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Abstract

We prove that if G is a graph of order 5k and the minimum degree of G
is at least 3k then G contains k disjoint cycles of length 5.
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1. INTRODUCTION AND NOTATION

A set of graphs is said to be disjoint if no two of them have any common vertex.
Corrddi and Hajnal [3] investigated the maximum number of disjoint cycles in
a graph. They proved that if G is a graph of order at least 3k with minimum
degree at least 2k, then G contains k disjoint cycles. In particular, when the
order of GG is exactly 3k, then G contains k disjoint triangles. Erdds and Faudree
[5] conjectured that if G is a graph of order 4k with minimum degree at least
2k, then G contains k disjoint cycles of length 4. This conjecture has been
confirmed by Wang [8]. El-Zahar [4] conjectured that if G is a graph of order
n=mny+ng+---+n, with n; >3 (1 <4 < k) and the minimum degree of G
is at least [n1/2] + [na/2] + -+ + [nk/2], then G contains k disjoint cycles of

lengths ni,no,...,ng, respectively. He proved this conjecture for £k = 2. When
ny = ng = --- = ng = 3, this conjecture holds by Corrddi and Hajnal’s result.
When n1 = no = --- = np = 4, El-Zahar’s conjecture reduces to the above

conjecture of Erdés and Faudree. Abbasi [1] announced a solution to El-Zahar’s
conjecture for very large n.

In this paper, we develop a constructive method to show that El-Zahar’s
conjecture is true for all n = 5k with n; =5 (1 < < k).
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Theorem 1. If G is a graph of order bk and the minimum degree of G is at least
3k, then G contains k disjoint cycles of length 5.

We shall use the terminology and notation from [2] except as indicated. Let G
be a graph. Let u € V(G). The neighborhood of u in G is denoted by N (u).
Let H be a subgraph of G or a subset of V(G) or a sequence of distinct vertices
of G. We define N(u, H) to be the set of neighbors of u contained in H, and
let e(u, H) = |N(u, H)|. Clearly, N(u,G) = N(u) and e(u,G) is the degree of
win G. If X is a subgraph of G or a subset of V(G) or a sequence of distinct
vertices of G, we define N(X,H) = U,N(u, H) and e(X,H) =Y, e(u, H) where
u runs over all the vertices in X. Let x and y be two distinct vertices. We define
I(xy,H) to be N(z,H) N N(y,H) and let i(zy,H) = |I(xy, H)|. Let each of
X1, Xs,..., X, be a subgraph of G or a subset of V(G). We use [X1, Xo,...,X,]
to denote the subgraph of G induced by the set of all the vertices that belong
to at least one of X1, Xo,...,X,.. We use C; to denote a cycle of length i for all
integers ¢ > 3, and use P; to denote a path of order j for all integers j > 1. For
a cycle C of G, a chord of C is an edge of G — E(C') which joins two vertices of
C, and we use 7(C) to denote the number of chords of C' in G. Furthermore, if
x € V(C), we use 7(x,C) to denote the number of chords of C' that are incident
with z. For each integer k > 3, a k-cycle is a cycle of length k. If S is a set of
subgraphs of GG, we write G 2 S.

For an integer £ > 1 and a graph G’, we use kG’ to denote a set of k disjoint
graphs isomorphic to G’. If G4, ..., G, are r graphs and ki, ..., k, are r positive
integers, we use k1G1 W - - - Wk,.G, to denote a set of k1 + - - - + k,- disjoint graphs
which consist of k1 copies of Gi1, ..., k,._1 copies of G,_1 and k, copies of G,.. For
two graphs Hi and Hs, the union of Hy and Hs is still denoted by H; U Hy as
usual, that is, Hy U Hy = (V(H;) UV (H2), E(H1) U E(Hz)). Let each of Y and
Z be a subgraph of G, or a subset of V(G), or a sequence of distinct vertices
of G. If Y and Z do not have any common vertices, we define E(Y, Z) to be
the set of all the edges of G between Y and Z. Clearly, e(Y, Z) = |E(Y, Z)|. If
C = x122...2,x1 i a cycle, then the operations on the subscripts of the z;’s will
be taken by modulo r in {1,2,...,7}.

We use B to denote a graph of order 5 and size 6 such that B has two edge-
disjoint triangles. We use F' to denote a graph of order 5 and size 5 such that F’
has a vertex of degree 1 and a 4-cycle. Let F; be the graph of order 5 obtained
from F' by adding a new edge to F' such that the new edge joins the two vertices
of I whose degrees in F' are 2. Let F5 be the graph of order 5 and size 7 obtained
from K3 by adding a new edge to K53 such that F, has two adjacent vertices
of degree 4. We use Kj to denote the graph of order 5 and size 7 such that K 4+
has a vertex of degree 1. Finally, we use K to denote a graph of order 5 with 9
edges.

Let {H,L1,..., L} be aset of t+1 disjoint subgraphs of G such that L; = Cs
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fori=1,...,t. We say that {H, L1,..., L} is optimal if for any ¢ + 1 disjoint
subgraphs H',L},..., L, in [H,Ly,..., L] with H = H and L} = C5(1 < i < t),
we have that ¢, 7(L}) < 3t 7(L;). Let L be a 5-cycle of G and H a subgraph
of order 5 in G. We write H > L if H has a 5-cycle L' such that (L) > 7(L).
Moreover, if (L") > 7(L), we write H > L.

Let L be a 5-cycle of G. Let u € V(L) and z¢p € V(G) — V(L). We write
xg — (L,u) if [L —u + x9] 2 Cs. Moreover, if [L — u + xg] > L then we
write 29 = (L,u) and if [L — u + 9] > L then we write g = (L,u). In
addition, if it does not hold that zo % (L,u) then we write zg ~ (L, u). Clearly,
zo = (L,u) when zo % (L,u). If 29 — (L,u) for all u € V(L) then we write
xo — L. Similarly, we define 29 = L and zo — L. If [L — u + 29] 2 B, we write
zo = (L,u).

Let P be a path of order at least 2 or a sequence of at least two distinct
vertices in G — V(L + zp). Let X be a subset of V(G) — V(L + z¢) with | X| > 2.
We write g — (L, u; P) if x9 — (L, u) and u is adjacent to the two end vertices
of P. In this case, if P is a path of order 4, then [z¢, L, P] O 2C5. We write
xo — (Lyu; X) if 2y — (L, u; xy) for some {z,y} C X with z # y. We write g —
(L; P) if xg — (L, u; P) for some uw € V(L) and xo — (L; X) if xg — (L, u; X) for
some u € V(L). Similarly, we define the notation xg =+ (L; P) and zo = (L; X).
If it does not hold that zy = (L; P), we write g — (L; P). If it does not hold
that zg = (L; X), we write 29 5 (L; X).

2. SKETCH OF THE PROOF OF THEOREM 1 AND PRELIMINARY LEMMAS
2.1. Sketch of the proof of Theorem 1

Let G be a graph of order 5k with minimum degree at least 3k. Suppose, by way
of contradiction, that G 2 kC5. We may assume that G is maximal, i.e., G+zy D
kC’ for each pair of non-adjacent vertices x and y of G. Thus G O PsW(k—1)Cs.
Our first goal is to show that G 2 K W (k — 1)Cs. This will be accomplished
through a series of lemmas in Section 2.2. Say G 2 {D,Ly,...,Li_1} with
D=~ K/ and L; 2 C5(1 < i < k). Let zg € V(D) with e(xg, D) = 1 and let
Q@ = D — xy. We shall estimate the upper bound on 2e(zg, G) + e(Q, G) > 18k.
This needs an estimation on each 2e(xg, L;) + e(@, L;). The idea is to show
that if e(zo, L;) is increasing then e(Q, L;) is decreasing for otherwise [D, L;| 2
2C5, a contradiction. This is accomplished in Lemma 3.3. It turns out that
2e(z0, G) + e(Q, G) < 18k, a contradiction.

2.2. Preliminary lemmas

Our proof of Theorem 1 will use the following lemmas. Let G = (V, E) be a given
graph in the following.
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Lemma 2.1. The following statements hold:

(a) If P and P" are two disjoint paths of G such that |V(P")] = 2, 2 <
|[V(P")| <3 and e(P', P") > 3, then [P', P"] D C4.

(b) If x and y are two distinct vertices and P is a path of order 3 in G such that
{z,y}NV(P) =0 and e(xy, P) > 5, then [z,y, P| contains a 5-cycle C such
that 7(C) > 2.

(¢) If D is a graph of order 5 with e(D) > 7, then D 2 Cs, unless D = K or
D=F,.

(d) If R is a subset of V(G) and L is a 5-cycle of G — R such that |R| = 4
and e(R,L) > 13, then u — (L; R — {u}) for some w € R, or there exist
two labellings R = {y1,vy2,Y3,ya} and L = b1babsbsbsby such that N(y1,L) =
N(y2, L) = {b1,b2,b3,bs}, N(ys, L) = {b1,b5,ba} and N(ya, L) = {b1,ba}.

Proof. 1t is easy to check (a), (b) and (c). To prove (d), we suppose, for a
contradiction, that v 4 (L; R — {u}) for all u € R. Let R = {y1,y2,y3,y4} be
such that e(y1,L) > e(y;, L) for all y; € R. As e(R,L) > 13, e(y1,L) > 4 and
there exists b € V(L) such that e(b,R — {y1}) > 2. If e(y1,L) = 5 then y; —
(L,b; R — {y1}), a contradiction. Hence we may assume that L = b1bab3bsbsb;
and e(yr, b1bobsbs) = 4. Thus e(b;, R — {y1}) < 1 for ¢ € {2,3,5}. Then 6 >
e(biby, R —{y1}) > 13 —4 — 3 = 6. It follows that e(bibs, R — {y1}) = 6 and
e(bi, R—{y1}) =1 fori e {2,3,5}. W.lo.g., say bays € E. Then e(bs,ysys) =0
as y2 /A (L,b3; R — {y2}). Hence b3y, € E. W.lo.g., say bsys € E. Thus (d)
holds. ]

Lemma 2.2. Let D and L be disjoint subgraphs of G such that D =2 B and
L =2 C5. Say D = xox1x97073T4%0. Suppose that e(D — xo, L) > 13. Then

Proof. Let H = [D, L]. On the contrary, suppose H 2 2C5. Then it is easy to
see that
x; / (Lyxjxs) and x; 4 (L;xjx;) for

(1) {{i, 5} {s, 1} = {{1,2},{3,4}}.

