DISJOINT 5-CYCLES IN A GRAPH

Hong Wang
Department of Mathematics
The University of Idaho
Moscow, Idaho, 83844 USA
e-mail: hwang@uidaho.edu

Abstract

We prove that if G is a graph of order $5 k$ and the minimum degree of G is at least $3 k$ then G contains k disjoint cycles of length 5 .

Keywords: 5-cycles, pentagons, cycles, cycle coverings.
2010 Mathematics Subject Classification: 05C38, 05C70, 05C75.

1. Introduction and Notation

A set of graphs is said to be disjoint if no two of them have any common vertex. Corrádi and Hajnal [3] investigated the maximum number of disjoint cycles in a graph. They proved that if G is a graph of order at least $3 k$ with minimum degree at least $2 k$, then G contains k disjoint cycles. In particular, when the order of G is exactly $3 k$, then G contains k disjoint triangles. Erdős and Faudree [5] conjectured that if G is a graph of order $4 k$ with minimum degree at least $2 k$, then G contains k disjoint cycles of length 4 . This conjecture has been confirmed by Wang [8]. El-Zahar [4] conjectured that if G is a graph of order $n=n_{1}+n_{2}+\cdots+n_{k}$ with $n_{i} \geq 3(1 \leq i \leq k)$ and the minimum degree of G is at least $\left\lceil n_{1} / 2\right\rceil+\left\lceil n_{2} / 2\right\rceil+\cdots+\left\lceil n_{k} / 2\right\rceil$, then G contains k disjoint cycles of lengths $n_{1}, n_{2}, \ldots, n_{k}$, respectively. He proved this conjecture for $k=2$. When $n_{1}=n_{2}=\cdots=n_{k}=3$, this conjecture holds by Corrádi and Hajnal's result. When $n_{1}=n_{2}=\cdots=n_{k}=4$, El-Zahar's conjecture reduces to the above conjecture of Erdős and Faudree. Abbasi [1] announced a solution to El-Zahar's conjecture for very large n.

In this paper, we develop a constructive method to show that El-Zahar's conjecture is true for all $n=5 k$ with $n_{i}=5(1 \leq i \leq k)$.

Theorem 1. If G is a graph of order $5 k$ and the minimum degree of G is at least $3 k$, then G contains k disjoint cycles of length 5 .

We shall use the terminology and notation from [2] except as indicated. Let G be a graph. Let $u \in V(G)$. The neighborhood of u in G is denoted by $N(u)$. Let H be a subgraph of G or a subset of $V(G)$ or a sequence of distinct vertices of G. We define $N(u, H)$ to be the set of neighbors of u contained in H, and let $e(u, H)=|N(u, H)|$. Clearly, $N(u, G)=N(u)$ and $e(u, G)$ is the degree of u in G. If X is a subgraph of G or a subset of $V(G)$ or a sequence of distinct vertices of G, we define $N(X, H)=\cup_{u} N(u, H)$ and $e(X, H)=\sum_{u} e(u, H)$ where u runs over all the vertices in X. Let x and y be two distinct vertices. We define $I(x y, H)$ to be $N(x, H) \cap N(y, H)$ and let $i(x y, H)=|I(x y, H)|$. Let each of $X_{1}, X_{2}, \ldots, X_{r}$ be a subgraph of G or a subset of $V(G)$. We use $\left[X_{1}, X_{2}, \ldots, X_{r}\right]$ to denote the subgraph of G induced by the set of all the vertices that belong to at least one of $X_{1}, X_{2}, \ldots, X_{r}$. We use C_{i} to denote a cycle of length i for all integers $i \geq 3$, and use P_{j} to denote a path of order j for all integers $j \geq 1$. For a cycle C of G, a chord of C is an edge of $G-E(C)$ which joins two vertices of C, and we use $\tau(C)$ to denote the number of chords of C in G. Furthermore, if $x \in V(C)$, we use $\tau(x, C)$ to denote the number of chords of C that are incident with x. For each integer $k \geq 3$, a k-cycle is a cycle of length k. If S is a set of subgraphs of G, we write $G \supseteq S$.

