set of G, respectively. Cardinalities of these sets are called the order and
size of G.

Let a graph G and a mapping f from E(G) into positive integers be given.
The index mapping of f is the mapping f∗ from V (G) into positive integers
defined by

f∗(v) =
∑

e∈E(G)

η(v, e)f(e) for every v ∈ V (G),
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where η(v, e) is equal to 1 when e is an edge incident with a vertex v, and 0
otherwise. An injective mapping f from E(G) into positive integers is called
a magic labelling of G for an index λ if its index mapping f∗ satisfies

f∗(v) = λ for all v ∈ V (G).

A magic labelling f of a graph G is called a supermagic labelling if the set {f(e) :
e ∈ E(G)} consists of consecutive positive integers. We say that a graph G is
supermagic (magic) whenever there exists a supermagic (magic) labelling of G.

A bijection f from E(G) into {1, 2, . . . , |E(G)|} is called a degree-magic la-

belling (or only d-magic labelling) of a graph G if its index mapping f∗ satisfies

f∗(v) =
1 + |E(G)|

2
deg(v) for all v ∈ V (G).

A d-magic labelling f of a graph G is called balanced if for all v ∈ V (G) it holds
|{e ∈ E(G) : η(v, e) = 1, f(e) ≤ ⌊|E(G)|/2⌋}|
= |{e ∈ E(G) : η(v, e) = 1, f(e) > ⌊|E(G)|/2⌋}|.

We say that a graph G is degree-magic (balanced degree-magic) (or only d-magic)
when there exists a d-magic (balanced d-magic) labelling of G.

The concept of magic graphs was introduced by Sedláček [7]. Supermagic
graphs were introduced by M.B. Stewart [8]. There is by now a considerable
number of papers published on magic and supermagic graphs; we refer the reader
to [4] for comprehensive references. The concept of degree-magic graphs was
introduced in [1] as some extension of supermagic regular graphs. Basic properties
of degree-magic graphs were also established in [1]. Let us recall those, which we
shall use hereinafter.

Theorem 1. Let G be a regular graph. Then G is supermagic if and only if it is

degree-magic.

Theorem 2. Let G be a d-magic graph of even size. Then every vertex of G has

an even degree and every component of G has an even size.

Theorem 3. Let H1 and H2 be edge-disjoint subgraphs of a graph G which form

its decomposition. If H1 is d-magic and H2 is balanced d-magic then G is a

d-magic graph. Moreover, if H1 and H2 are both balanced d-magic then G is

a balanced d-magic graph.

A complete k-partite graph is a graph whose vertices can be partitioned into
k ≥ 2 disjoint classes V1, . . . , Vk such that two vertices are adjacent whenever
they belong to distinct classes. If |Vi| = ni, i = 1, . . . , k, then the complete
k-partite graph is denoted by Kn1,...,nk

.
Stewart [9] characterized supermagic complete graphs. Supermagic regular com-
plete multipartite graphs were characterized in [6]. Thus, according to Theorem
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1, degree-magic regular complete multipartite graphs are characterized as well.
All balanced d-magic complete multipartite graphs are characterized in [2]. In
particular for the complete bipartite graphs we have

Theorem 4 [1]. The complete bipartite graph Km,n is balanced d-magic if and

only if the following statements hold:

(i) m ≡ n ≡ 0 (mod 2),

(ii) if m ≡ n ≡ 2 (mod 4), then min{m,n} ≥ 6.

The complete bipartite graph Km,n is d-magic if and only if there exists a magic
(m,n)-rectangle (see [1] for details). Thus, the known result on magic rectangles
(e.g., Theorem 1 in [5] or Theorem 2 in [3]) can be rewritten as follows.

Theorem 5. The complete bipartite graph Km,n, for m ≥ n, is d-magic if and

only if the following statements hold:

(i) m ≡ n (mod 2),

(ii) if n = 2 then m > 2,

(iii) if n = 1 then m = 1.

The problem of characterizing d-magic complete multipartite graphs seems to be
difficult. It is solved in this paper for complete tripartite graphs.

2. Complete Tripartite Graphs

First we present some sufficient conditions for complete tripartite graphs to pos-
sess the d-magic property.