Let R = {x1,29,23,24}. W.lo.g., say e(z1,L) > e(x;, L) for all x; € R. Then
e(z1, L) >4. First, assume that e(x1, L)=5. By (1), I(zoxs, L) =1(xoxy4, L) =0.
Thus e(zaz3,L) < 5 and e(xozy, L) < 5. Since e(R,L) > 13, it follows that
e(rs,L) > 3 and e(x3,L) > 3. As x3 /4 (L;z124), wWe see that e(x3, L) = 3.
Similarly, e(z4, L) = 3. Then e(x2,L) = 2. As x9 /4 (L;z123), we see that the
two vertices of N (x2, L) must be consecutive on L. Say N(z2, L) = {a1,as}. Then
[0, 21, %2, a1,a2] 2 Cs and [x3, 4, as,a4,a5] O Cs, a contradiction. Therefore
e(x1,L) =4. Say N(x1,L) ={a1,a2,a3,a4}. By (1), I(xz2z;,{az,as,as}) = 0 for
J € {3,4}. Thus e(xoxj, L) <7 for j € {3,4} and so e(x;, L) > 2 for j € {3,4}.
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First, assume e(zoz;, L) = 7 for some j € {3,4}. Say e(zox3,L) = 7. Then
I(zoxs, L) = {a1,a4} and e(a;, zox3) = 1 for i € {2,3,5}. If e(xy,a0a3) > 1,
say w.l.o.g. x4ae € E, then [a1,a2,x4,70,23] 2 C5 and so xeas ¢ E as H 2
2C5. Consequently, xzas € E and so H D 2C5 = {z3as5a1a22473, 12072040371 },
a contradiction. Hence e(zy4,a2a3) = 0 and so e(r4,a1a4) > 1. W.lo.g., say
xq4a1 € E. Then [r3,24,a1,a5,a4] 2 C5 and so e(zg,a2a3) = 0 as H 2 2C5.
Thus e(rs,az2a3) = 2. As e(xs, L) < e(r1,L) = 4, x3as ¢ E. Thus zeas € E,
and consequently, H O 2C5 = {x3z4aia2a3rs, v120T2050421 }, a contradiction.
Therefore e(xoxj, L) < 6 for j € {3,4} and so e(xzj,L) > 3 for j € {3,4}.
Similarly, if e(z3, L) =4 then e(x124, L) < 6, a contradiction. Hence e(x3, L) = 3.
Similarly, e(x4, L) = 3. Then e(z2,L) = 3 as e(R,L) > 13. Assume z2a5 € E.
Then e(as,z324) = 0 by (1). As e(zgzyq,L) = 6, either e(xsxq,a1a2) > 3 or
e(rsxyq,asaq) > 3. Say w.lo.g. the former holds. Then [x3,x,x4,a1,a2] 2 Cs
and [x1, T2, as,a4,a3] O Cs, a contradiction. Hence xoas ¢ E. As e(xg,L) =
3, either e(zg,a1a3) = 2 or e(xy,a2aq) = 2. W.lo.g., say the former holds.
As z9 A (L;zxy) for j € {3,4}, e(az,x3x4) = 0. As e(xzxs,L) = 6, either
e(r3ry, agas) > 3 or e(xsry,araq) > 3. Thus either [z3,x4,a3,a4,a5] 2 C5 or
[€3,x4,a4,a5,a1] 2 Cs. In each situation, we see that H D 2C5, a contradiction.

|

Lemma 2.3. Let P and L be disjoint subgraphs of G such that P = Ps and
L = Cs. Suppose that {P, L} is optimal, e(P,L) > 16 and [P,L] 2 2Cs. Then
[P,L] O F'yCs.

Proof. Say P = xjxowsxgxs with e(xy,L) > e(zs, L) and L = ajagazasasa;.
Then e(x1,L) > 1. Let H = [P,L]. On the contrary, suppose H 2 F ¥ Cs.
Assume first that e(z1, L) = 1. Say x1a1 € E. As e(P,L) > 16 and e(zs5,L) <1,
e(rorsxy, L) > 14. Thus e(xg,azaq) > 1. W.lo.g., say xea3 € E. Then
[x1, 22, a3,a2,a1] 2 C5. As e(xsxg, L) > 14 —e(x9, L) > 9, e(x3x4,a4a5) > 3. By
Lemma 2.1(a), [z5, 24, T3, a4,a5] 2 F and so H O FWCj5, a contradiction. Hence
e(x1,L) > 2.

As e(P,L) > 16, I(xox4,L) # 0 or I(z3z5,L) # 0. Therefore x; /4 L for
otherwise H O FW(C5. Hence e(z1, L) < 4. We divide the proof into the following
cases.

Case 1. e(x1,L) = 4. Say N(x1,L) = {a1,a9,a3,a4}. Then [L—a;+x1] D F
for all a; € V(L). Thus I(zox5,L) =0 as H 2 FWCs. Asz1 4 L, (a5, L) = 0.
Then z; % (L,as). By the optimality of {P,L}, [P — z; 4+ as] 2 P5 and so
e(as, roxs) = 0 and e(as, x3x4) < 1. Thus e(zazs, L) < 4 and so e(zgzy, L) > 8.
Suppose e(x2,L) > 1. Then e(x2,a2a4) > 1 or e(z2,a1a3) > 1. W.lo.g., say
the former holds. Then [z1,x2,a2,a3,a4] 2 C5. As H 2 F ¥ C5 and by Lemma
2.1(a), we see that e(xsz4,ajas) < 2. It follows that e(xsx4,azazas) = 6 and
e(raws, L — as) = 4. Thus e(ag,zox5) > 0. Then [P —xz1 +az] D F. As z1 —
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(L,a2), H O FW(Cs, a contradiction. Hence e(x2, L) = 0. Similarly, if e(z5, L) = 4
then e(xy4, L) = 0 and so e(P, L) < 16, a contradiction. Hence e(xs, L) < 3 and
so e(xszy, L) > 9. As e(as,xsxq) < 1, it follows that e(xsxy, L — as) = 8,
e(as, r3xy) = 1 and e(zs, L) = 3. Then e(a;, z325) = 2 for some i € {2,3} and so
H D FWC(Csas 1 — (L,a;), a contradiction.

Case 2. e(x1,L) = 3. Then e(xs5,L) < 3. First, suppose that the three ver-
tices in N(x1, L) are not consecutive on L. Say N(z1,L) = {a1,a2,a4}. Clearly,
I(zoxs, L) C {a4} since H 2 2C5 and H 2 F W C5. Hence e(zoxs,L) < 6.
If z9a4 € E then [z1,29,a1,a5,a4] 2 C5. As H 2 F W C5, e(x3ry,a2a3) <
2. Similarly, [x1,x2,a2,a3,a4] 2 Cs and so e(z3xyg,a1a5) < 2. Consequently,
e(P,L) < 15, a contradiction. Hence x2aq ¢ E. Thus e(zoxs, L) < 5 and so
e(xsxq, L) > 8. If e(xg, L) > 0, then [z, z9, P'| O C5 where P’ = L — {a;,ai+1}
for some {a;,a;+1} € V(L). As H 2 F W Cs, e(rsxyg,a;a;41) < 2. Con-
sequently, e(zszzq, P') = 6, e(z3z4,a;a,41) = 2 and e(zoxs,L) = 5. Hence
e(ag, xoxs) = 1 for all a; € V(L). Thus [P — 21 + aj] 2 F and 1 — (L, aj)
where a; € V(P') N {as,as}, a contradiction.

Therefore e(x2,L) = 0 and so e(xsxrs, L) = 10 and e(zs,L) = 3. Con-
sequently, H O 2C5 or H O F W (5, a contradiction. Therefore the three
vertices in N(z1,L) are consecutive on L. Say N(z1,L) = {a1,a2,a3}. Then
I(xoxs,L) C {ai,a3} since H 2 2C5 and H 2 F W C5. Thus e(zoxs, L) < 7
and so e(xzzy,L) > 6. Assume e(x9,a4a5) > 1. Say w.lo.g xa4 € E.
Then [x1,22,a2,a3,a4] O C5 and [z1,22,a1,a5,a4] 2 Cs5. As H 2 F W Cs
and by Lemma 2.1(a), e(x3z4,a1a5) < 2 and e(x3z4,aza3) < 2. It follows
that e(zows, L) = 7, e(xsxq, L) = 6, e(aq, z3x4) = 2, and e(x2xs5,a1a3) = 4.
Then [z1,x5,a1,a2,a3] 2 Cs and [as, a4, x2, 3, 24] 2 F, a contradiction. Hence
e(re,a4a5) = 0 and so e(xg, L) < 3. Thus e(x3zy, L) > 7. Assume e(x2,a1a3) >
1. Then [z1,x2,a1,a2,a3] 2 C5. Then e(xsxy,a4a5) < 2 as H 2 F W Cs. Thus
e(rsxg,ara2a3) > 5. As H 2 FWCs and x1 — (L, ag), we have e(ag, x2x4) < 1.
Ase(P, L) > 16, it follows that e(ag, zox4) = 1, e(x3, a1a2a3) = 3, e(x324, agas) =
2 and e(z5,L) = 3. As H 2 FW (5 and 1 — (L, az), we see that zsas & E.
Then e(zs,a4a5) > 1 and so [z3,z4,x5,a4,a5] 2 F, a contradiction. Hence
e(ra,a1a3) = 0 and so e(x2, L) < 1. If e(x5, L) = 3 then we also have e(x4, L) <1
by the symmetry and so e(P, L) < 13, a contradiction. Hence e(x5, L) < 2. It fol-
lows that so e(xzx4, L) = 10, e(z2, L) = 1 and e(xs, L) = 2. Thus e(ag, vaz4) = 2
and so H D F W (', a contradiction.