For an integer $k \geq 1$ and a graph G^{\prime}, we use $k G^{\prime}$ to denote a set of k disjoint graphs isomorphic to G^{\prime}. If G_{1}, \ldots, G_{r} are r graphs and k_{1}, \ldots, k_{r} are r positive integers, we use $k_{1} G_{1} \uplus \cdots \uplus k_{r} G_{r}$ to denote a set of $k_{1}+\cdots+k_{r}$ disjoint graphs which consist of k_{1} copies of G_{1}, \ldots, k_{r-1} copies of G_{r-1} and k_{r} copies of G_{r}. For two graphs H_{1} and H_{2}, the union of H_{1} and H_{2} is still denoted by $H_{1} \cup H_{2}$ as usual, that is, $H_{1} \cup H_{2}=\left(V\left(H_{1}\right) \cup V\left(H_{2}\right), E\left(H_{1}\right) \cup E\left(H_{2}\right)\right)$. Let each of Y and Z be a subgraph of G, or a subset of $V(G)$, or a sequence of distinct vertices of G. If Y and Z do not have any common vertices, we define $E(Y, Z)$ to be the set of all the edges of G between Y and Z. Clearly, $e(Y, Z)=|E(Y, Z)|$. If $C=x_{1} x_{2} \ldots x_{r} x_{1}$ is a cycle, then the operations on the subscripts of the x_{i} 's will be taken by modulo r in $\{1,2, \ldots, r\}$.

We use B to denote a graph of order 5 and size 6 such that B has two edgedisjoint triangles. We use F to denote a graph of order 5 and size 5 such that F has a vertex of degree 1 and a 4 -cycle. Let F_{1} be the graph of order 5 obtained from F by adding a new edge to F such that the new edge joins the two vertices of F whose degrees in F are 2 . Let F_{2} be the graph of order 5 and size 7 obtained from $K_{2,3}$ by adding a new edge to $K_{2,3}$ such that F_{2} has two adjacent vertices of degree 4 . We use K_{4}^{+}to denote the graph of order 5 and size 7 such that K_{4}^{+} has a vertex of degree 1 . Finally, we use K_{5}^{-}to denote a graph of order 5 with 9 edges.

Let $\left\{H, L_{1}, \ldots, L_{t}\right\}$ be a set of $t+1$ disjoint subgraphs of G such that $L_{i} \cong C_{5}$
for $i=1, \ldots, t$. We say that $\left\{H, L_{1}, \ldots, L_{t}\right\}$ is optimal if for any $t+1$ disjoint subgraphs $H^{\prime}, L_{1}^{\prime}, \ldots, L_{t}^{\prime}$ in $\left[H, L_{1}, \ldots, L_{t}\right]$ with $H^{\prime} \cong H$ and $L_{i}^{\prime} \cong C_{5}(1 \leq i \leq t)$, we have that $\sum_{i=1}^{t} \tau\left(L_{i}^{\prime}\right) \leq \sum_{i=1}^{t} \tau\left(L_{i}\right)$. Let L be a 5 -cycle of G and H a subgraph of order 5 in G. We write $H \geq L$ if H has a 5 -cycle L^{\prime} such that $\tau\left(L^{\prime}\right) \geq \tau(L)$. Moreover, if $\tau\left(L^{\prime}\right)>\tau(L)$, we write $H>L$.

Let L be a 5 -cycle of G. Let $u \in V(L)$ and $x_{0} \in V(G)-V(L)$. We write $x_{0} \rightarrow(L, u)$ if $\left[L-u+x_{0}\right] \supseteq C_{5}$. Moreover, if $\left[L-u+x_{0}\right] \geq L$ then we write $x_{0} \Rightarrow(L, u)$ and if $\left[L-u+x_{0}\right]>L$ then we write $x_{0} \xrightarrow{\bar{a}}(L, u)$. In addition, if it does not hold that $x_{0} \xrightarrow{a}(L, u)$ then we write $x_{0} \xrightarrow{n a}(L, u)$. Clearly, $x_{0} \Rightarrow(L, u)$ when $x_{0} \xrightarrow{a}(L, u)$. If $x_{0} \rightarrow(L, u)$ for all $u \in V(L)$ then we write $x_{0} \rightarrow L$. Similarly, we define $x_{0} \Rightarrow L$ and $x_{0} \xrightarrow{a} L$. If $\left[L-u+x_{0}\right] \supseteq B$, we write $x_{0} \xrightarrow{z}(L, u)$.