Lemma 1. Let m, n and o be even positive integers. Then the complete tripartite

graph Km,n,o is balanced d-magic.

Proof. Suppose that m ≥ n ≥ o and consider the following cases.

Case A. Let o > 2, or n > o = 2 and m + n ≡ 0 (mod 4). Evidently, the
graph Km,n,o is decomposable into edge-disjoint subgraphs isomorphic to Km,n

and Km+n,o. According to Theorem 4, both of these subgraphs are balanced
d-magic. Thus, by Theorem 3, Km,n,o is balanced d-magic, too.

Case B. Let n > o = 2 and m + n 6≡ 0 (mod 4). In this case we have either
m ≡ 0 (mod 4), or n ≡ 0 (mod 4). Without loss of generality, assume that m ≡ 0
(mod 4). The graph Km,n,o is decomposable into subgraphs isomorphic to Km,o

and Kn,m+o. By Theorem 4, both of these subgraphs are balanced d-magic.
Therefore, Km,n,o is balanced d-magic because of Theorem 3.
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Figure 1. Balanced d-magic labelling of K2,2,2.

Case C. Let n = o = 2. A balanced d-magic labelling of K2,2,2 is given in
Figure 1. Thus, K2,2,2 is balanced d-magic. If m > 2, then the graph Km,n,o is de-
composable into edge-disjoint subgraphs isomorphic to K2,n,o and Km−2,n+o. As
K2,2,2 and Km−2,4 are balanced d-magic, Km,n,o is balanced d-magic by Theorem
3.

Lemma 2. Let m ≥ n ≥ o be odd positive integers such that m ≡ 3 (mod 4)
whenever n = 1. Then the complete tripartite graph Km,n,o is d-magic.

Proof. Let us assume to the contrary that Km,n,o (where m ≥ n ≥ o are odd
positive integers such that m ≡ 3 (mod 4) whenever n = 1) is a complete tripar-
tite graph with a minimum number of vertices which is not d-magic. Consider
the following cases.

Case A. n = 1. Then o = 1 and m ≡ 3 (mod 4) in this case. If m > 3 then
Km,n,o is decomposable into edge-disjoint subgraphs isomorphic to Km−4,n,o and
K4,n+o. By the minimality ofKm,n,o, the graphKm−4,n,o is d-magic and according
to Theorem 4, K4,2 is balanced d-magic. Thus, by Theorem 3, Km,n,o is d-magic,
contrary to the choice of Km,n,o. Therefore, m = 3. However, K3,1,1 admits
a d-magic labelling (see Figure 2) and so it is d-magic, a contradiction.
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Figure 2. Degree-magic labelling of K3,1,1

Case B. o = 1 and n = 3. As m ≥ n, the graph Km,n,o is decomposable into
subgraphs isomorphic to Km−2,n,o and K2,n+o. By the minimality of Km,n,o, the
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graph Km−2,n,o is d-magic and according to Theorem 4, K2,4 is balanced d-magic.
Thus, by Theorem 3, Km,n,o is d-magic, a contradiction.
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Figure 3. Degree-magic labelling of G1

Case C. o = 1 and n > 3. If m > 5 then Km,n,o is decomposable into
edge-disjoint subgraphs isomorphic to Km−4,n,o and K4,n+o. By the minimality
of Km,n,o, the graph Km−4,n,o is d-magic and by Theorem 4, K4,n+o is balanced
d-magic. According to Theorem 3, Km,n,o is d-magic, a contradiction. Therefore,
m = n = 5. The graph K5,5,1 is decomposable into edge-disjoint subgraphs
isomorphic to K4,4 and G1 which is depicted in Figure 3. The graph K4,4 is
balanced d-magic by Theorem 4 and G1 is d-magic (see Figure 3). Thus, using
Theorem 3, K5,5,1 is d-magic, a contradiction.
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Figure 4. Degree-magic labelling of G2