Case 3. e(x1,L) = 2. Then e(zs, L) < 2 and e(x3zq, L) > 7. First, suppose
that the two vertices in N(x1,L) are not consecutive on L. Say N(zi,L) =
{a1,a3}. Assume e(z2,aja3) > 1. Then [x1,x9,a1,a2,a3] 2 C5. As H 2 F W
C5 and by Lemma 2.1(a), e(xsx4,asa5) < 2. Hence e(zsxy,aiagas) > 5. As
x1 — (L,a2) and H 2 F W Cs, e(az,v2rq) < 1. As e(P,L) > 16, it follows
that e(ag, xoxy) = 1, e(xs, L) = 2, e(we, L — az) = 4, e(x3,a1a2a3) = 3 and
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e(r3zy, aqas) = 2. As [v3,24,75,a4,a5] 2 F, e(r5,a4a5) = 0 by Lemma 2.1(a).
As z1 — (L,az) and H 2 F W (5, agzs ¢ E. Thus e(xs,a1a3) = 2. It follows
that [x1,z2,a1,as5,a4] O Cs and [z3, x4, 75, a3,a2] 2 Cs, a contradiction. Hence
e(ra,a1a3) = 0. Thus e(xszzs, L) > 9. As e(xzxa, L) < 10, e(x2,L) > 2 and
so e(x2,asa5) > 1. Say w.lo.g. weas € E. Then [x1,x2,a4,a5,a1] 2O C5. As
H 2 F & Cs and by Lemma 2.1(a), e(z3xs,a2a3) < 2 and so e(xzxs, L) < 8§,
a contradiction. Therefore the two vertices in N(x1, L) are consecutive on L.
Say N(z1,L) = {a1,a2}. Assume x9aq € E. Then [r1,x2,a4,a5,a1] 2 C5 and
[X1,x2,a4,a3,a2] 2 Cs. Thus e(xsry,aza3) < 2 and e(z3zy,a1as) < 2 since
H 2 FW(C5. Hence e(xsxry, L) < 6, a contradiction. Hence z2a4 ¢ E. Thus
e(rsxq, L) > 8. Assume e(xy,azas) > 1. Say xgas € E. Then [z1, 2, a3, az,a1] 2
C5 and so e(x3z4,aqa5) < 2. It follows that e(xsx4, ajazas) = 6, e(x3x4, asas) =
2, e(xe, L — ag) = 4 and e(x5, L) = 2. As x9a5 € E and by the symmetry, we
also have e(rsxy4,asaiaz) = 6. Then H O F W (5, a contradiction. Therefore
e(xa,aszas) = 0. It follows that e(x2, a1a2) = 2, e(xzxs, L) = 10 and e(xs, L) = 2.
Then H D F W (', a contradiction [

Lemma 2.4. Let D and L be disjoint subgraphs of G with D = Fy and L = Cs.
Let R be the set of the three vertices of D with degree 2 in D. If e(R,L) > 10,
then [D,L] D Fiy(Cs.

Proof. As e(R,L) > 10, e(u, L) > 4 for some u € R. Thus u — (L,v) for some
v e V(L) with e(v, R — {u}) > 1. Clearly, [D —u +v]| D Fj. ]

Lemma 2.5. Let D and L be disjoint subgraphs of G with D =2 F and L = Cs.
Suppose that {D, L} is optimal and e(D,L) > 16. Then [D, L] contains one of
Fiw(Cs, FowCs, BWCs and 2C5, or there exist two labellings D = xox1x0T3T471
and L = ajasazasasay such that e(xo,L) = 0, e(xixz, L) = 10, N(x2,L) =
N(z4,L) = {a1,a2,a4}, 7(L) =4 and azas ¢ E.

Proof. Say H = [D,L]. Suppose that H does not contain any of Fj & Cs,
Fy, W Cs, BWC(C5 and 2C5. We shall prove that there exist two labellings of
D and L satisfying the property in the lemma. Say D = xgxixex3xrsx; and
L = ajazazasasa;. Then zoxy & E. Let Q = xixowszgxy. If e(xg, L) > 4, then
for each a; € V(L), [L—a;+xo] 2 Cs or [L—a;+xo] 2 Fy. Thus [Q+a;] 2 Cs and
so e(a;, Q) < 2 for each a; € V(L). Consequently, e(D, L) < 15, a contradiction.
Therefore e(zg, L) < 3. We divide the proof into the following cases.

Case 1. e(xo, L) = 0. First, suppose that e(za, L) > 4 or e(x4, L) > 4. Say,
{a1,a92,a3,a4} CN(x2,L). Assume e(x1,a2a3) > 1. Say w.l.o.g. x1a3 € E.

Then [zg, z1,x2,a2,a1] 2 Fy and [xg, x1,22,a2,a3] 2 Fi1. As H 2 F; W Cs,
we see that e(z3zy,azas) < 2 and e(z3xg,a1a4) < 2. As e(Q, L) > 16, it follows
that e(x1z2, L) = 10 and e(ag, x3x4) = 2. Thus [z, z1, a2, x3,24] D F; and x9 —
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(L,az), a contradiction. Hence e(x1,a2a3) = 0. As e(x1,L) > 1, this argument
implies that e(za, L) # 5. Similarly, e(z4, L) # 5. As e(Q, L) > 16, it follows that
e(r1,a1asa4) = 3, e(zs, L) = 5 and e(z4,L) = 4. Then [z, z1,x2,a1,a2] 2 F}
and (3, x4, a3, a4, as] 2 Cs, a contradiction. Hence e(x9, L) < 3 and e(xy4, L) < 3.
Consequently, e(z1xs3, L) = 10, e(xz2, L) = e(x4, L) = 3. Then x5 is adjacent two
consecutive vertices of L. Say w.l.o.g. e(z2,aja2) = 2. Then [z, z1, 22, a1, az] 2
Fy. Thus e(x4,asa5) = 0 as H 2 F} W C5. Hence e(zy4,aja2aq) = 3. Similarly,
e(x2,a1a2a4) = 3. Clearly, [D — x5 +a;] 2O F for i € {1,2}. As {D,L} is
optimal, z3 ™% (L, a;) for i € {1,2}. This implies that 7(ay, L) = 7(ag, L) = 2.
As [xg,x1,22,01,a2] O F1, [x3,%4,a3,a4,a5] 2 Cs. This implies that agas ¢ E.
Therefore these two labellings satisfy the property described in the lemma.

Case 2. e(xg,L) = 1. Then e(Q,L) > 15. Say zpa; € E. First, suppose
e(ry1,a3aq) > 1. Say w.lo.g. zias € E. Then [z1,x0,a1,a2,a3] 2 Cs. By
Lemma 2.1(c), we have e(agas, xoxzzy) < 3 since H 2 2C5, H 2 F; W5 and
H 2 F> W Cs. Thus e(agas, Q) < 5. Similarly, if x1a4 € E then e(azas, Q) < 5
and so e(Q, L) < 14, a contradiction. Hence xzjaqy ¢ E. Thus e(asas, Q) < 4
and so e(ajagas, Q) > 11. This implies that if e(ag, z123) = 2 then there is a
choice {i,j} = {2,4} such that e(x;,a1a3) = 2 and e(ag,z12;23) = 3. Thus
[0, 1,4, T3, a2] DO Fy and x; — (L, a2), a contradiction. Hence e(az, z123) = 1,
e(aras, Q) = 8, e(ag, raxy) = 2 and e(aqas, Q) = 4 with asz; € E. Consequently,
[aq, a5, a1, 20, 21] 2 F) and [ag,as,x2,x3,24] 2 C5, a contradiction. Therefore
e(r1,asaq) = 0.

Next, suppose e(z1,ajas) = 2 or e(x1,a1a2) = 2. Say w.l.o.g. e(x1,a1a5) = 2.
Then [a4, as, a1, xo,z1] 2 Fi. Thus e(agas, x2x4) < 2. Hence e(azas, Q) < 5 and
so e(ajasay, voxrsxry) > 8. This implies that if x3as € E then there is a choice
{i,7} = {2,4} such that e(as,z12;23) = 3, e(z;,a1a4) = 2 and consequently,
H D F1W(C5, a contradiction. Hence azxs ¢ E and it follows that e(ay, xoxsxs) =
3, e(as,xowy) = 2, e(ay,voxsxry) = 3, e(agas, Q) = 5 with asxy € E. Then
las, a2, a1, zo,x1] 2 F1 and |a4, a5, x2,23,24] 2 Cs, a contradiction. Therefore
e(r1,a1a5) < 1 and e(x1,a1a2) < 1. Thus e(z,L) < 2. Assume that ajz3 €
E. Then zo 4 (L,a1) as H 2 2C5. Hence e(xy,a2a5) < 1, and similarly,
e(rs,a2a5) < 1. As e(Q, L) > 15, it follows that e(z1,a2a5) = 2, e(z3, L) = 5,
e(roxy,arasaq) = 6 and e(x2,aza5) = e(xy4,a2a5) = 1. Say w.lo.g. aszy € E.
Then [D—xz9+4a5] 2 Fy and 29 — (L, as), a contradiction. Therefore ajxs ¢ E. If
x1a1 € E then e(z1,a2a5) = 0 and so e(a1, Q@ —x3)+e(L—ai,Q—x1) > 15. Then
[D—2x9+a1] 2 Fy and 22 — (L, a1), a contradiction. Hence N(z1, L) C {ag,as}.
As e(Q,L) > 15, e(azas, x2x4) > 3 and e(azaq, xsx;) > 3 for i € {2,4}. Say
w.lo.g. xeas € E. Then [zg,x1,x2,a5,a1] 2 C5 and [z3,24,a2,a3,a4] 2 Cs, a
contradiction.