Let P be a path of order at least 2 or a sequence of at least two distinct vertices in $G-V\left(L+x_{0}\right)$. Let X be a subset of $V(G)-V\left(L+x_{0}\right)$ with $|X| \geq 2$. We write $x_{0} \rightarrow(L, u ; P)$ if $x_{0} \rightarrow(L, u)$ and u is adjacent to the two end vertices of P. In this case, if P is a path of order 4 , then $\left[x_{0}, L, P\right] \supseteq 2 C_{5}$. We write $x_{0} \rightarrow(L, u ; X)$ if $x_{0} \rightarrow(L, u ; x y)$ for some $\{x, y\} \subseteq X$ with $x \neq y$. We write $x_{0} \rightarrow$ $(L ; P)$ if $x_{0} \rightarrow(L, u ; P)$ for some $u \in V(L)$ and $x_{0} \rightarrow(L ; X)$ if $x_{0} \rightarrow(L, u ; X)$ for some $u \in V(L)$. Similarly, we define the notation $x_{0} \xrightarrow{z}(L ; P)$ and $x_{0} \xrightarrow{z}(L ; X)$. If it does not hold that $x_{0} \xrightarrow{z}(L ; P)$, we write $x_{0} \xrightarrow{n z}(L ; P)$. If it does not hold that $x_{0} \xrightarrow{z}(L ; X)$, we write $x_{0} \xrightarrow{n z}(L ; X)$.

2. Sketch of the Proof of Theorem 1 and Preliminary Lemmas

2.1. Sketch of the proof of Theorem 1

Let G be a graph of order $5 k$ with minimum degree at least $3 k$. Suppose, by way of contradiction, that $G \nsupseteq k C_{5}$. We may assume that G is maximal, i.e., $G+x y \supseteq$ $k C_{5}$ for each pair of non-adjacent vertices x and y of G. Thus $G \supseteq P_{5} \uplus(k-1) C_{5}$. Our first goal is to show that $G \supseteq K_{4}^{+} \uplus(k-1) C_{5}$. This will be accomplished through a series of lemmas in Section 2.2. Say $G \supseteq\left\{D, L_{1}, \ldots, L_{k-1}\right\}$ with $D \cong K_{4}^{+}$and $L_{i} \cong C_{5}(1 \leq i \leq k)$. Let $x_{0} \in V(D)$ with $e\left(x_{0}, D\right)=1$ and let $Q=D-x_{0}$. We shall estimate the upper bound on $2 e\left(x_{0}, G\right)+e(Q, G) \geq 18 k$. This needs an estimation on each $2 e\left(x_{0}, L_{i}\right)+e\left(Q, L_{i}\right)$. The idea is to show that if $e\left(x_{0}, L_{i}\right)$ is increasing then $e\left(Q, L_{i}\right)$ is decreasing for otherwise $\left[D, L_{i}\right] \supseteq$ $2 C_{5}$, a contradiction. This is accomplished in Lemma 3.3. It turns out that $2 e\left(x_{0}, G\right)+e(Q, G)<18 k$, a contradiction.

2.2. Preliminary lemmas

Our proof of Theorem 1 will use the following lemmas. Let $G=(V, E)$ be a given graph in the following.

Lemma 2.1. The following statements hold:
(a) If P^{\prime} and $P^{\prime \prime}$ are two disjoint paths of G such that $\left|V\left(P^{\prime}\right)\right|=2,2 \leq$ $\left|V\left(P^{\prime \prime}\right)\right| \leq 3$ and $e\left(P^{\prime}, P^{\prime \prime}\right) \geq 3$, then $\left[P^{\prime}, P^{\prime \prime}\right] \supseteq C_{4}$.
(b) If x and y are two distinct vertices and P is a path of order 3 in G such that $\{x, y\} \cap V(P)=\emptyset$ and $e(x y, P) \geq 5$, then $[x, y, P]$ contains a 5 -cycle C such that $\tau(C) \geq 2$.
(c) If D is a graph of order 5 with $e(D) \geq 7$, then $D \supseteq C_{5}$, unless $D \cong K_{4}^{+}$or $D \cong F_{2}$.
(d) If R is a subset of $V(G)$ and L is a 5-cycle of $G-R$ such that $|R|=4$ and $e(R, L) \geq 13$, then $u \rightarrow(L ; R-\{u\})$ for some $u \in R$, or there exist two labellings $R=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ and $L=b_{1} b_{2} b_{3} b_{4} b_{5} b_{1}$ such that $N\left(y_{1}, L\right)=$ $N\left(y_{2}, L\right)=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}, N\left(y_{3}, L\right)=\left\{b_{1}, b_{5}, b_{4}\right\}$ and $N\left(y_{4}, L\right)=\left\{b_{1}, b_{4}\right\}$.

