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Abstract

As a general case of molecular graphs of benzenoid hydrocarbons, we
study plane bipartite graphs with Kekulé structures (1-factors). A bipartite
graph G is called elementary if G is connected and every edge belongs to a
1-factor of G. Some properties of the minimal and the maximal 1-factor of
a plane elementary graph are given.

A peripheral face f of a plane elementary graph is reducible, if the re-
moval of the internal vertices and edges of the path that is the intersection of
f and the outer cycle of G results in an elementary graph. We characterize
the reducible faces of a plane elementary bipartite graph. This result gen-
eralizes the characterization of reducible faces of an elementary benzenoid
graph.

Keywords: plane elementary bipartite graph, reducible face, perfect match-
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1. Introduction

Benzenoid graphs (molecular graphs of benzenoid hydrocarbons) are one of the
most studied classes of graphs within the chemical graph theory since they repre-
sent the chemical compounds known as benzenoid hydrocarbons. For basic char-
acteristics of these structures interested reader is invited to consult the books
[1, 3] and a sample of papers [2, 4, 5, 6] with various results on these graphs.

A necessary condition for a benzenoid hydrocarbon to be (chemically) stable
is that it possesses Kekulé structures, which describe the distribution of so called
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π-electrons. A Kekulé structure of a conjugated molecule can be represented by a
1-factor (or a perfect matching) of the underlying molecular graph. Particularly,
the skeleton of carbon atoms in a benzenoid hydrocarbon is a benzenoid graph.
One of the central problems in this area is to find the number of 1-factors/Kekulé
structures of a benzenoid graph in order to relate this number to forecast some
physico-chemical properties of the underlying compound [3].

On the other hand, some problems involving Kekulé structures of benzenoid
hydrocarbons can be extended to 1-factors of some more general classes of graphs,
such as hexagonal, bipartite, and plane bipartite graphs. In this paper we will
consider plane elementary graphs which embrace elementary benzenoid graphs.

In the next section we formally introduce the concepts and notations of this
paper. In Section 3 we show some properties of the so-called minimal and maximal
1-factor of a plane elementary graph. Finally in Section 4 we extend some results
previously obtained for elementary benzenoid graphs to plane elementary graphs.

2. Preliminaries

A matching of a graph G is a set of pairwise independent edges. A matching is a
1-factor or a perfect matching, if it covers all the vertices of G. If M is a 1-factor
of G and H a subgraph of G then MH denotes the restriction of M to H.

A bipartite graph G is called elementary if G is connected and every edge
belongs to a 1-factor of G. Elementary components of G are components of the
graph obtained from G by removing those edges of G that are not contained in
any 1-factor. G is called weakly elementary if every inner face of every elementary
component of G is still a face of the original G. Note that all elementary graphs
are also weakly elementary.

A benzenoid graph is a finite connected graph with no cut vertices in which
every interior region is bounded by a regular hexagon of a side length 1. It is well
known that benzenoid graphs are weakly elementary.

Let G be plane bipartite graph. Let us call the boundary of the infinite face of
G the outer boundary or the outer cycle. A cycle (face) of a graph G is said to
be resonant, if the edges of the cycle (face) appear successively in and off some
1-factor of G.

Theorem 1 [11, 17]. Assume that a 2-connected plane bipartite graph G is weakly
elementary. Then the following statements are equivalent:

1. G is elementary,

2. each interior face of G is resonant,

3. the outer cycle of G is resonant.
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Let G be a plane bipartite graph. We always color properly all vertices of G with
two colors, black and white, so that two end vertices of each edge are of different
colors.

The symmetric difference of finite sets A and B is defined as A ⊕ B :=
(A ∪B) \ (A ∩B).

Let G be a plane bipartite graph. Then the vertex set of the resonance graph
R(G) (also called the Z-transformation graph, see e.g. [14]) of G consists of the
1-factors of G, two 1-factors being adjacent whenever their symmetric difference
forms the edge set of an interior face of G. The construction of the resonance
graph of a simple benzenoid graph is presented in Figure 1.

F1 F2

R(G)

F5F4F3

G F1 F2

F5F4F3

Figure 1. Benzenoid graph G, 1-factors F1, F2, F3, F4, F5 of G, and its resonance graph

R(G).

Let C denote a cycle of a bipartite graph G. We say an edge of C is proper (im-
proper) if it goes from white (black) to black (white) end-vertex by the clockwise
orientation of C.

Let M be a 1-factor of G. A cycle C is M -alternating if edges of C appear
alternately in and off the M . An M -alternating cycle C of G is said to be proper
(improper) [16] if every edge of C belonging toM is proper (improper). A 1-factor
M is said to be peripheral if the outer cycle of G is M -alternating.

Let G be a plane bipartite graph. The set of all 1-factors of G is denoted as
M(G), or simply M when the considered graph G is obvious.

