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Abstract

A graph is edge cycle extendable if every cycle C that is formed from
edges and one chord of a larger cycle C+ is also formed from edges and one
chord of a cycle C ′ of length one greater than C with V (C ′) ⊆ V (C+). Edge
cycle extendable graphs are characterized by every block being either chordal
(every nontriangular cycle has a chord) or chordless (no nontriangular cycle
has a chord); equivalently, every chord of a cycle of length five or more has
a noncrossing chord.
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1. Preliminaries

A k-cycle is a cycle C with length |C| = |E(C)| = k, and a chord of C is an
edge whose endpoints are nonconsecutive vertices of C. For any two cycles C1

and C2 in a graph G such that E(C1) ∩ E(C2) forms a path π with |E(π)| ≥ 1
and V (π) = V (C1) ∩ V (C2), define their sum, denoted C1 ⊕ C2, to be the cycle
that is formed by those edges of G that are in exactly one of C1 and C2; thus,
E(C1 ⊕ C2) = E(C1) ∪ E(C2) − E(π). For instance, if G is the house graph

(formed by inserting one chord into a 5-cycle), then each of the three occurring
cycles (a 3-cycle, a 4-cycle, and a 5-cycle) is the sum of the other two. If the path
π is a chord of C, then we say that the cycle C is split into the sum C1 ⊕ C2 by
that chord.

Although the edge set of one cycle cannot be contained in the edge set of
another, set theoretic terminology can be borrowed to say, as in [5], that a cycle
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C is almost contained in a cycle C+ (and C+ almost contains C) if every edge
except one of C is an edge of C+; in other words, if |E(C) − E(C+)| = 1. The
unique edge in E(C)−E(C+) is a chord of C, and C is split into C ⊕ (C ⊕C+)
by that chord. In the house graph, for instance, both the 3-cycle and the 4-cycle
are almost contained in the 5-cycle, but the 3-cycle is not almost contained in
the 4-cycle.

Call a graph edge cycle extendable—abbreviated ece—if every cycle C that
is almost contained in another cycle C+ is almost contained in some cycle C ′ that
has |C ′| = |C| + 1 with V (C) ⊂ V (C ′) ⊆ V (C+) and E(C) ∩ E(C ′) ⊂ E(C+).
Figure 1 illustrates this, where {xy} = E(C)−E(C+) and z ∈ V (C+) and E(C+)
might contain xz or yz (or both, if |C+| = |C|+ 1).'
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Figure 1. Illustrating the definition of edge cycle extendable graphs.

Every acyclic graph G is trivially ece, as is G = Cn for every n ≥ 3. The house
graph is not ece, since its 3-cycle is almost contained in the 5-cycle, but not
in a 4-cycle. The graph on the left in Figure 2 is not ece (take C to be the
top triangle and C+ to be the 5-cycle that contains two edges of C and three
peripheral edges), but the graph on the right is ece.t
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Figure 2. The graph on the left is not ece; the graph on the right is ece.

Lemma 1. Every induced subgraph of an edge cycle extendable graph is edge

cycle extendable.

Proof. Suppose H is an induced subgraph of an ece graph G and C is a cycle
of H that is almost contained in a cycle C+ of H. Say E(C) − E(C ′) = {xy}.
Since C and C+ are also cycles of the ece graph G, cycle C is almost contained
in a cycle C ′ of G with |C ′| = |C|+ 1 and V (C ′) ⊆ V (C+), which makes C ′ also
a cycle of H. Therefore, H is ece.

A graph is a chordal graph if every cycle C with |C| ≥ 4 has a chord—in other
words, every cycle long enough to have a chord does have a chord. Along with
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the many significant and useful characterizations of chordal graphs in [1, 6], the
following very simple characterizations follow recursively from the definition:

(C1) A graph is chordal if and only if, for every cycle C and xy ∈ E(C), there
exists z ∈ V (C) such that xyz is a triangle.

(C2) A graph is chordal if and only if every cycle C with |C| ≥ 4 almost contains
another cycle C ′ that has |C ′| = |C| − 1.

Characterization (C2) shows how the concepts of chordal and ece seem to go
in opposite directions—indeed, chordal graphs could be described as ‘edge cycle
retractable’ graphs. Lemma 2 will show, however, that every chordal graph is
ece. (The cycle C4 is ece, but not chordal.)

Lemma 2. Every chordal graph is edge cycle extendable.

Proof. Suppose G is chordal and cycle C is almost contained in cycle C+ with
E(C) − E(C+) = {xy}. By characterization (C1), there exists z ∈ V (C ⊕ C+)
such that ∆ = xyz is a triangle. Cycle C is almost contained in C ′ = C ⊕ ∆
where |C ′| = |C|+ 1 and V (C ′) ⊆ V (C+). Therefore, G is ece.

Additional motivation for ece graphs comes from the definition in [3] of the class
of 0-chord extendable graphs—graphs in which every nonhamiltonian cycle C is
almost contained in a cycle C ′ with |C ′| = |C|+ 1. This class is incomparable to
the class of ece graphs: the graph on the left in Figure 2 is 0-chord extendable
but not ece, while the graph on the right is ece but not 0-chord extendable (the
peripheral 4-cycle is nonhamiltonian but is not almost contained in a 5-cycle).
Also, [5] defines the class of strongly pancyclic graphs—graphs for which every
nontriangular cycle C almost contains a cycle C ′ and every nonhamiltonian cycle
C is almost contained in a cycle C ′′ (requiring in addition that |C ′| = |C|−1 and
|C ′′| = |C| + 1 would give the same class). This class is narrower than the class
of ece graphs: the graph on the right in Figure 2 is not strongly pancyclic but
is ece; every strongly pancyclic graph is chordal, and so is ece by Lemma 2.