Proof. It is easy to check (a), (b) and (c). To prove (d), we suppose, for a contradiction, that $u \nrightarrow(L ; R-\{u\})$ for all $u \in R$. Let $R=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ be such that $e\left(y_{1}, L\right) \geq e\left(y_{i}, L\right)$ for all $y_{i} \in R$. As $e(R, L) \geq 13, e\left(y_{1}, L\right) \geq 4$ and there exists $b \in V(L)$ such that $e\left(b, R-\left\{y_{1}\right\}\right) \geq 2$. If $e\left(y_{1}, L\right)=5$ then $y_{1} \rightarrow$ $\left(L, b ; R-\left\{y_{1}\right\}\right)$, a contradiction. Hence we may assume that $L=b_{1} b_{2} b_{3} b_{4} b_{5} b_{1}$ and $e\left(y_{1}, b_{1} b_{2} b_{3} b_{4}\right)=4$. Thus $e\left(b_{i}, R-\left\{y_{1}\right\}\right) \leq 1$ for $i \in\{2,3,5\}$. Then $6 \geq$ $e\left(b_{1} b_{4}, R-\left\{y_{1}\right\}\right) \geq 13-4-3=6$. It follows that $e\left(b_{1} b_{4}, R-\left\{y_{1}\right\}\right)=6$ and $e\left(b_{i}, R-\left\{y_{1}\right\}\right)=1$ for $i \in\{2,3,5\}$. W.l.o.g., say $b_{2} y_{2} \in E$. Then $e\left(b_{3}, y_{3} y_{4}\right)=0$ as $y_{2} \nrightarrow\left(L, b_{3} ; R-\left\{y_{2}\right\}\right)$. Hence $b_{3} y_{2} \in E$. W.l.o.g., say $b_{5} y_{3} \in E$. Thus (d) holds.

Lemma 2.2. Let D and L be disjoint subgraphs of G such that $D \cong B$ and $L \cong C_{5}$. Say $D=x_{0} x_{1} x_{2} x_{0} x_{3} x_{4} x_{0}$. Suppose that $e\left(D-x_{0}, L\right) \geq 13$. Then $[D, L] \supseteq 2 C_{5}$.

Proof. Let $H=[D, L]$. On the contrary, suppose $H \nsupseteq 2 C_{5}$. Then it is easy to see that

$$
\begin{align*}
x_{i} \nrightarrow\left(L ; x_{j} x_{s}\right) \text { and } x_{i} \nrightarrow\left(L ; x_{j} x_{t}\right) \text { for } \\
\quad\{\{i, j\},\{s, t\}\}=\{\{1,2\},\{3,4\}\} . \tag{1}
\end{align*}
$$

Let $R=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. W.l.o.g., say $e\left(x_{1}, L\right) \geq e\left(x_{i}, L\right)$ for all $x_{i} \in R$. Then $e\left(x_{1}, L\right) \geq 4$. First, assume that $e\left(x_{1}, L\right)=5$. By (1), $I\left(x_{2} x_{3}, L\right)=I\left(x_{2} x_{4}, L\right)=\emptyset$. Thus $e\left(x_{2} x_{3}, L\right) \leq 5$ and $e\left(x_{2} x_{4}, L\right) \leq 5$. Since $e(R, L) \geq 13$, it follows that $e\left(x_{4}, L\right) \geq 3$ and $e\left(x_{3}, L\right) \geq 3$. As $x_{3} \nrightarrow\left(L ; x_{1} x_{4}\right)$, we see that $e\left(x_{3}, L\right)=3$. Similarly, $e\left(x_{4}, L\right)=3$. Then $e\left(x_{2}, L\right)=2$. As $x_{2} \nrightarrow\left(L ; x_{1} x_{3}\right)$, we see that the two vertices of $N\left(x_{2}, L\right)$ must be consecutive on L. Say $N\left(x_{2}, L\right)=\left\{a_{1}, a_{2}\right\}$. Then $\left[x_{0}, x_{1}, x_{2}, a_{1}, a_{2}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, a_{3}, a_{4}, a_{5}\right] \supseteq C_{5}$, a contradiction. Therefore $e\left(x_{1}, L\right)=4$. Say $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. By (1), $I\left(x_{2} x_{j},\left\{a_{2}, a_{3}, a_{5}\right\}\right)=\emptyset$ for $j \in\{3,4\}$. Thus $e\left(x_{2} x_{j}, L\right) \leq 7$ for $j \in\{3,4\}$ and so $e\left(x_{j}, L\right) \geq 2$ for $j \in\{3,4\}$.