Case D. o > 1. If m > 3 then Km,n,o is decomposable into subgraphs
isomorphic to Km−4,n,o and K4,n+o. By the minimality of Km,n,o, the graph
Km−4,n,o is d-magic and by Theorem 4, K4,n+o is balanced d-magic. According
to Theorem 3, Km,n,o is d-magic, a contradiction. Therefore, m = n = o = 3. The
graph K3,3,3 is decomposable into subgraphs isomorphic to K2,2,2 and G2 which is
depicted in Figure 4. The graph K2,2,2 is balanced d-magic by Lemma 1 and G2

is d-magic (see Figure 4). Thus by Theorem 3, K3,3,3 is d-magic, a contradiction.
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Lemma 3. Let n ≥ o be odd positive integers and let m be an even positive

integer such that m ≡ 0 (mod 4) whenever n = 1. Then the complete tripartite

graph Km,n,o is d-magic.

Proof. Let us assume to the contrary that Km,n,o (where n ≥ o are odd positive
integers and m is an even positive integer such that m ≡ 0 (mod 4) whenever
n = 1) is a complete tripartite graph with a minimum number of vertices which
is not d-magic. Consider the following cases.

Case A. m > 4. The graph Km,n,o is decomposable into edge-disjoint sub-
graphs isomorphic to Km−4,n,o and K4,n+o. By the minimality of Km,n,o, the
graph Km−4,n,o is d-magic and by Theorem 4, K4,n+o is balanced d-magic. Ac-
cording to Theorem 3, Km,n,o is d-magic, contrary to the choice of Km,n,o.

Case B.m = 4. The graphKm,n,o is decomposable into subgraphs isomorphic
to Km,n+o and Kn,o. Thus, if n = 1 or o > 1, then by Theorems 4, 5 and 3,
Km,n,o is d-magic, a contradiction. Therefore, o = 1 and n > 1. Km,n,o can be
decomposed into subgraphs isomorphic toKm−2,n,o andK2,n+o. If n ≡ 3 (mod 4),
then, according to the minimality of Km,n,o and Theorems 4, 3, the graph Km,n,o

is d-magic, a contradiction. So, 1 < n ≡ 1 (mod 4), i.e., there is a positive
integer k such that n = 4k + 1. Denote the vertices of K4,n,1 by u1, . . . , u4, v1,
. . . , vn, w in such a way that {u1, . . . , u4}, {v1, . . . , vn} and {w} are its maximal
independent sets. Consider the mapping f : E(K4,n,1) → {1, 2, . . . , 5n+4} given
by

f(u1vj) =







1 + 2k − j+1
2 if j < n, j ≡ 1 (mod 2),

10 + 20k − j
2 if j ≡ 0 (mod 2),

1 + 3k if j = n,

f(u2vj) =







8 + 16k − j+1
2 if j < n, j ≡ 1 (mod 2),

2 + 4k + j
2 if j ≡ 0 (mod 2),

7 + 13k if j = n,

f(u3vj) =



























8 + 16k if j = 1,

10 + 18k − j−1
2 if 1 < j ≤ 1 + 2k, j ≡ 1 (mod 2),

9 + 18k − j−1
2 if j > 1 + 2k, j ≡ 1 (mod 2),

2 + 4k − j
2 if j ≤ 2k, j ≡ 0 (mod 2),

1 + 4k − j
2 if j > 2k, j ≡ 0 (mod 2),

f(u4vj) =



























4 + 8k if j = 1,

2 + 6k + j−1
2 if 1 < j ≤ 1 + 2k, j ≡ 1 (mod 2),

3 + 6k + j−1
2 if j > 1 + 2k, j ≡ 1 (mod 2),

8 + 14k − j
2 if j ≤ 2k, j ≡ 0 (mod 2),

7 + 14k − j
2 if j > 2k, j ≡ 0 (mod 2),
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f(wvj) =















5 + 8k + j if j < n, j ≡ 1 (mod 2),
3 + 8k + j if j ≤ 2k, j ≡ 0 (mod 2),
5 + 8k + j if j > 2k, j ≡ 0 (mod 2),
5 + 10k if j = n,

f(wui) =















9 + 17k if i = 1,
3 + 7k if i = 2,
2 + 4k if i = 3,
6 + 12k if i = 4.