A graph is 2-connected if every two vertices are in a common cycle (or,
equivalently, if every two edges are in a common cycle). A block of a graph is
an inclusion-maximal induced subgraph that has no cut vertex (in other words,
a block is either an edge that is in no cycle or an inclusion-maximal 2-connected
subgraph).

A graph is a chordless graph if no cycle long enough to have a chord does
have a chord—every cycle is either a triangle or an induced cycle. (The classes of
chordal graphs and chordless graphs are Aristotelian ‘contraries’ of each other.)
Because of the fundamental role that chordless graphs will play in Section 2, the
following characterization is worth noting, even though it will not be used in this
paper. A graph is minimally 2-connected if it is 2-connected but deleting any one
edge would leave a graph that is not 2-connected.
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Proposition 3 [2, 7]. A 2-connected graph is a chordless graph if and only if it

is minimally 2-connected.

Chordless graphs also appear in [4].

2. Characterizations

Every chordless graph is trivially ece. Theorem 4 will show a much more intimate
relationship between chordless graphs and ece graphs (and chordal graphs). Note
that K3 is the only 2-connected graph that is both chordal and chordless.

Theorem 4. A 2-connected graph is edge cycle extendable if and only if it is

either a chordal graph or a chordless graph.

Proof. First suppose that G is 2-connected and ece, yet G is neither chordal
nor chordless [arguing by contradiction]. Since G is not chordless, G contains a
minimum-length cycle C that has a chord; say C is split into the sum C1⊕C2 by a
chord. The minimality of C and G being ece imply |C| = 4 and |C1| = |C2| = 3,
and so V (C) induces a 2-connected chordal subgraph of G.

Let H be an inclusion-maximal induced 2-connected chordal subgraph of G.
Since G is 2-connected but not chordal, G contains a cycle C∗ with no chords
and |C∗| ≥ 4 such that C∗ contains an edge vw of H. Since H is 2-connected
and chordal, vw is also in a cycle of H and, by characterization (C1), vw is in
a triangle ∆ of H. Thus V (C∗) ∪ V (∆) induces a subgraph H ′ of G in which
∆ is almost contained in C+ = C∗ ⊕ ∆, yet (because C∗ has no chords and
|C∗| ≥ 4) triangle ∆ is not almost contained in a 4-cycle whose vertices are all in
C+. Therefore, H ′ is not ece [contradicting Lemma 1].

Conversely, if G is 2-connected and either a chordal or a chordless graph, then
G is ece either by Lemma 2 or because G has no cycle that is almost contained
in another cycle.

Corollary 5. A graph is edge cycle extendable if and only if every block is either

a chordal graph or a chordless graph.

Proof. This follows directly from Theorem 4, since every cycle is in a unique
block and K2 blocks are chordal (as well as chordless) graphs.

Chords ab and cd of a cycle C are noncrossing chords of C if |{a, b, c, d}| ≥ 3
and the vertices come in the order a, b, c, d around C. Clearly, C can only have
noncrossing chords when |C| ≥ 5.

Theorem 6. The following are equivalent for every graph:
(6.1) The graph is edge cycle extendable.
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(6.2) If a cycle C is split into the sum C1 ⊕C2 by a chord, then both V (C1) and
V (C2) induce chordal subgraphs.

(6.3) Every chord of a cycle of length at least five has a noncrossing chord.

Proof. (6.1) ⇒ (6.2): Suppose G is ece, cycle C of G is split into the sum
C1 ⊕ C2 by a chord, and H is the block of G that contains C. Since H is 2-
connected but not chordless, Theorem 4 implies H is chordal. Therefore, both
V (C1) and V (C2) induce chordal subgraphs of G.

(6.2) ⇒ (6.3): Suppose G satisfies (6.2) and has a cycle C with |C| ≥ 5 that
has a chord xy. Suppose C is split into the sum C1 ⊕C2 by xy with |C1| ≤ |C2|.
Thus |C2| ≥ 4. Let H be the subgraph of G that is induced by V (C2). Since H

is chordal by (6.2), C2 has a chord zw. Therefore, xy has the noncrossing chord
zw with respect to C.

(6.3) ⇒ (6.1): Suppose G satisfies (6.3) and some cycle C is almost con-
tained in a cycle C+ with E(C)−E(C+) = {xy}. Suppose C1 is a cycle with mini-
mum length such that V (C1) ⊆ V (C) with xy ∈ E(C1), and suppose C+

1
is a cycle

with minimum length such that V (C+
1
) ⊆ V (C+) and E(C1) − {xy} ⊂ E(C+

1
)

and xy ∈ E(C1 ⊕ C+
1
). Cycle C+

1
has the chord xy and—because of the mini-

mality of |C1| and |C+
1
|—chord xy has no noncrossing chord with respect to C+.

By (6.3), |C+
1
| = 4 and |C1| = 3 = |C1 ⊕ C+

1
|. If C ′ = C ⊕ (C1 ⊕ C+

1
), then

|C ′| = |C|+ 1 and V (C ′) ⊆ V (C+) and E(C)∩E(C ′) ⊂ E(C+). Therefore, G is
ece.
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