First, assume $e\left(x_{2} x_{j}, L\right)=7$ for some $j \in\{3,4\}$. Say $e\left(x_{2} x_{3}, L\right)=7$. Then $I\left(x_{2} x_{3}, L\right)=\left\{a_{1}, a_{4}\right\}$ and $e\left(a_{i}, x_{2} x_{3}\right)=1$ for $i \in\{2,3,5\}$. If $e\left(x_{4}, a_{2} a_{3}\right) \geq 1$, say w.l.o.g. $x_{4} a_{2} \in E$, then $\left[a_{1}, a_{2}, x_{4}, x_{0}, x_{3}\right] \supseteq C_{5}$ and so $x_{2} a_{5} \notin E$ as $H \nsupseteq$ $2 C_{5}$. Consequently, $x_{3} a_{5} \in E$ and so $H \supseteq 2 C_{5}=\left\{x_{3} a_{5} a_{1} a_{2} x_{4} x_{3}, x_{1} x_{0} x_{2} a_{4} a_{3} x_{1}\right\}$, a contradiction. Hence $e\left(x_{4}, a_{2} a_{3}\right)=0$ and so $e\left(x_{4}, a_{1} a_{4}\right) \geq 1$. W.l.o.g., say $x_{4} a_{1} \in E$. Then $\left[x_{3}, x_{4}, a_{1}, a_{5}, a_{4}\right] \supseteq C_{5}$ and so $e\left(x_{2}, a_{2} a_{3}\right)=0$ as $H \nsupseteq 2 C_{5}$. Thus $e\left(x_{3}, a_{2} a_{3}\right)=2$. As $e\left(x_{3}, L\right) \leq e\left(x_{1}, L\right)=4, x_{3} a_{5} \notin E$. Thus $x_{2} a_{5} \in E$, and consequently, $H \supseteq 2 C_{5}=\left\{x_{3} x_{4} a_{1} a_{2} a_{3} x_{3}, x_{1} x_{0} x_{2} a_{5} a_{4} x_{1}\right\}$, a contradiction. Therefore $e\left(x_{2} x_{j}, L\right) \leq 6$ for $j \in\{3,4\}$ and so $e\left(x_{j}, L\right) \geq 3$ for $j \in\{3,4\}$. Similarly, if $e\left(x_{3}, L\right)=4$ then $e\left(x_{1} x_{4}, L\right) \leq 6$, a contradiction. Hence $e\left(x_{3}, L\right)=3$. Similarly, $e\left(x_{4}, L\right)=3$. Then $e\left(x_{2}, L\right)=3$ as $e(R, L) \geq 13$. Assume $x_{2} a_{5} \in E$. Then $e\left(a_{5}, x_{3} x_{4}\right)=0$ by (1). As $e\left(x_{3} x_{4}, L\right)=6$, either $e\left(x_{3} x_{4}, a_{1} a_{2}\right) \geq 3$ or $e\left(x_{3} x_{4}, a_{3} a_{4}\right) \geq 3$. Say w.l.o.g. the former holds. Then $\left[x_{3}, x_{0}, x_{4}, a_{1}, a_{2}\right] \supseteq C_{5}$ and $\left[x_{1}, x_{2}, a_{5}, a_{4}, a_{3}\right] \supseteq C_{5}$, a contradiction. Hence $x_{2} a_{5} \notin E$. As $e\left(x_{2}, L\right)=$ 3, either $e\left(x_{2}, a_{1} a_{3}\right)=2$ or $e\left(x_{2}, a_{2} a_{4}\right)=2$. W.l.o.g., say the former holds. As $x_{2} \nrightarrow\left(L ; x_{1} x_{j}\right)$ for $j \in\{3,4\}$, $e\left(a_{2}, x_{3} x_{4}\right)=0$. As $e\left(x_{3} x_{4}, L\right)=6$, either $e\left(x_{3} x_{4}, a_{3} a_{5}\right) \geq 3$ or $e\left(x_{3} x_{4}, a_{1} a_{4}\right) \geq 3$. Thus either $\left[x_{3}, x_{4}, a_{3}, a_{4}, a_{5}\right] \supseteq C_{5}$ or $\left[x_{3}, x_{4}, a_{4}, a_{5}, a_{1}\right] \supseteq C_{5}$. In each situation, we see that $H \supseteq 2 C_{5}$, a contradiction.