Case 3. N(xo,L) = {a;,a;+2} for some ¢ € {1,2,3,4,5}. Say N(xg,L) =
{a1,a3}. Then e(Q,L) > 14. As H 2 2C5, e(a2,Q) < 2. We claim that
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e(r1,a1a3) = 0. On the contrary, say e(z1,aiag) > 1. Then [zg,z1,a1,a2,as] 2
C5. Since H 2 2C5, H 2 F1WC5 and H 2 FoWC5, we see that e(agas, zoxszy) < 3
by Lemma 2.1(c). Thus e(a4as,@Q) < 5 and e(ajas, @) > 14 — e(az, Q) —
e(agas, Q) > 7. As e(ajas, Q) < 8, it follows that either e(a;,Q) = 4 and
x1a5 € E or e(as, Q) = 4 and z1aq4 € E. Say w.l.o.g. the former holds. Then
[D—x3+a1] D) FQ, [mo,xl,al,a5,a4] 2 F1 and [xo,xl,al,a5,xi] D) FQ fori e {2,4}.
Furthermore, if r1a9 € FE then [1‘0,131,&1,&5,(12] 2 F2 and [130,1‘1,(11,(12,1’1] 2 FQ
for i € {2,4}. Assume for the moment that e(as, zox4) = 2. Then we see that
e(ag, xoxy) = 0as H 2 F1W(Cs. If x1a2 € E, then e(ag, x2x4) = 0as H 2 FobW(Cy
and for the same reason, [a3,aq4,as,23,2;] 2 Cs for ¢ € {2,4}. This implies
that z3as ¢ E and so e(as,zoxq) > 1 since 8 > e(ajaz, Q) > 14 — e(az, Q) —
e(agas, Q) > 7. Thus z3zas € FE since [as,aq,as5,x3,z;] 2 Cs for i € {2,4}.
It follows that {asxi,x3a4} C E. Consequently, [a1,as,aq4,z2,23) 2 C5 and
[0, 21, %4, a2, a3] 2 F», a contradiction. Hence zjas € E. As e(Q, L) > 14, it fol-
lows that asxs € E, e(ajas, Q) =8, e(x1,a4a5) = 2 and e(agas, xoxzzy) = 3. Say
w.lo.g. asze € E. Then [ag,as,a4,x2,23) O Cs and so H O Fy W C5, a contra-
diction. Hence e(ag,zox4) < 1. It follows that e(as, zoxq) = 1, e(as,x123) = 2,
e(az, Q) = 2 and e(aqas, Q) = 5 with e(x1,aqa5) = 2. Thus [zg, x1, as, a4, az] 2
C5 and so e(ag,x123) = 2 as H 2 2C5. Say w.lo.g. asze € E. As H 2 F, W Cs,
we see that [x9,x3,a5,a4,a3] 2 Cs and [as, a4, z2,23,24] 2 Cs. This implies
that e(as,x2x3) = 0 and aqxy & E. As e(aqas, vox3zy) = 3, it follows that
[aq, a5, x2, 3, 4] D C5 and so H D 2C5, a contradiction. Therefore e(z1,aja3) =
0. Assume e(x1,aq4a5) = 0. Ase(Q, L) > 14, it follows that e(zozszys, L—ag) = 12
and e(az, Q) = 2. Thus [z9, 23,24, a4,a5] D K5 . As [x1,20,a1,a2,a3] 2 F, we
have 7(L) > 4 by the optimality of {D,L}. Consequently, xo — (L,a,) for
some r € {4,5} and so H D 2C5 as [@Q + ar] 2 C5, a contradiction. Hence
e(r1,a4a5) > 1. Say w.lo.g. zia5 € E. Then [xg,x1,as5,a4,a3] 2 C5. Since
H 2 2C5, H 2 F1 9Cs and H 2 F» W Cs, we see that e(ajag, zoxsry) < 3
by Lemma 2.1(c). Thus e(ajaz,@) < 4 and so e(aszagas, Q) > 10. Hence
e(asas, Q) > 7. As above, we shall have that [x9,x3,24,a4,a5] 2 K5 . This
implies that e(aqas, xoxszzy) # 6. Thus e(aqas, xoxszy) = 5, e(x1,a4a5) = 2,
e(as, rorsry) = 3 and e(ajaz, Q) = 4. Similarly, we shall have e(ay, zozszs) = 3
as [zo, 1, a4,as5,a1] 2 Cs. As e(agas, xox3ry) = 5, we may assume w.l.o.g. that
e(aq, zox3zy) = 3. Thus [ag, as, 2, x3,24] O Ky and [ag, a1, a5, 21,20] 2 F. By
the optimality of {D, L}, we shall have 7(L) > 4. Thus zy — (L, a,) for some
r € {4,5} and so H D 2C5, a contradiction.

Case 4. N(xzg,L) = {ai,a;+1} for some i € {1,2,3,4,5}. Say, N(zo,L) =
{ay,a2}. First, suppose that zjay € E. Then [xg,x1,a4,a5,a1] 2 C5 and
[xo,xl,a4,a3,ag] D (Cs. Since H 2 2C5, H 2 F1WCs and H 2 F> W C5, we
see that e(agas,@ — 1) < 3 and e(ajas,@ — 1) < 3 by Lemma 2.1(c). As
e(Q, L) > 14, it follows that e(x1, L) = 5, e(aq, Q) = 4, e(azaz,Q — x1) = 3 and



230 H. WaNaG

e(aras, @ — x1) = 3. Then [zg,x1,a5,a1,a2] 2 C5 and so e(agas, Q — 1) < 3.
Thus e(az, @ —x1) = 0 as e(as,Q — x1) = 3. Similarly, e(as, @ — x1) = 0. Thus
e(araz, @ — x1) = 6. Then [a1,x2, x3,a4,a5] 2 C5 and [as, az, xo, 1, 4] D Fa, a
contradiction. Hence zia4 € F.

Next, suppose e(x3,a1a2) = 2. Then e(x;,a1a3) < 1 and e(x;, azas) < 1 for
eachie {2,4} as H 22C5. Thus e(zaxy4, L—a4) <4 and so e(z1, L—aq)+e(x3, L)+
e(aq, xox4) > 10 Then e(x1,a1az) >1. Thus [z;, x1,x0,a1,a2] 2 F; for i € {2,4}.
Clearly, e(zs,asas) > 1. Assume e(x3,azas) = 2. Then e(zaz4,azas) = 0 as
H 2 FL W (5. If e(aq,zomy) = 1, then e(x1,L —aq) = 4, e(x3,L) = 5 and
e(rary, ara2) = 4. Thus [zg, 21,24, a2,a3] O Fy and [z3,a4,a5,a1,22) 2 Cs, a
contradiction. Hence e(ayq, xox4) = 2. If z3a4 € E then |9, x3, x4, a4, a;] D Fy for
i€ {3,5}. Ase(x1,asas) > 1, we see that H O F» W C5, a contradiction. Thus
x3ag € E, e(x1,L—ay) =4, e(x3, L—ay4) = 4, e(ag, x2x4) = 2 and e(x224, a1a2) =
4. Thus [zo,x1,x4,a2,a3] O Fy and [z3,a1,a5,a4,22] 2 C5, a contradiction.
We conclude that e(zs,azas) = 1. Thus e(z1,L — a4) = 4, e(x3,L) = 4 and
e(aq, xoxy) = 2. Say w.lo.g. wxszas; € E. Then [x9,x4,a5,a4,23] O F» and
[0, 21, a1, a2,a3] 2 C5, a contradiction. Therefore e(x3,a1a2) < 1. Next, sup-
pose that e(xg,a1a2) > 1 and e(z4,a1a2) > 1. Then [x;,z1,z0,a1,a2] 2 Cs
for i € {2,4}. Since H 2 2C5, H 2 F1 W C5 and H 2 F», W C5, we see
that e(zsz;,agasas) < 3 for i € {2,4} by Lemma 2.1(c). Furthermore, if for
some i € {2,4}, say i = 2, we have e(x2,azasas) = 3, then [z, a3, a4, as5,a;] 2
Fy for j € {1,2} and so e(x3,a1a2) = 0 since H 2 C5 W F;. Consequently,
e(r1,L — aq) = 4, e(razg, L) = 10 and so H O 2C5, a contradiction. There-
fore if e(zs,asasas) = 0 then e(z;,asaqas) < 2 for i € {2,4}. Together with
x1a4 ¢ E and e(x3,a1a2) < 1, we see that if e(x3, asasas) = 0 or e(x3, azagas) > 1
then e(Q,L) < 13, a contradiction. Hence e(z3, azasas) = 1. It follows that
e(r1, L — aq) = 4, e(x3,a1a2) = 1, e(xoxq,a1a2) = 4, e(xa,azaqa;) = 2 and
e(rq,asaqas) = 2. If e(xs,azas) = 1, then either [z9,x3,a3,a4,a5] 2 C5 or
[x2, X3, a3, a4,a5] 2 Fy, and consequently, H O C5 W F}, a contradiction. Hence
xsay € E. Then we see that [ze, x3,a4,a5,a1] 2 Cs and [xg, 21,24, a2, a3] 2O Fy,
a contradiction. Therefore either e(z2,aja2) = 0 or e(z4,a1a2) = 0. Say w.l.o.g.
e(xrq,a1a2) = 0.

Finally, if e(xy,a1a2) > 1 then, as above, we would have e(z3z4, asasas) < 3
and so e(Q, L) < 13, a contradiction. Hence e(x2,a1a2) = 0. As e(Q, L) > 14,
it follows that e(z1,L — a4) = 4, e(xs, L — a;) = 4 for some i € {1,2} and
e(razy, agasas) = 6. As [xe, w3, 24, a4, a5) 2 Cs, we see H O 2C5, a contradiction.

Case 5. N(xg,L) = {a;,a;+1,a;+2} for some i € {1,2,3,4,5}.
Say N(zo,L) = {ai1,a2,a3}. Then for each i € {2,4,5}, [L —a; + x0] 2 C5 or
[L —a; +xo] 2 Fy and so e(a;, Q) < 2. Thus e(ajas, Q) > 7. Hence [Q +a;] 2 C5
for each i € {1,3}. Therefore [L — a; + x0] 2 C5 and [L — a; + xo] 2 B for each
i € {1,3}. This implies that 7(L) < 1. As e(ajas, @) < 8, e(asas, Q) > 3. Say
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w.lo.g e(as, @) = 2. As [Q + a5] 2 C5, N(as,Q) = {z2, 74} or N(a5,Q) =
{z1,z3}. First, assume N (a5, Q) = {z2,z4}. Then [a4,as,z2,23,24] 2O F. As
e(aras, Q) > 7, e(x1,a1a3) > 1 and so [xg, x1,a1,az2,a3] 2 C' = C5 with 7(C") >
2, contradicting the optimality of {D,L}. Hence N(as,Q) = {x1,z3}. Then
[a4,a5,21,x;,x3] O F for each i € {2,4}. By the optimality of {D,L} and
Lemma 2.1(b), we get e(x;,ara3) < 1 for each i € {2,4} and so e(aja3,Q) <6, a
contradiction.

Case 6. N(xzg,L) ={a;,ai+1,a;+3} for some i € {1,2,3,4,5}.
Say N(zo,L) = {a1,a2,a4}. Clearly, 9 — (L,a3) and zy — (L,as). Thus
e(az, Q) < 2 and e(as,Q) < 2 for otherwise H D 2C5. As H 2 2Cs, we
see that x9p 4 L and so agzas ¢ E. As e(Q,L) > 13, e(asas,Q) > 1. Say
w.l.o.g. e(as, @) > 1. Then [@ + as] D F. By the optimality of {D, L}, 7(L) >
T(zpaiagasaszp). This implies that asas € E. Similarly, if e(as, Q) > 1 then
ajasz € E. Assume aja3 € E. Then e(as, Q) = 0 and so e(ajazayq, Q) > 11. Then
e(ar, Q) = 4 for some r € {1,2} and [L — a, + zo] 2 F. As 7(a,zr1x023240,) > 3,
it follows that 7(L) = 3 and so {aja4,a2a4} C E. Thus [L — a1 + o] 2 F3 and
[Q + a1] 2 Cs, a contradiction. Therefore ajag € E. Thus [L — a4 + xo] 2 Fb.
Hence [Q + a4] 2 C5 and so e(aq, Q) < 2. Consequently, e(ajas, Q) > 7 and so
[Q + a;] 2 C5 for each i € {1,2}. Hence ajay ¢ E and asay ¢ E for otherwise
H D F> ¥ C5. Hence 7(L) = 2. By the optimality of {D, L}, [Q + a;] 2 C with
C = C5 and 7(C) > 3 for each ¢ € {1,2}. This implies that e(a;, Q) < 3 for each
i € {1,2} and therefore e(ajag, @) < 6, a contradiction. [

Lemma 2.6. Let D, L and Lo be disjoint subgraphs of G with D =2 F and
Ly = Ly = Cs. Suppose that Ly = ajasasasazar, V(D) = {xg,x1,x2, 3,24} and
E(D) = {zox1,x122, 273, T3T4, T4x1} such that e(zo, L1) =0, and e(x 123, L1) =
10, N(za,L1) = N(z4, L1) = {a1,a2,a4}, 7(L1) = 4 and aszas ¢ E. Suppose that
e(roroasas, Lo) > 13. Then [D, L1, Lo] contains either of F1 & 2C5 or 3Cs.