It is not difficult to check that f is a bijection, f∗(ui) = (5 + 10k)(1 + n) for all
i = 1, . . . , 4, f∗(vj) = 5(5+10k) for all j = 1, . . . , n and f∗(w) = (5+10k)(4+n).
Thus, K4,n,1 is d-magic, a contradiction.

Case C. m = 2 and o > 1. In this case Kn,o is d-magic by Theorem 5.
If n + o ≡ 0 (mod 4), then K2,n+o is balanced d-magic by Theorem 4. The
graph K2,n,o is decomposable into edge-disjoint subgraphs isomorphic to K2,n+o

and Kn,o and so, using Theorem 3, it is d-magic, a contradiction. Therefore,
n+o ≡ 2 (mod 4). AsKn,o is d-magic, there is its d-magic labelling g : E(Kn,o) →
{1, 2, . . . , ε}, where ε = no is its number of edges. Suppose that e′, e∗ are edges
of Kn,o such that g(e′) = 1 and g(e∗) = ε. Consider the following subcases.

Subcase C1. If e′ and e∗ are adjacent edges (note that n = o = 3 belongs to
this subcase), then denote the vertices of K2,n,o by u1, u2, v1, v2, . . . , vn+o in such
a way that {u1, u2} is its maximal independent set, the subgraph Kn,o is induced
by {v1, . . . , vn+o} and e′ = v1v3, e

∗ = v2v3. The graph K2,n,o is decomposable
into edge-disjoint subgraphs G3 (induced by {uivj : i ∈ {1, 2}, j ∈ {7, . . . , n+o}},
if n+o > 6) and G4 (induced by remaining edges). Evidently, if n+o > 6 then G3

is isomorphic to K2,n+o−6, and by Theorem 4, it is balanced d-magic. Consider
the mapping h1 : E(G4) → {1, 2, . . . , ε+ 12} given by

h1(e) =







6 + g(e) if e ∈ E(Kn,o)− {e′, e∗},
6 if e = e′,
7 + ε if e = e∗,

and the values of edges uivj are described in the following matrix

h1(uivj) v1 v2 v3 v4 v5 v6
u1 ε+ 9 ε+ 8 7 1 ε+ 11 3
u2 5 4 ε+ 6 ε+ 12 2 ε+ 10

It is easy to see that h1 is a bijection. Since degG4
(vj) = degKn,o

(vj), for each
j ∈ {7, . . . , n+ o}, we have

h∗1(vj) = g∗(vj) + 6 degG4
(vj) = 1+ε

2 degG4
(vj) + 6 degG4

(vj)
= 13+ε

2 degG4
(vj).

For 3 ≤ j ≤ 6, degG4
(vj) = 2 + degKn,o

(vj) and so
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h∗1(vj) = g∗(vj) + 6 degKn,o
(vj) + ε+ 13 = 13+ε

2 degKn,o
(vj) + ε+ 13

= 13+ε
2 degG4

(vj).

Similarly

h∗1(v1) = g∗(v1)− 1 + 6degKn,o
(v1) + ε+ 14 = 13+ε

2 degG4
(v1),

h∗1(v2) = g∗(v2) + 1 + 6degKn,o
(v2) + ε+ 12 = 13+ε

2 degG4
(v2)

and for i ∈ {1, 2}

h∗1(ui) = 3ε+ 39 = 13+ε
2 degG4

(ui).

Therefore, G4 is a d-magic graph and by Theorem 3, the graph K2,n,o is also
d-magic, a contradiction.

Subcase C2. If e′ and e∗ are not adjacent edges (n + o ≥ 10 in this sub-
case), then denote the vertices of K2,n,o by u1, u2, v1, v2, . . . , vn+o in such a way
that {u1, u2} is its maximal independent set, the subgraph Kn,o is induced by
{v1, . . . , vn+o} and e′ = v1v2, e