Lemma 2.3. Let P and L be disjoint subgraphs of G such that $P \cong P_{5}$ and $L \cong C_{5}$. Suppose that $\{P, L\}$ is optimal, $e(P, L) \geq 16$ and $[P, L] \nsupseteq 2 C_{5}$. Then $[P, L] \supseteq F \uplus C_{5}$.
Proof. Say $P=x_{1} x_{2} x_{3} x_{4} x_{5}$ with $e\left(x_{1}, L\right) \geq e\left(x_{5}, L\right)$ and $L=a_{1} a_{2} a_{3} a_{4} a_{5} a_{1}$. Then $e\left(x_{1}, L\right) \geq 1$. Let $H=[P, L]$. On the contrary, suppose $H \nsupseteq F \uplus C_{5}$. Assume first that $e\left(x_{1}, L\right)=1$. Say $x_{1} a_{1} \in E$. As $e(P, L) \geq 16$ and $e\left(x_{5}, L\right) \leq 1$, $e\left(x_{2} x_{3} x_{4}, L\right) \geq 14$. Thus $e\left(x_{2}, a_{3} a_{4}\right) \geq 1$. W.l.o.g., say $x_{2} a_{3} \in E$. Then $\left[x_{1}, x_{2}, a_{3}, a_{2}, a_{1}\right] \supseteq C_{5}$. As $e\left(x_{3} x_{4}, L\right) \geq 14-e\left(x_{2}, L\right) \geq 9, e\left(x_{3} x_{4}, a_{4} a_{5}\right) \geq 3$. By Lemma 2.1(a), $\left[x_{5}, x_{4}, x_{3}, a_{4}, a_{5}\right] \supseteq F$ and so $H \supseteq F \uplus C_{5}$, a contradiction. Hence $e\left(x_{1}, L\right) \geq 2$.

As $e(P, L) \geq 16, I\left(x_{2} x_{4}, L\right) \neq \emptyset$ or $I\left(x_{3} x_{5}, L\right) \neq \emptyset$. Therefore $x_{1} \nrightarrow L$ for otherwise $H \supseteq F \uplus C_{5}$. Hence $e\left(x_{1}, L\right) \leq 4$. We divide the proof into the following cases.

Case 1. $e\left(x_{1}, L\right)=4$. Say $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Then $\left[L-a_{i}+x_{1}\right] \supseteq F$ for all $a_{i} \in V(L)$. Thus $I\left(x_{2} x_{5}, L\right)=\emptyset$ as $H \nsupseteq F \uplus C_{5}$. As $x_{1} \nrightarrow L, \tau\left(a_{5}, L\right)=0$. Then $x_{1} \xrightarrow{a}\left(L, a_{5}\right)$. By the optimality of $\{P, L\},\left[P-x_{1}+a_{5}\right] \nsupseteq P_{5}$ and so $e\left(a_{5}, x_{2} x_{5}\right)=0$ and $e\left(a_{5}, x_{3} x_{4}\right) \leq 1$. Thus $e\left(x_{2} x_{5}, L\right) \leq 4$ and so $e\left(x_{3} x_{4}, L\right) \geq 8$. Suppose $e\left(x_{2}, L\right) \geq 1$. Then $e\left(x_{2}, a_{2} a_{4}\right) \geq 1$ or $e\left(x_{2}, a_{1} a_{3}\right) \geq 1$. W.l.o.g., say the former holds. Then $\left[x_{1}, x_{2}, a_{2}, a_{3}, a_{4}\right] \supseteq C_{5}$. As $H \nsupseteq F \uplus C_{5}$ and by Lemma 2.1(a), we see that $e\left(x_{3} x_{4}, a_{1} a_{5}\right) \leq 2$. It follows that $e\left(x_{3} x_{4}, a_{2} a_{3} a_{4}\right)=6$ and $e\left(x_{2} x_{5}, L-a_{5}\right)=4$. Thus $e\left(a_{2}, x_{2} x_{5}\right)>0$. Then $\left[P-x_{1}+a_{2}\right] \supseteq F$. As $x_{1} \rightarrow$
$\left(L, a_{2}\right), H \supseteq F \uplus C_{5}$, a contradiction. Hence $e\left(x_{2}, L\right)=0$. Similarly, if $e\left(x_{5}, L\right)=4$ then $e\left(x_{4}, L\right)=0$ and so $e(P, L)<16$, a contradiction. Hence $e\left(x_{5}, L\right) \leq 3$ and so $e\left(x_{3} x_{4}, L\right) \geq 9$. As $e\left(a_{5}, x_{3} x_{4}\right) \leq 1$, it follows that $e\left(x_{3} x_{4}, L-a_{5}\right)=8$, $e\left(a_{5}, x_{3} x_{4}\right)=1$ and $e\left(x_{5}, L\right)=3$. Then $e\left(a_{i}, x_{3} x_{5}\right)=2$ for some $i \in\{2,3\}$ and so $H \supseteq F \uplus C_{5}$ as $x_{1} \rightarrow\left(L, a_{i}\right)$, a contradiction.