The resonance digraph ~R(G) is defined [15, 14] as a digraph on M(G) such
that there exists an arc from M1 to M2 provided that M1 ⊕ M2 is a proper
(improper) M1 (M2)-alternating cycle that is an inner facial boundary of G.
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Ignoring directions of arcs of ~R(G) we get the usual resonance graph [7, 10]. For
a plane bipartite graph G, ~R(G) is the Hasse diagram of M(G) [8].

It was shown that G has a unique 1-factor M
0̂
such that G has no proper

M
0̂
-alternating cycles [16]. We call M

0̂
the minimal 1-factor of G, since M

0̂
is

the minimal element of the poset induced by M(G) [15, 8]. In addition, G has
a unique 1-factor M

1̂
such that G has no improper M

1̂
-alternating cycles. M

1̂
is

called the maximal 1-factor of G.

Proposition 2 [12]. Let G be an elementary benzenoid graph. Then the outer
cycle of G is improper M

0̂
-alternating as well as proper M

1̂
-alternating.

An important property of elementary bipartite graphs is the bipartite ear decom-
position [9]. Zhang and Zhang evolved this concept and presented the so-called
reducible face decomposition [17].

It was proved [17] that a plane bipartite graph G is elementary if and only if
G has a reducible face decomposition starting with the boundary of any interior
face of G. This gives the construction method for plane elementary bipartite
graphs: starting with some face, then adding one new face at each step gives
any plane elementary bipartite graph. A face f of a plane bipartite graph G is
peripheral if the peripheries of G and f have a path of positive length in common.
Let G be a plane elementary bipartite graph. Let f be a peripheral face of G and
P a common path of the peripheries of f and G. Let G− f denote the resultant
subgraph of G by removing the internal vertices and the corresponding incident
edges of P . Note that P can be a path on two vertices therefore no internal
vertices exist, yet in this case we can remove only the edge between these two
vertices. If G− f is elementary than we call f a reducible face of G.

If G is a plane elementary bipartite graph with at least two finite faces, then
G has at least two reducible faces [17].

The reducible hexagons of an elementary benzenoid graph can be character-
ized as follows.

Theorem 3 [12]. Let G be an elementary benzenoid graph. Then h is a reducible
hexagon of G if and only if the following hold

(i) the common periphery of h and G is a path of odd length and

(ii) G admits a peripheral 1-factor M such that the edges of h form an M -
alternating cycle.

3. Minimal and Maximal 1-factor

Let G be a plane bipartite graph. Let F be the set of all finite faces of G. For
each M ∈ M, a function φM is defined on F as follows: for any f ∈ F , φM (f) is
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the number of cycles in M ⊕M
0̂
with f in their interiors. Note that f is regarded

as the set of edges bounding the face.

Lemma 4 [15]. For M , M ′ ∈ M, M and M ′ are adjacent in R(G) if and only if
|φM (f)− φM ′(f)| = 1 for f = f0, where f0 is an inner face bounded by the cycle
M ⊕M ′ and 0 for the other faces in F .

In other words, M and M ′ are adjacent in R(G) if and only if M ⊕M ′ forms an
inner face f0 of G and f0 is both M and M ′-alternating.

Since 1-factors compile pairwise independent edges, all the cycles induced by
M ⊕M

0̂
have to be disjoint. It follows that for every peripheral face f , φM (f) is

either 1 or 0.

It was shown [15] that the resonance graph of a plane elementary graph is a
median graph.

The following lemma generalizes the result on elementary benzenoid graphs
[13]. The proof goes analogously, however, for the sake of completeness, we repeat
the arguments.

Lemma 5. Let e be an edge on the boundary of a plane elementary graph G and
let f be the face of G containing e. Let e ∈ M ′ and let φM ′(f) = i, i = 0, 1. If
M is an arbitrary 1-factor of R(G), then φM (f) = i if and only if M contains e.

Proof. Let φM ′(f) = 0.

Suppose that a 1-factor M containing e such that φM (f) = 1 exists. Let
then M ′ = M1,M2, . . . ,Mk = M denote a shortest path between M and M ′ in
R(G). Since R(G) is a partial cube (and a median graph), there exists exactly
one pair Mi,Mi+1 such that φMi

(f) = 0 and φMi+1
(f) = 1. Thus, for every

j = 1, . . . , i − 1, i + 1, . . . , k, Mj ⊕ Mj+1 6= f . Since e does not belong to any
other face but f , Mi and Mi+1 must contain e. But then Mi ⊕Mi+1 6= f and we
obtain a contradiction.

Suppose that such a 1-factor M not containing e with φM (f) = 0 exists. Let
then M ′ = M1,M2, . . . ,Mr = M denote a shortest path between M and M ′ in
R(G). R(G) is a partial cube, thus for every i = 1, . . . , r − 1, Mi ⊕ Mi+1 6= f .
Since e does not belong to any other face but f , Mr must contain e and again
we obtain a contradiction.

If φM ′(f) = 1, the proof goes analogously.

The following lemmas are illustrated by the example shown in Figure 2.

Lemma 6. Let G be a plane elementary graph. Then the minimal (maximal)
1-factor of G does not admit a proper (improper) edge of the outer cycle of G.
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Figure 2. A plane elementary graph with its minimal 1-factor.