∗ = v3v4. The graph K2,n,o is decomposable into
edge-disjoint subgraphs G5 (induced by {uivj : i ∈ {1, 2}, j ∈ {11, . . . , n + o}},
if n + o > 10) and G6 (induced by remaining edges). Evidently, if n + o > 10
then G5 is isomorphic to K2,n+o−10, and by Theorem 4, it is balanced d-magic.
Consider the mapping h2 : E(G6) → {1, 2, . . . , ε+ 20} given by

h2(e) =







10 + g(e) if e ∈ E(Kn,o)− {e′, e∗},
10 if e = e′,
11 + ε if e = e∗,

and the values of edges uivj are described in the following matrix

h1(uivj) u1 u2

v1 ε+ 19 3
v2 5 ε+ 17
v3 ε+ 18 2
v4 4 ε+ 16
v5 1 ε+ 20
v6 ε+ 15 6
v7 7 ε+ 14
v8 ε+ 13 8
v9 ε+ 12 9
v10 11 ε+ 10

Analogously as in the Case C1 it is easy to verify that h2 is a d-magic labelling.
Thus, G6 is a d-magic graph and consequently, the graph K2,n,o is d-magic,
a contradiction.

Case D. m = 2 and o = 1. In this case there is a positive integer k such
that n = 2k + 1. Denote the vertices of K2,n,1 by u0, u1, u2, v−k, . . . , vk in such
a way that {u1, u2}, {v−k, . . . , vk} and {u0} are its maximal independent sets.
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Put r =
⌈

2k
3

⌉

(note that 3r − 2k ∈ {0, 1, 2}) and define

R =























{0, 1} if k = 1,

{0, k} if k is even,

{0, r} if k > 1 is odd and 3r − 2k 6= 1,

{0, r, k} if k > 1 is odd and 3r − 2k = 1.

Let P and Q be disjoint subsets of the set {0, 1, . . . , k} −R such that

P ∪Q ∪R = {0, 1, . . . , k} and 0 ≤ |P | − |Q| ≤ 1.

Consider the mapping ξ : E(K2,n,1) → {1, 2, . . . , 6k + 5} given by

ξ(u0u1) = 6k + 5, ξ(u0u2) = 1,

ξ(ujvi) =







3k + 3 + i if j = 0, i ∈ P ∪Q,
i+ 2 if j = 1, i ∈ P or j = 2, i ∈ Q,
6k + 4− 2i if j = 2, i ∈ P or j = 1, i ∈ Q,

ξ(ujv−i) =







3k + 3− i if j = 0, i ∈ P ∪Q,
2k + 3− i if j = 1, i ∈ P or j = 2, i ∈ Q,
4k + 3 + 2i if j = 2, i ∈ P or j = 1, i ∈ Q,

and the values of edges ujvi, |i| ∈ R, are described in the following matrices:

ξ(ujvi) v0 v1 v−1

u0 10 3 5
u1 2 7 4 for k = 1,
u2 6 8 9

ξ(ujvi) v0 vk v−k

u0 6k + 4 k + 2 2k + 3
u1 2 4k + 3 6k + 3 for even k,
u2 3k + 3 4k + 4 k + 3

ξ(ujvi) v0 vr v−r

u0 3k + 3 3k + 3 + r 3k + 3− r
u1 2 r + 2 4k + 3 + 2r for 3r − 2k = 0,
u2 6k + 4 6k + 4− 2r 2k + 3− r

ξ(ujvi) v0 vr v−r

u0 3k + 3 3k + 3 + r 3k + 3− r
u1 2 6k + 4− 2r 2k + 3− r for 3r − 2k = 2,
u2 6k + 4 r + 2 4k + 3 + 2r

ξ(ujvi) v0 vr v−r vk v−k

u0 6k + 4 r + 2 3k + 3− r 4k + 3 2k + 3
u1 2 3k + 3 + r 4k + 3 + 2r k + 2 6k + 3 for 3r − 2k = 1.
u2 3k + 3 6k + 4− 2r 2k + 3− r 4k + 4 k + 3

As
⋃2

j=0{ξ(ujvi)} = {i + 2, 3k + 3 + i, 6k + 4 − 2i}, for 0 ≤ i ≤ k, and
⋃2

j=0{ξ(ujv−i)} = {2k + 3 − i, 3k + 3 − i, 4k + 3 + 2i}, for 1 ≤ i ≤ k, it is not
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difficult to check that ξ is a bijection and ξ∗(vt) = 9k+9 for each t ∈ {−k, . . . , k}.
Moreover,

ξ(ujvi) + ξ(ujv−i) =







6k + 6 if j = 0, i ∈ P ∪Q,
2k + 5 if j = 1, i ∈ P or j = 2, i ∈ Q,
10k + 7 if j = 2, i ∈ P or j = 1, i ∈ Q.