Case 2. $e\left(x_{1}, L\right)=3$. Then $e\left(x_{5}, L\right) \leq 3$. First, suppose that the three vertices in $N\left(x_{1}, L\right)$ are not consecutive on L. Say $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{4}\right\}$. Clearly, $I\left(x_{2} x_{5}, L\right) \subseteq\left\{a_{4}\right\}$ since $H \nsupseteq 2 C_{5}$ and $H \nsupseteq F \uplus C_{5}$. Hence $e\left(x_{2} x_{5}, L\right) \leq 6$. If $x_{2} a_{4} \in E$ then $\left[x_{1}, x_{2}, a_{1}, a_{5}, a_{4}\right] \supseteq C_{5}$. As $H \nsupseteq F \uplus C_{5}, e\left(x_{3} x_{4}, a_{2} a_{3}\right) \leq$ 2. Similarly, $\left[x_{1}, x_{2}, a_{2}, a_{3}, a_{4}\right] \supseteq C_{5}$ and so $e\left(x_{3} x_{4}, a_{1} a_{5}\right) \leq 2$. Consequently, $e(P, L) \leq 15$, a contradiction. Hence $x_{2} a_{4} \notin E$. Thus $e\left(x_{2} x_{5}, L\right) \leq 5$ and so $e\left(x_{3} x_{4}, L\right) \geq 8$. If $e\left(x_{2}, L\right)>0$, then $\left[x_{1}, x_{2}, P^{\prime}\right] \supseteq C_{5}$ where $P^{\prime}=L-\left\{a_{i}, a_{i+1}\right\}$ for some $\left\{a_{i}, a_{i+1}\right\} \subseteq V(L)$. As $H \nsupseteq F \uplus C_{5}, e\left(x_{3} x_{4}, a_{i} a_{i+1}\right) \leq 2$. Consequently, $e\left(x_{3} x_{4}, P^{\prime}\right)=6, e\left(x_{3} x_{4}, a_{i} a_{i+1}\right)=2$ and $e\left(x_{2} x_{5}, L\right)=5$. Hence $e\left(a_{t}, x_{2} x_{5}\right)=1$ for all $a_{t} \in V(L)$. Thus $\left[P-x_{1}+a_{j}\right] \supseteq F$ and $x_{1} \rightarrow\left(L, a_{j}\right)$ where $a_{j} \in V\left(P^{\prime}\right) \cap\left\{a_{3}, a_{5}\right\}$, a contradiction.