Proof. Let C denote the outer cycle of G. Suppose that the minimal 1-factor
M

0̂
contains a proper edge e of C. Let e belong to the face f of G. Obvi-

ously, φM
0̂
(f) = 0 and φM

1̂
(f) = 1. Let M

0̂
= M1,M2, . . . ,Mk = M

1̂
denote a

shortest path between M
0̂
and M

1̂
in R(G). Since R(G) is a partial cube (and

a median graph), there exists exactly one pair Mi,Mi+1 such that φMi
(f) = 0

and φMi+1
(f) = 1. Note that by Lemma 5 the 1-factor Mi+1 does not contain

e. Moreover, Mi does contain e. But then f cannot be improper (proper) Mi

(Mi+1)-alternating and we obtain a contradiction.

The proof for the maximal 1-factor of G is analogous.

Lemma 7. Let G be a plane elementary bipartite graph. Then the minimal
(maximal) 1-factor of G contains every improper (proper) edge of the outer cycle
of G.

Proof. Let C denote the outer cycle of G. Suppose that the minimal 1-factor
M

0̂
does not contain an improper edge e of C. Let e belong to the face f of G.

Obviously, φM
0̂
(f) = 0 and φM

1̂
(f) = 1. From Lemma 5 it follows that M

1̂
does

contain e. But e is improper and by Lemma 6 we obtain a contradiction.

The proof for the maximal 1-factor of G is analogous.

From Lemma 6 and Lemma 7 we obtain the following

Proposition 8. Let G be a plane elementary bipartite graph. Then the outer
cycle of G is improper M

0̂
-alternating as well as proper M

1̂
-alternating.

Corollary 9. Let f be a peripheral face and M a 1-factor of a plane elemen-
tary bipartite graph G. Then φM (f) = 1 (φM (f) = 0) if and only if a proper
(improper) edge on the common boundary of f and the outer cycle of G belongs
to M .
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4. Characterization of Reducible Faces

Theorem 10. Let G be a plane elementary graph. Then f is a reducible face of
G if and only if the following hold

(i) the common periphery of f and G is a path P of odd length and

(ii) G admits a peripheral 1-factor M such that the edges of f form an M -
alternating cycle.

Proof. Note that (i) is a necessary condition which follows from the definition
of reducible faces.

Suppose that f is a reducible face of a plane elementary graph G. Since G

is elementary and f is its reducible face then G′ = G− f is also elementary. By
Theorem 1 a peripheral 1-factor M ′ of G′ exists. Let C ′ denote the outer cycle
of G′.

Suppose P is a path from a black to a white vertex in the clockwise di-
rection of the outer cycle C of G. Note that C ′ is either proper or improper
M ′-alternating. If C ′ is improper M ′-alternating, we set M ′ := M ′⊕C ′ (M ′ now
contains all proper edges of C ′). Let MP denote the set of all proper edges of
P . Since both end-vertices of P are in M ′, clearly M = M ′ ∪MP is a peripheral
1-factor of G, see Figure 3a. It follows that M ⊕ C is also a peripheral 1-factor
of G, moreover edges of f form a M ⊕ C-alternating cycle, see Figure 3b.

a) b)

Figure 3. P is a path from a black to a white vertex.

If P is a path from a white to a black vertex in the clockwise direction of C ′,
consider the peripheral 1-factor M ′ of G′ such that it contains all improper edges
of C ′. Let now the set MP be the set of all improper edges of P , see Figure 4a.
Again, M = M ′ ∪ MP is a peripheral 1-factor of G and the edges of f form a
M ⊕C-alternating cycles, see Figure 4b. This concludes the if part of the proof.
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a) b)

Figure 4. P is a path from a white to a black vertex.

For the converse let G admit a peripheral 1-factor M such that the edges of f
form a M -alternating cycle. If C is a proper M -alternating cycle (Figure 4b) then
the path P goes from a white to a black vertex in the clockwise direction of C.
Consider now M ′ = M ⊕C restricted to G′ = G− f . Clearly, M ′ is a peripheral
1-factor of G′ and from Theorem 1 it follows that G′ is a plane elementary graph.
We have proven that f is a reducible face of G.

On the other hand, if C is an improper M -alternating cycle (Figure 3b), then
the path P goes from a black to a white vertex in the clockwise direction of C.
Again, considering M ′ = M ⊕ C restricted to G′ = G − f we see that M ′ is a
peripheral 1-factor of G′. Form Theorem 1 it follows that G′ is elementary and
f a reducible face of G.

Corollary 11. Let G be a plane elementary graph and let M
0̂
, M

1̂
, and C be

the minimal 1-factor, the maximal 1-factor and the outer cycle of G, respectively.
Then at least one of 1-factors: M

0̂
, M

1̂
, M

0̂
⊕C, and M

1̂
⊕C admits a reducible

face of G.

Proof. For a peripheral 1-factor in the proof of Theorem 10 one can take M
0̂
or

M
1̂
.
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