Proof. For the proof, we may assume that none of xgxs, z1x3 and zox4 is an edge
as they will not be used in the proof. Set G; = [D, L1], G2 = [G1, Lo] and R =
{0, x2,a3,as}. It is easy to see that for any permutation f of {x2, a3, as}, we can
extend f to be an automorphism of G such that every vertex of G1 —{x2,as, a5}
is fixed under f. Therefore x2,as and as are in the symmetric position in the
following argument. On the contrary, suppose that Go 2 F} W2C5 and G2 2 3C5.
It is easy to check that if u — (L2; R — {u}) for some u € R then Gy O F; W 2C5
or Gy O 3C5. Therefore u 4 (Lg; R — {u}) for each v € R. By Lemma
2.1(d), there exist two labellings R = {y1,y2,vy3,y4} and Lo = b1bobsbybsby
such that €(y1y2,51b2b3b4) = 8, €<y3,blb5b4) = 3 and e(y4,b1b4) =2 If o €
{y1,y2}, we may assume that {y1,y2} = {0, 2z2}. Then [z, z1,z2,b2,b3] 2 C5,
las, as,b1,b5,b4] O C5 and [x3, 24, a1, a2,a4] 2 C5, a contradiction. Hence zy ¢
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{yl,yg}. Say W.l.O.g. that {yl,yg} = {ag,a5}. Thus [ag,a4,a5,b2,bg] :_) 05,
[0, 2, b1,b5,b4] 2 C5 and |21, x4, 23, a1, az] 2 Cs, a contradiction. [

Lemma 2.7. Let D and L be disjoint subgraphs of G with D =2 KI and L = B.
Let R be the set of the four wvertices of L with degree 2 in L. Suppose that
e(D,R) > 13. Then either [D,L] 2 Kj WCjs or [D,L] 2 2C5 or [D,L] 2 B&Cs.

Proof. Say H = [D,L]. On the contrary, suppose that H contains none of
KZ W C5, 2C5 and BW C5. Say V(D) = {xg,x1,x2,x3, x4} with e(zg,D) = 1
and zor1 € E. Let Q = [z1, 22,23, 24]. Say L = agajagapasasag. Then Q = Ky
and R = {a1,a9,a3,a4}. If e(xo,R) > 3, say w.l.o.g. e(xg,ajazas) = 3, then
[L —a; +x9) 2 C5 and so Q + a; 2 Cs for each i € {1,2,4}. Consequently,
e(a;, Q) < 1 for all i € {1,2,4} and so e(D,R) < 11, a contradiction. Hence
e(rg, R) < 2. Suppose that e(xg, R) = 2. Then e(R,Q) > 11. First, assume
e(zro,a1a2)=1 and e(xg,azas)=1. Say w.l.o.g. e(xp,a1a3)=2. Then e(az, Q) <1
and e(aq,Q) < 1 as H 2 2C5. Consequently, e(R,Q) < 10, a contradiction.
Therefore we may assume w.l.o.g. that e(zg,ajaz) = 2. We claim e(x1,a1a2) =
0. To see this, suppose e(x1,ai1a2) > 1. Then [zg,z1,a1,a2,a0] 2 C5. Thus
e(asay, voxsry) < 2 for otherwise [as, aq, z2, x3,24] 2 C5 or [a3,ay, T2, T3, T4] 2
K. Thus e(azas,Q) < 4 and so e(ajas, Q) > 7. Say w.lo.g. e(a1,Q) = 4.
Then [D — z; + a1] 2 K for each i € {2,3,4} and so [L — ay + ;] 2 Cs for
each i € {2,3,4}. Thus I(agas3,Q — x1) = 0 and so e(azas,Q) < 5. Hence
e(as, Q) > 2. Similarly, e(as, Q) > 2. It follows that [as, a4, x2,23,24] 2 Cs
or [ag,a4,x9,x3,24] 2 B, a contradiction. This shows that e(z1,aj1a2) = 0.
Suppose e(a1,Q — z1) = 3 or e(az,Q — x1) = 3. Then [zg,z1,x;,a1,a2] 2 Cs
for each ¢ € {2,3,4}. Thus [z, z},a0,a3,a4] 2 Cs and [z;,z;, ap, a3, as] 2 B for
each 2 < ¢ < j < 4. This implies that e(agayq, @ — 1) < 2. Hence e(ajaz, Q) > 7
and so e(x1,a1a2) > 1, a contradiction. Hence e(a;, @ — x1) < 2 for each i €
{1,2} and so e(aszas,Q) > 7. Say w.lo.g. e(as,Q) = 4. Then [D — z; + a4] D
K for each i € {2,3,4} and therefore I(ajas3,Q —x1) = 0 as H 2 K &
C5. Thus e(ajasz, Q) < 4 and so e(az, Q) > 3, a contradiction. Next, suppose
e(xg, R) = 1. Then e(Q, R) > 12. Say zpa; € E. Suppose e(z1,aia2) > 1. Then
[x0,x1,a1,a2,a9] 2 C5 or [xg,x1,a1,a2,a0] 2 B. Thus [xa,x3,24,a3,a4] 2 Cs.
This implies that e(asas, @ —x1) < 3. Thus e(aszaq, Q) < 5 and so e(ajaz, Q) > 7.
Thus [D — x; +a1] 2 Cs for all i € {2,3,4}. As H 2 2C5, I(aza3,Q —xz1) =0
and I(agas,@ — x1) = (. Hence e(agas, Q) < 5 and so e(as,Q) > 3. Then
I(azas,@Q —x1) # 0, a contradiction. Hence e(x1,a1a2) = 0. Thus e(ajaz, Q) < 6
and e(agaq, Q) > 6. Then [x;,x},a3,a4,a0] 2 Cs for some 2 < i < j < 4. Say
{i,7,k} ={2,3,4}. Then asxy ¢ E as H 2 2C5. Therefore e(ajaz, Q) < 5 and
so e(asaq, Q) > 7. Thus [z,, ¢, a3,a4,a0] 2 Cs for all 2 < r <t < 4. Therefore
e(az, @ —x1) =0 as H 2 2C5. Consequently, e(Q, R) < 11, a contradiction.
Finally, suppose e(zg, R) = 0. As e(R,Q) > 13, e(a;, Q) = 4 for some a; € R.



DISJOINT 5-CYCLES IN A GRAPH 233

Say e(a1,Q) = 4. Then I(agasz,Q — 1) =0 as H 7 K W Cs. Thus e(a4, Q) = 4
as e(R, Q) > 13. Similarly, e(as, Q) = 4. Then we readily see that H O K W Cj,
a contradiction. m

Lemma 2.8. Let By and Bs be disjoint subgraphs of G such that By = B and
By = B. Let R be the set of the four vertices of By with degree 2 in By. Suppose
that e(R, By) > 13. Then [By, Ba] 2 2C5 or [By, Bs] 2 BW Cs.

Proof. On the contrary, suppose that [Bi, Bs] 2 2C5 and [By, Bs] 2 BW Cs.
Say Bl = apaiazapaszaqagon and B2 = boblb2b053b4b0. Then R = {al,ag,ag,a4}
and e(R, By —bp) > 9. This implies that e(a;ait+1,b;b;4+1) > 3 for some i € {1, 3}
and j € {1,3}. Say w.l.o.g. e(aiaz,bib2) > 3. Then [a1, a2, by, b1, b2] DO Cs and
[b1,b2, ag, a1, as] 2 Cs.

Therefore [(IQ, as, a4, bg, b4] Z 05, [(IQ, as, a4, b3, b4] Z B, [b(], b3, b4, as, a4] 2 05
and [bo, b3, by, ag,as] 2 B. This implies that e(agaq, bsby) < 1 and e(bg, azaq) < 1.
If e(ajag,bsby) > 3, then we also have that e(azaq,bibz) < 1 and it follows
that e(ajag, Ba) = 10 and e(asaq,b3by) = 1 as e(R, B2) > 13. Consequently,
[Bs — b, +a1] 2 C5 and [By — a1 + b,] 2 C5 where r € {3,4} with e(b;, azaq) = 1,
a contradiction. Hence e(ajaz, b3bs) < 2. Suppose e(azaq, bibe) > 3. Similarly, we
shall have e(ajag, bsbs) < 1, e(by,a1az2) < 1 and so e(R, By) < 12, a contradiction.
Therefore, e(agaq,bibs) < 2. Thus e(asas, B2) < 4 and so e(ajaz, B2) > 9.
Consequently, e(ajaz, bsby) > 3, a contradiction. [

Lemma 2.9. Let D and L be disjoint subgraphs of G with D =2 Fy and L = Cs.
Suppose that {D, L} is optimal and e(D,L) > 16. Then [D, L] contains one of
KI&JC%, KZ&JB, 2C5 and BWCs, or there exist two labellings L = ajasasasazay
and V(D) = {xg, x1,x2,x3, x4} with E(D) = {xox1,x1T2, Tox3, T3Tq, T4T1, T2T4}
such that e(zo, L) = 0, e(ajazaq, D — x¢) = 12, N(ag, D) = N(as, D) = {z2, 24},
7(L) =4 and azas ¢ E.

Proof. Say H = [D, L]. Say that H does not contain any of K & C5, K, W B,
2C5 and B W Cs,.

Let V(D) = {xg, x1, 22, 23,24}, E(D) = {xoz1, 129, Tox3, T3T4, T4T1, 224} and
L = ajasasaqasar, Set Q = [v1,x2,x3,x4]. Since H 2 2C5 and H 2 BW 5, we
see that for each a; € V(L), if zg — (L,a;) or xg = (L,a;) then e(a;, Q) < 2.
Thus z¢ 4 L for otherwise e(D, L) < 15. Hence e(x, L) < 4.

Assume e(zg, L) = 4. Say e(xg,aiaz2asaq) = 4. As x9 4 L, 7(as,L) = 0.
Clearly, e(a;, Q) < 2 for each i € {2,3,5} since H 2 2C5. Thus e(ajas,Q) > 6.
Say e(a1,Q) > 3. Then [Q+a;] 2 C with C = Cj and 7(C) > 3. Then agay ¢ E
for otherwise [L — a1 + xo] 2 K. Thus 7(L) < 2. As [L — a; + 7] 2 Fi,
we see that 2 > 7(L) > 7(C) > 3 by the optimality of {D, L}, a contradiction.
Therefore e(xp, L) < 3 and so e(Q, L) > 13. Set T' = zoxsxszy. We divide the
proof into the following six cases.
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Case 1. N(zg,L) = {a;,a;+1,a;+2} for some i € {1,2,3,4,5}.