Therefore, ξ(ujvi) + ξ(ujv−i) + ξ(ujvt) + ξ(ujv−t) = 12k + 12, for i ∈ P , t ∈ Q,
j ∈ {0, 1, 2}. Now, it is easy to verify that ξ∗(u0) = (3k + 3)(2k + 3) and
ξ∗(u1) = ξ∗(u2) = (3k+3)(2k+2). Thus, ξ is a d-magic labelling, a contradiction.

Now we are able to prove the main result of the paper.

Proposition. Let m ≥ n ≥ o be positive integers. The complete tripartite graph

Km,n,o is d-magic if and only if both of the following statements hold:

(i) if n = 1, then m ≡ 0 (mod 4) or m ≡ 3 (mod 4),

(ii) if m+ n+ o ≡ 1 (mod 2), then m ≡ n ≡ o ≡ 1 (mod 2).

Proof. Denote the vertices of Km,1,1 by u1, . . . , um, v, w in such a way that
{u1, . . . , um}, {v} and {w} are its maximal independent sets. The size of Km,1,1

denote by q. Evidently, q = 2m + 1. Suppose that f is a d-magic labelling of
Km,1,1. Then,

(1 + q)(1 +m) = f∗(v) + f∗(w) = (1 + 2 + · · ·+ q) + f(vw),

and consequently, f(vw) = 1+q
2 = 1 + m. Put A := {i : f(vui) ≤ m} and

B := {i : f(wui) ≤ m}. Clearly, A ∩ B = ∅ and A ∪ B = {1, 2, . . . ,m}, because
f(v, ui) + f(w, ui) = f∗(ui) = 1 + q for each i ∈ {1, . . . ,m}. Thus,

∑

i∈A

f(vui) +
∑

i∈B

f(vui) = f∗(v)− f(vw) =
1 + q

2
(1 +m)−

1 + q

2
= (1 +m)m.

Consequently,

(1 +m)m =
∑

i∈A

f(vui) +
∑

i∈B

f(vui) =
∑

i∈A

f(vui) +
∑

i∈B

(1 + q − f(wui))

=
∑

i∈A

f(vui)−
∑

i∈B

f(wui) + |B|(1 + q).

Thus,
∑

i∈A f(vui) ≡
∑

i∈B f(wui) (mod 2), because (1 + m)m and 1 + q are
even integers. This implies that

∑

i∈A f(vui) +
∑

i∈B f(wui) is an even integer.
However,

∑

i∈A f(vui) +
∑

i∈B f(wui) = 1 + 2 + · · · +m = m
2 (1 +m), and it is

even only for m ≡ 0 (mod 4) or m ≡ 3 (mod 4).
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Suppose that two integers of {m,n, o} are even and the third is odd. In this case
the graph Km,n,o has an even number of edges and it contains some vertices of
odd degree. According to Theorem 2, Km,n,o is not a d-magic graph. This proves
that condition (ii) holds.

On the other hand, if conditions (i) and (ii) are satisfied then the complete
tripartite graph Km,n,o is d-magic by Lemmas 1, 2 and 3.
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[7] J. Sedláček, Problem 27. Theory of graphs and its applications, Proc. Symp.
Smolenice, Praha (1963) 163–164.

[8] B.M. Stewart, Magic graphs, Canad. J. Math. 18 (1966) 1031–1059.
doi:10.4153/CJM-1966-104-7

[9] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967) 427–438.
doi:10.4153/CJM-1967-035-9

Received 14 December 2010
Revised 7 April 2011

Accepted 28 April 2011

http://dx.doi.org/10.1016/j.disc.2010.09.005
http://dx.doi.org/10.1016/j.disc.2011.07.014
http://dx.doi.org/10.1016/S0012-365X\(96\)00284-1
http://dx.doi.org/10.1016/S0012-365X\(99\)00041-2
http://dx.doi.org/10.4153/CJM-1966-104-7
http://dx.doi.org/10.4153/CJM-1967-035-9


Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