Say N(zg,L) = {ai,a2,a3}. Then @Q + a2 2 C5 and so e(az, Q) < 2. As z¢ /4 L,
we see that 7(ag, L) < 1. If {ajas,azas} C E then 29 — (L,a;) or zo =
(L,a;) and so e(a;,Q) < 2 for each a; € V(L). Consequently, e(Q,L) < 10,
a contradiction. Hence ajaqy € E or azas ¢ E. Thus 7(L) < 3. Suppose
7(ag,L) = 1. Say w.lo.g. agas € E. Then xzy — (L,a;) for ¢ € {3,5}. Thus
e(a;, Q) < 2 for i € {3,56}. As e(Q,L) > 13, e(araq,Q) > 7. Thus [Q + a,]
contains a 5-cycle with at least 4 chords, where e(a,,Q) = 4 with r € {1,4}.
As [L — a, + z9] 2 F} and by the optimality of {D, L}, we have 7(L) > 4, a
contradiction. Hence 7(ag, L) = 0. Suppose ajaz € E. Then [L — a; + xo] 2 KI
for each i € {4,5}. As H 2 K] WCs, e(a;, Q) <2 forie {4,5}. Ase(Q,L) > 13,
e(aras, Q) > 7 and e(aqas, Q) > 3. Say w.lo.g. e(as,Q) = 2. As [Q + a5] 2 C5,
e(as, xoxy) = 2. As e(x1,a1a3) > 1, [x1, 20, a1, a2,a3] 2 C5. Thus e(ag,T) =0 as
H 2 2C5. Tt follows that e(ajas, @) = 8 and aqx; € E. Consequently, H O 2Cs5,
a contradiction. Hence ajas € E and so 7(L) < 1. Since [L — a; + x¢] 2 F; for
each i € {4,5}, we see that [Q + a;] does not contain a 5-cycle with at least 2
chords for each i € {4,5} by the optimality of {D, L}. This implies that for each
i € {4,5}, e(a;, Q) < 2 and if e(a;, Q) = 2 then e(a;, xax4) = 2. Similar to the
above, we see that H D 2C5, a contradiction.

Case 2. N(xg,L) = {a;,a;+1,a;+3} for some i € {1,2,3,4,5}.
Say N(zo,L) = {ai,a2,a4}. Then for each i € {3,5}, zo0 — (L,a;) and so
e(a;, Q) < 2. Thus e(ajazay, Q) > 13—e(asas, Q) > 9. Suppose that e(asz, Q) = 2
or e(as, Q) = 2. Say w.lo.g. e(as, @) = 2. Then e(as, x2x4) = 2 as [Q+as] 2 Cs.
If agzs € E then [a3,a4,as5,23,2,] 2 Cs for i € {2,4} and so e(z;,a1a2) = 0
for i € {2,4} since H 2 2C5. Consequently, e(ajazaq, Q) < 8, a contradic-
tion. Hence agxs ¢ E. If agxy € E then [x1,x0,a1,0a2,a3] 2 C5 and so
e(ag, T) = 0 as H 2 2C5. Thus e(ajazaq,Q) = 9 and so e(as, Q) = 2. Con-
sequently, [@Q + a3] O C5, a contradiction. Hence N(a3,Q) C {z2,z4}. If
e(xr1,a2aq) > 1 then [x1,x0,a2,a3,a4] 2 C5 and so e(a1,T) = 0 as H 2 2C5.
It follows that e(ag,zox4) = 2 and e(agaq, Q) = 8. Consequently, H D 2C5, a
contradiction. Hence e(z1,a2a4) = 0. Thus e(agaq,T) > 5 as e(ajazaq, Q) > 9.
Hence [z3, 24, a2,a3,a4] 2 C5 and [z, x1, T2, a5,a1] 2 Cs, a contradiction.

Therefore e(az, @) < 1 and e(as,Q) < 1. Then e(ajasaq,@) > 11. Thus
e(araz,Q) > 7. Say w.lo.g. e(a;,Q) = 4. Then [as,a1, 72,23, 74] 2 K, . As
e(z1,a2a4) > 1, [21, 20, a2, a3,a4] 2 Cs and so H O K W Cs, a contradiction.

Case 3. N(zo,L) = {ai,a;+1} for some i € {1,2,3,4,5}. In this case,
e(Q, L) > 14. Say e(xo,a1a2) = 2. Suppose z1a4 € E. Then [x1, 0, a1, a5, a4] 2
Cs. As H does not contain one of 2C5 and K4+ W C5, we see that e(agas, T') < 2.
Similarly, e(ajas,T) < 2 as [z1,x0,a2,a3,a4] 2 Cs. Thus e(Q,L) < 12, a con-
tradiction. Hence zj1a4 ¢ E. Next, suppose that e(x1,asas) > 1. Say w.lo.g.
xia3 € E. Then [r1,x0,a1,a2,a3] 2O Cs. As H does not contain one of 2C5,
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B Cs and Kj W Cs, we have that e(asas,T) < 2 and either e(as,T) = 0
or e(as, T) = 0. If we also have zja5 € E then e(agaq,T) < 2 and either
e(aq, T) = 0 or e(as,T) = 0. Consequently, it follows, as e(Q,L) > 14, that
e(as,T) = 2, e(az,T) = 2, e(as,T) = 0 and e(ajaz, Q) = 8. Then x; — (L, ay)
for some x; € V(T') with e(x;, asas) = 2 and so H D 2C5, a contradiction. Hence
z1a5 ¢ E. Thus e(ajazas, Q) > 12. Then x3 — (L,az) and so H 2O 2C5, a
contradiction. We conclude that e(z1, azasas) = 0.

As e(Q,L) > 14, e(zoxyg,a1a2) > 1. Say w.lo.g. e(xa,ai1az) > 1. Then
[x2,x1,x0,a1,a2] 2 C5. As H 2 2C5 and by Lemma 2.1(c), e(x3z4, azagas) < 4.
Thus e(asaqas, Q) < 7. Hence e(ajag,Q) > 7. Say w.lo.g. e(a1,Q) = 4. Then
z; & (L,a1) for each x; € V(T) since H 2 2C5. This implies that I(asas,T) =0
and so e(agas, Q) < 4. Consequently, e(asaq,T) = 6 as e(Q,L) > 14. Thus
[as, a4, a3, T3, T4] 2 KI and [xe, 1, xg, az,a1] 2 Cs, a contradiction.

Case 4. N(zo,L) = {ai,a;4+2} for some i € {1,2,3,4,5}. Say, N(zo,L) =
{a1,a3}. The e(az,Q) < 2 as H 2 2C5. First, suppose e(x1,aia3) > 1.
Then [x1, g, a1,a2,a3] 2 C5 and therefore e(asas,T) < 2. Thus e(ajasz, @) >
14 — 2 — 2 — e(x1,a4a5) > 8. It follows that e(ajas, Q) = 8, e(az, Q) = 2,
e(agas, T) = 2 and e(z1,aqa5) = 2. Consequently, H O 2C5, a contradiction.
Hence e(x1,a1a3) = 0. Next, suppose e(z1,a4a5) > 1. Say w.l.o.g. xjaq4 € E.
Then [z1,x0,a1,a5,a4] 2 C5 and so e(agas,T) < 2. Thus e(ajazaqs,Q) >
14 — 3 = 11. It follows that e(asas,@Q) = 8, e(a;,T) = 3, rias € E and
e(agas, T) = 2. Then [D —x1+a1] 2 K} and [L— a1 +x1] 2 Cs, a contradiction.
Hence e(x1,a4a5) = 0. As e(Q, L) > 14, it follows that e(T, L — az) = 12 and
e(az, Q) = 2. Then we readily see that H D 2C5, a contradiction.

Case 5. e(xo,L) = 1. Then e(Q,L) > 15. Say zga; € E. First, sup-
pose e(z1,asaq) > 1. Say w.lo.g. zjas € E. Then [z1,x0,a1,a2,a3] 2 Cs.
Thus e(aqas,T) < 2 and so e(aqas, Q) < 4. If we also have zjay € E then
e(agas,T) < 2 as [x1, zp, a1, as, as] 2 C5. But then we obtain e(Q, L) < 12, a con-
tradiction. Hence xjaq4 € E. As e(Q, L) > 15, it follows that e(ajagas, Q) = 12,
e(agas,T) = 2 and z1a5 € E. Then [a4,as5,x1,70,a1] 2 F1 and [T, az,a3] 2 K.
By the optimality of {D, L}, [L] = K5 and so H D 2C5, a contradiction. Hence
e(r1,asaq) = 0. Then e(agas, Q) > 15 — e(ajasay, Q) > 15 — 10 = 5. Thus
e(raxy, agas) > 1. Say w.lo.g. x9a5 € E. Then [zg,21,22,a5,a1] 2 Cs. As
H 2 2C5, e(azaq, x3xy) < 2. Clearly, e(agasaq, x122) < 4. Then e(ajas, Q) >
15 — 6 — e(as, x3x4) > 7 and so e(a1,T) > 2. Suppose that a;xzs € E. Then
x; # (Lyap) for all z; € V(T) for otherwise H O 2C5. This implies that
I(azas,T) = 0. As xoas €, x2a2 € E and so e(agazayq, v122) < 3. As e(Q,L) >
15, it follows that e(ajas, Q) = 8, e(agagay, x3xs) = 4 and so e(r3xy4,azay) = 4.
Thus [ag, a3, aq,73,74] 2 K and so H 2 K W Cs, a contradiction. Hence
aixs ¢ E. Thus e(ajas, Q) = 7. It follows that e(a;, Q@ — x3) = 3, e(as, Q) = 4,
e(agaq, x3ry) = 2, e(as, x3x4) = 2, e(x2,asaq) = 2 and e(ag, x122) = 2. Then
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[x2, x1, X0, a1,a2] 2 Cs and [as, a4, a3, x3, 4] 2O Cs, a contradiction.

Case 6. e(ro,L) = 0. As H 2 K, & C5, we see that for each a; € V(L),
if e(a;,Q — x3) = 3 then x5 4 (L,a;). Since e(a;, Q) = 4 for some a; € V(L)
as e(Q, L) > 16, it follows that z3 4 L and so e(x3, L) < 4. First, suppose
e(rs, L) =4. Say e(x3,L —as) =4. Then e(a;,Q —x3) <2 for each
i€{2,3,5}. Ase(Q,L) > 16, it follows that e(a;, @ —x3) = 2 for i € {2,3,5} and
e(aray, @ — x3) = 6. If z1a5 € E, then e(as, z122) = 2 or e(as,r124) = 2. Say
w.l.o.g. e(as,z1x2) = 2. Then [zg, 21,22, a1,a5] 2 KI and [z3, 24, a2, a3, a4] 2
C5, a contradiction. Hence e(as, zoxy) = 2. Then [D — z3 + as] 2 Fi. By the
optimality of {D, L}, 7(L) > 7(z3ajazaszaszs). This implies that (a5, L) = 2
and so 3 — (L, a1), a contradiction.

Next, suppose that e(zs, L) =3 and N(z3,L) = {ai, ai+1,a;+3} for some
i € {1,2,3,4,5}. Say N(z3,L) = {a1,a2,a4}. Then e(az,Q — xz3) < 2 and
e(as, @ —x3) < 2. As e(Q,L) > 16, it follows that e(ajazas,@ — x3) = 9,
e(as, Q@ — x3) = 2 and e(as,Q — x3) = 2. If e(x1,a3a5) > 1, then we may
assume w.l.o.g. that e(ag,z1m2) = 2. Consequently, [z, 1, T2,a2,a3] 2 Kj
and [x3,x4,a1,0a5,a4] 2 C5, a contradiction. Hence e(agas, zoxg) = 4. Clearly,
[0, 21,2, a2,a3] 2 Fy and T(z4x3aiasasxs) > 3. Thus 7(L) > 3 by the opti-
mality of {D,L}. As z3 /4 (L,a1), asas € E. Thus ajaq € E or asay € E. Say
w.l.o.g. ajaq € E. Then 7(x42301050424) = 4. Thus 7(L) = 4 and so the lemma
holds.

Next, suppose that N(z3,L) = {a;,a;+1,a;42} for some i € {1,2,3,4,5}.
Say N(z3,L) = {a1,a2,a3}. Then e(az,@ — x3) < 2. As e(D,L) > 16, either
e(ajas, Q@ —x3) = 6 or e(azaq, @ —x3) = 6. Say w.l.o.g. e(ajas, @ —x3) = 6. Then
(20, 21, i, a1,a5) 2 Ky and so [z3,2},a2,a3,a4] 2 Cs for each {i,j} = {2,4}.
This implies that e(a4, x22x4) = 0 and so e(D, L) < 15, a contradiction.

Next, suppose that e(zs,L)=2 and N(z3,L)= {a;,a;42} for some
i € {1,2,3,4,5}. Say N(z3,L) = {a1,a3}. Then e(az,@ — z3) < 2. As
e(Q,L) > 16, it follows that e(L — as,Q — x3) = 12 and e(a2,Q — z3) = 2.
Then [xg, 71, T2, a4, a5] 2 K and [r3, 24,01, a2, as] 2 Cs, a contradiction.

Next, suppose that e(zs,L) = 2 and N(x3,L) = {a;,ai+1} for some i €
{1,2,3,4,5}. Say N(x3,L) = {a1,a2}. Ase(Q, L) > 16, either e(ajas, Q—z3) = 6
or e(agas, Q@ —x3) = 6. Say w.l.o.g. e(aras,@—x3) = 6. Then [zg, 1, z;, a1, a5] 2
K, and so [zj,73,a2,a3,a4] 2 Cs for each {i,j} = {2,4}. This implies that
e(ayq, rowy) = 0. Consequently, e(Q, L) < 15, a contradiction.

Finally, we have e(x3, L) = 1. Then e(L, Q —x3) = 15, clearly, H O K, WCs,
a contradiction. |

Lemma 2.10. Let D, Ly and Lo be disjoint subgraphs of G with D = Fy and
Ly = Ly = Cs. Suppose that Ly = ajasazagasay, V(D) = {xg, x1, x2, 3,24} and
E(D) = {xoz1, x122, 2x3, T34, TaT1, X224} such that
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e(xo, L1) =0, e(ajagas, D—x9) =12, N(ag, D)= N(as, D) ={x2, x4}, 7(L1) =4
and asas ¢ E. Suppose that {D, L1, Lo} is optimal and e(zoxsasas, La2) > 13.
Then [D, Ly, Ls] contains either Kj W 2C5 or 3Cs.

Proof. Let G1 = [D,L1], Go = [D, Ly, Ls] and R = {x¢,z3,a3,a5}. On the
contrary, suppose that G5 does not contain any of K I W 2C5 and 3C5. It is
easy to see that for any permutation f of {z3,as,as}, we can extend f to be an
automorphism of G such that any vertex in G; — {z3,as3, a5} is fixed under f.
Thus z3, az and aj are in the symmetric position in the following argument. It
is easy to check that if u — (Lg; R — {u}) for some u € R, then Gy 2 K W 2C;
or Gy 2 3C5. Thus u 4 (L2; R — {u}) for each u € R. By Lemma 2.1(d),
there exist two labellings R = {y1,92,y3,ya} and Lo = b1babsbsbsby such that
e(y1y2,blbgb3b4) = 8, e(yg,b1b5b4) = 3 and e(y4,blb4) =2 Ifxg € {yl,yg}, we
may assume w.l.o.g. that {zo, 23} = {y1,y2}. Then [G1 —xo+bs] O Fi & K} .
By the optimality of {D, Ly, Ly}, 2o =5 (Ls,bs). This implies that 7(bs, Ly) = 2.
Thus z9g — (L2,b1; R — {x0}), a contradiction. Hence z¢ & {y1,y2}. W.lLo.g.,
say {(Lg,dg,} == {yl,yg}. Then [ag,a4,a5,b2,bg] D) 05, [$0,$3,b1,b5,b4] D) 05 and
[x2, 21, x4, a1,a2] 2 Cs, a contradiction. [

3. PROOF OF THEOREM 1

Let G be a graph of order 5k with minimum degree at least 3k. Suppose, for a
contradiction, that G 2 kC5. We may assume that G is maximal, i.e., G+ zy D
kC’ for each pair of non-adjacent vertices x and y of G. Thus G O PsW(k—1)Cs.
Our proof will follow from the following three lemmas.

Lemma 3.1. For each s € {1,2,...,k}, G 2 sBW (k — s)Cs.

Proof. On the contrary, suppose that G D sB W(k—s)Cs; for some
s € {1,2,...,k}. Let s be the minimum number in {1,2,...,k} such that G 2
sBW(k—s)Cs. Say G O sBW(k—s)Cs ={Bi,...,Bs,L1,...,Ly_s} with B; 2 B
for i € {1,2,...,s}. Let R be the set of the four vertices of B; whose degrees
in By are 2. By Lemma 2.2, Lemma 2.8 and the minimality of s, we see that
e(R,B;) <12 and e(R,L;) <12 foralli € {2,3,...,s} and j € {1,2,...,k — s}.
Therefore e(R,G) < 12(k— 1)+ 8 = 12k — 4. As the minimum degree of G is 3k,
we obtain 12k — 4 > e(R, G) > 12k, a contradiction. |

Lemma 3.2. There exists a sequence (D, Ly, Lo, ..., Lp_1) of disjoint subgraphs
of G such that D =2 K and L; = Cs for alli € {1,2,...,k—1}.

Proof. First, we claim that G2 FW(k—1)Cs. We choose a sequence
(P,Ly,Lo, ..., Li_1) of disjoint subgraphs of G such that P = P; and L; = Cj for
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alli € {1,2,...,k—1} with Zfz_ll 7(L;) as large as possible. As G 2 kC5 and by
Lemma 2.1(c), e(P, P) <14 and so e(P,G — V(P)) > 15k — 14 = 15(k — 1) + 1.
Thus e(P, L;) >16 for some i € {1,2,...,k—1}. By Lemma 2.3, [P, L;] O FW(C5
and so G O F'W (k—1)Cs.

Next, we claim that G O Fy W (k — 1)C5. Assume for the moment that
G2 F,W(k—1)Cs ={D,Ly,La,...,Li_1} with D = F,. Let R be the three
vertices of D with degree 2 in D. Then e(R,G — V(D)) > 9%k — 6 = 9(k —
1) + 3. Thus e(R,L;) > 10 for some ¢ € {1,2,...,k — 1}. By Lemma 2.4,
[D,L;] 2 F1 ¥C5 and so G O F1 W (k — 1)C5. Hence we may assume that
G 2 Fo W (k —1)Cs. Then we choose a sequence (D, Ly, Lo, ..., Lg_1) of disjoint
subgraphs of G such that D = F and L; = Cj for all i € {1,2,...,k — 1} with
Zf:_ll 7(L;) as large as possible. Then e(D, L;) > 16 for some i € {1,2,...,k—1}.
By Lemma 2.5 and Lemma 3.1, we may assume that there exist two labellings
D = xorix9231421 and Ly = ajasasagasag such that e(xg, L1) = 0, e(x123, L1) =
10, N(:EQ,Ll) = N(.I4,L1) = {al,ag,a4}, T(Ll) = 4 and aszas Q E. Then
e(roxeasas, G—V(DULy)) > 12k—17 = 12(k—2)+7. Thus e(zoz2asas, L;) > 13
for some i € {2,3,...,k — 1}. By Lemma 2.6, we obtain [D, Ly, L;] 2 F; W 2C5
and so G 2O F1 W (k—1)Cs.

Suppose that G 2 K W BW (k — 2)Cs = {D,By,L1,La,..., L2} with
D= Kj and By =2 B. Let R be the four vertices of By with degree 2 in Bj.
Then either e(R,D) > 13 or e(R, L;) > 13 for some i € {1,2,...,k — 2}. By
Lemma 2.2, Lemma 2.7 and Lemma 3.1, we see that G 2 K, & (k—1)Cs. Hence
we may suppose that G 2 K W B W (k — 2)Cs.

We now choose an optimal sequence (D, L1, Lo, ..., L;_1) of disjoint sub-
graphs of G with D = Fy and L; = Cs for alli € {1,2,...,k—1}. Then e(D, L;) >
16 for some i € {1,2,...,k —1}. Say w.l.o.g. e(D, L;) > 16. By Lemma 2.9 and
Lemma 3.1, we may assume that there exist two labellings L1 = ajasazasasaq
and V(D) = {xg, 1, 2,3, x4} with E(D) = {zox1, z172, T2, T3T4, T4X1, ToXg}
such that e(zo,L1) = 0, e(ajagaq, D — x9) = 12, N(as,L1) = N(as,L1) =
{z2,24}, 7(L1) = 4 and agas ¢ E. Let R = {x9,x3,as,a5} and G; = [D, Ly].
Then e(R,G1) < 16 and so e(R,G—V(G1)) > 12k —16 = 12(k —2) + 8. This im-
plies that e(R, L;) > 13 for some i € {2,3,...,k—1}. Say w.lLo.g. e(R, L2) > 13.
By Lemma 2.10, it follows that [G1, L2] 2 K ¥2C5 and so G 2 K W (k—1)Cs.

|

Let 0 = (D, Ly,...,Lk_1) be an optimal sequence of disjoint subgraphs in G with
D~ K] and L; = Cs for alli € {1,2,...,k—1}. Say V(D) = {x0, 71, 22, T3, 74}
with N(zg,D) = {z1}. Let @ = D —xp and T = Q — z1. Then Q = K, and
T = (s

Lemma 3.3. For eacht € {1,2,...,k — 1}, the following statements hold:
(a) If e(xo, Li) = 5, then e(Q, Ly) < 5.
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(b) If e(xo, Lt) = 4, then e(Q, L) <9.
(c) If e(xo, L) =1, then e(Q, Ly) < 18 — 2r for r € {1,3} and if e(xo, L) = 2
then e(Q, L) < 15.

Proof. For convenience, we may assume L; = L1 = ajasagasasai. Let G1 =
[D,L1]. As G1 2 2C5, we see that if g — L1, then e(a;,@) < 1 for all a; €
V(Ly) and so the lemma holds. Hence we may assume that xzo /4 L; and so
e(xo, L) < 4.

To prove (b), say w.l.o.g. e(zo,L1 —as) = 4. On the contrary, suppose
e(Q,L1) > 10. It is easy to see that 7(as,L;) = 0 for otherwise z9 — L; and
so G1 2 2C5. As z9 — (L1,a;) for i € {2,3,5}, e(a;, Q) < 1 fori € {2,3,5}. If
e(as, Q) = 1 then [Q + a5] = K4+ and 7(zpajagsaszasrg) > 7(L1), contradicting
the optimality of 0. Hence e(as, Q) = 0. It follows that e(as, Q) = e(a3, Q) =1
and e(ajaq,Q) = 8. Clearly, 7(xzpazasasaixo) > 7(L1) with equality only if
asas € E. As [Q + az] D K and by the optimality of o, we obtain asay € E.
Thus [as, a4, a3, az, xo] 2 KI and [@ + a1] = K;5. By the optimality of o, we
obtain [L1] = K3, a contradiction.

To prove (c), we suppose, for a contradiction, that either e(zg, L1) = nd

e(Q,L1) > 19 — 2r for some r € {1,3} or e(xg,L1) =2 and e(Q, L) > 1
divide the proof into the following three cases.

Case 1. e(xg,L1) = 3 and e(Q, L1) > 13. First, suppose that N(xg, L1) =
{a;,ai+1,a;43} for some i € {1,2,3,4,5}. Say w.lo.g. N(xg,L1) = {a1,a2,a4}.
As z9g 4 Li, asas ¢ E. Clearly, xg — (L1,a3) and g — (L1,a5). Thus
e(as, Q) <1 and e(as, @) < 1. It follows that e(ajazaq, Q) > 11, e(x1,a1a4) > 1
and e(z1,agaq) > 1. Thus [zg,x1,a1,as5,a4] 2 Cs and [z, 21, a2, a3, aq4] D C5. As
e(a;, T) > 2 for i € {1, 2}, it is easy to see that e(asas,T") =0, i.e., N(azas, Q) C
{z1}, for otherwise G1 D 2Cj5.

Let R = {x0,z3,a3,a5}. Then e(R,G1) < 18 and so e(R,G — V(Gy)) >
12k — 18 = 12(k — 2) + 6. Then e(R,L;) > 13 for some i € {2,3,...,k —
1}. Say w.lo.g. e(R,Lay) > 13. Let G2 = [G1,Ls]. Then G2 2 3C5. Since
e(Q, L) > 13 and N(asas, Q) C {1}, it is easy to check that if v — (Lo; R —
{u}) for some u € R, then G2 O 3C5. Hence u 4 (Lo; R — {u}) for all u €
R. By Lemma 2.1(d), there exist two labellings Lo = b1bobsbsbsb; and R =
{y1,Y2,y3,ysa} such that e(y1y2, Lo —bs) = 8, e(ys, b1b5b4) = 3 and e(y4, b1by) = 2.
If {y1,92} = {xo, 23}, let {s,t} = {1,2} with a5 € I(zozs, L1) and then we see
that [ZEo,as,a?g,bg,bg] D (s, [ag,a5,b1,b5,b4} D (5 and [Q — X3 + a4 + at] D)
C5, a contradiction. If {y1,y2} = {x0,a;} for some i € {3,5}, we may assume
w.l.o.g. that {y1,y2} = {z0,a5} and then we see that [zg,a,as,bs,b3] 2 Cs,
[as, x3,b1,b5,b4) D C5 and [ag, a4, x1, 2, 24] 2 C5, a contradiction. If {y1,y2} =
{z3,a;} for some i € {3,5}, we may assume w.l.o.g. that {y1,y2} = {z3,a5} and
let {s,t} = {1,4} be such that z3as € E. Then we see that {z3,as,as, b2, b3] 2
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Cs, [zo,a3,b1,b5,b4] 2 C5 and [r1,x2,24,a2,a¢] 2 C5, a contradiction. Hence
{y1,y2} = {as,as}. Then [a3,a4,as5,b2,b3] O Cs, [x0,x3,b1,b5,b4] 2 C5 and
[x1, Z2, x4, a1,a2] 2 Cs, a contradiction.

Next, suppose that N(zg,L1) = {a;,a;t1,a;42} for some i € {1,2,3,4,5}.
Say w.l.o.g. N(zo,L1) = {a1,a2,a3}. Then e(az,Q) < 1 as G; 2 2C5 and so
e(Q,L1 — ag) > 12. First, assume e(x1,a4a5) > 1. Say w.lo.g. z1a5 € E.
Then [xg,x1,as5,a1,a2] 2 Cs. Then e(agaq,T) < 3 as G; 2 2C5. If we also
have z1a4 € FE, then similarly, e(ajas,T) < 3 and so e(Q,L; — a2) < 11, a
contradiction. Hence x1a4 € E. As e(Q, L1) > 13, it follows that e(ajas, Q) = 8,
e(azaq,T) = 3, x1a3 € FE and e(az, Q) = 1. Clearly, [T + a4+ as] 2 Cs5 as G1 2
2C5. This implies that e(aq,T) = 0 and so e(a3, Q) = 4. Obviously, G; 2 2Cs,
a contradiction. Hence e(z1,a4a5) = 0. Next, assume e(z1,a1a3) > 1. Then
[0, 21, a1, a2,a3] 2 C5 and so e(agas, T) < 3. It follows that e(Q, L1 — az) < 12,
a contradiction. Hence e(z1, L1 — az) = 0. Thus e(7T, L1 — az) = 12. Obviously,
G1 D 2C5, a contradiction.

Case 2. e(xo,L1) = 2 and e(Q, L1) > 16. First, suppose that N(zg, L1) =
{ai,aiy2} for some i € {1,2,3,4,5}. Say, N(xo,L1) = {a1,a3}. Then e(ag, Q) <
1 and e(Q, L1 — a2) > 15. Thus e(x1,a1a3) > 1. Then [zg,z1,a1,a2,a3] 2 Cs
and so e(aqas,T) < 3. Thus e(Q, L1 — ag) < 13, a contradiction. Therefore we
may assume w.l.o.g. that N(zo,L1) = {a1,a2}. First, assume z1a4 € E. Then
[xo,xl,a4,a5,a1] 2 05 and [:co,xl,a4,a3,a2] :_> C5. As G1 2 205, €(a2a3,T) S 3
and e(ajas,T) < 3. Thus e(Q,L;) < 14, a contradiction. Hence zia4 ¢ E.
Next, assume e(z1,asas) > 1. Say w.lo.g. xia5 € E. Then [z, 21, a5,a1,a2] 2
C5 and so e(azaq,T) < 3. As e(Q,L;) > 16, it follows that e(asaiaz, @) =
12, e(asaq,T) = 3 and z1a3 € E. Thus e(zs,az2a5) = 2 and so G; D 2C5, a
contradiction. Hence e(x1,asaqas) = 0. Thus e(T, L;) > 14. This implies that
e(xj, azas) = 2 and ayx; € E for some {i,j} C {2,3,4} with i # j. Consequently,
H D 2C5, a contradiction.

Case 3. e(xo,L1) =1 and e(Q, L) > 17. Say w.lo.g. zpa; € E. Suppose
e(r1,asaq) > 1. Say z1a3 € E. Then [z, ¢, a1,a2,a3] 2 Cs and so e(aqas, T) <
3as Gy 2 2Cs. As e(Q, L1) > 17, it follows that e(ajazas, Q) = 12, e(aqas,T) =
3 and e(x1,a4a5) = 2. Then [zg,z1,a4,a5,a1] 2 C5 and [T, ag,a3] 2 Cs, a
contradiction. Hence e(z1,asaq) = 0. As e(Q,L1) > 17, e(T,L1) > 14. This
implies that e(x;, azas) = 2 and ayz; € E for some {i,j} C {2,3,4} with i # j.
Consequently, H D 2C5, a contradiction. [

We are now in the position to complete the proof of Theorem 1. Let A, =
{Li|e(xo, L) = r,1 <t < k—1} for each 0 < r < 5. Set p, = |A,| for each
0 <r <5. Clearly, po+p1 +p2 +p3+ps+ps =k —1. By Lemma 3.3, we obtain
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e(zo,G) = e(xo, D +Z Z (o, Lt)

r=0 Ly A,
(2) = 1+p1+2p2+3p3+4p4+5p5;
e(D,G) = e(D, D) +Z > e(D, Ly)
r=0 L;cA,
(3) < 14+ 20po + 17p1 + 17ps + 15ps + 13ps + 10ps.

Then we obtain

e(zo,G) +e(D,G) < 15+ 20pg + 18p1 + 19p2 + 18ps + 17p4 + 15p5
(4) = 18k + 2pg + p2 — pa — 3ps — 3.

As 3Z§:0 pr = 3k — 3 and e(zg, G) > 3k, we obtain, by using (2), the following

1+ p1 +2p2 + 3p3 + 4ps + 5ps
(5) > 3+ 3po + 3p1 + 3p2 + 3p3 + 3pa + 3ps.

This implies that 3pg+2p1 +p2 —ps —2p5 +2 < 0. Thus 2pg+ps —pg — 3ps < —2.
Together with (4), we obtain e(xo,G) + e(D,G) < 18k — 5. But by the degree
condition on G, we have e(xo,G) + e(D,G) > 3k + 15k = 18k, a contradiction.
This proves Theorem 1.
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