Therefore $e\left(x_{2}, L\right)=0$ and so $e\left(x_{3} x_{4}, L\right)=10$ and $e\left(x_{5}, L\right)=3$. Consequently, $H \supseteq 2 C_{5}$ or $H \supseteq F \uplus C_{5}$, a contradiction. Therefore the three vertices in $N\left(x_{1}, L\right)$ are consecutive on L. Say $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Then $I\left(x_{2} x_{5}, L\right) \subseteq\left\{a_{1}, a_{3}\right\}$ since $H \nsupseteq 2 C_{5}$ and $H \nsupseteq F \uplus C_{5}$. Thus $e\left(x_{2} x_{5}, L\right) \leq 7$ and so $e\left(x_{3} x_{4}, L\right) \geq 6$. Assume $e\left(x_{2}, a_{4} a_{5}\right) \geq 1$. Say w.l.o.g. $x_{2} a_{4} \in E$. Then $\left[x_{1}, x_{2}, a_{2}, a_{3}, a_{4}\right] \supseteq C_{5}$ and $\left[x_{1}, x_{2}, a_{1}, a_{5}, a_{4}\right] \supseteq C_{5}$. As $H \nsupseteq F \uplus C_{5}$ and by Lemma 2.1(a), $e\left(x_{3} x_{4}, a_{1} a_{5}\right) \leq 2$ and $e\left(x_{3} x_{4}, a_{2} a_{3}\right) \leq 2$. It follows that $e\left(x_{2} x_{5}, L\right)=7, e\left(x_{3} x_{4}, L\right)=6, e\left(a_{4}, x_{3} x_{4}\right)=2$, and $e\left(x_{2} x_{5}, a_{1} a_{3}\right)=4$. Then $\left[x_{1}, x_{5}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$ and $\left[a_{5}, a_{4}, x_{2}, x_{3}, x_{4}\right] \supseteq F$, a contradiction. Hence $e\left(x_{2}, a_{4} a_{5}\right)=0$ and so $e\left(x_{2}, L\right) \leq 3$. Thus $e\left(x_{3} x_{4}, L\right) \geq 7$. Assume $e\left(x_{2}, a_{1} a_{3}\right) \geq$ 1. Then $\left[x_{1}, x_{2}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$. Then $e\left(x_{3} x_{4}, a_{4} a_{5}\right) \leq 2$ as $H \nsupseteq F \uplus C_{5}$. Thus $e\left(x_{3} x_{4}, a_{1} a_{2} a_{3}\right) \geq 5$. As $H \nsupseteq F \uplus C_{5}$ and $x_{1} \rightarrow\left(L, a_{2}\right)$, we have $e\left(a_{2}, x_{2} x_{4}\right) \leq 1$. As $e(P, L) \geq 16$, it follows that $e\left(a_{2}, x_{2} x_{4}\right)=1, e\left(x_{3}, a_{1} a_{2} a_{3}\right)=3, e\left(x_{3} x_{4}, a_{4} a_{5}\right)=$ 2 and $e\left(x_{5}, L\right)=3$. As $H \nsupseteq F \uplus C_{5}$ and $x_{1} \rightarrow\left(L, a_{2}\right)$, we see that $x_{5} a_{2} \notin E$. Then $e\left(x_{5}, a_{4} a_{5}\right) \geq 1$ and so $\left[x_{3}, x_{4}, x_{5}, a_{4}, a_{5}\right] \supseteq F$, a contradiction. Hence $e\left(x_{2}, a_{1} a_{3}\right)=0$ and so $e\left(x_{2}, L\right) \leq 1$. If $e\left(x_{5}, L\right)=3$ then we also have $e\left(x_{4}, L\right) \leq 1$ by the symmetry and so $e(P, L) \leq 13$, a contradiction. Hence $e\left(x_{5}, L\right) \leq 2$. It follows that so $e\left(x_{3} x_{4}, L\right)=10, e\left(x_{2}, L\right)=1$ and $e\left(x_{5}, L\right)=2$. Thus $e\left(a_{2}, x_{2} x_{4}\right)=2$ and so $H \supseteq F \uplus C_{5}$, a contradiction.

Case 3. $e\left(x_{1}, L\right)=2$. Then $e\left(x_{5}, L\right) \leq 2$ and $e\left(x_{3} x_{4}, L\right) \geq 7$. First, suppose that the two vertices in $N\left(x_{1}, L\right)$ are not consecutive on L. Say $N\left(x_{1}, L\right)=$ $\left\{a_{1}, a_{3}\right\}$. Assume $e\left(x_{2}, a_{1} a_{3}\right) \geq 1$. Then $\left[x_{1}, x_{2}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$. As $H \nsupseteq F \uplus$ C_{5} and by Lemma 2.1(a), e($\left.x_{3} x_{4}, a_{4} a_{5}\right) \leq 2$. Hence $e\left(x_{3} x_{4}, a_{1} a_{2} a_{3}\right) \geq 5$. As $x_{1} \rightarrow\left(L, a_{2}\right)$ and $H \nsupseteq F \uplus C_{5}, e\left(a_{2}, x_{2} x_{4}\right) \leq 1$. As $e(P, L) \geq 16$, it follows that $e\left(a_{2}, x_{2} x_{4}\right)=1, e\left(x_{5}, L\right)=2, e\left(x_{2}, L-a_{2}\right)=4, e\left(x_{3}, a_{1} a_{2} a_{3}\right)=3$ and
$e\left(x_{3} x_{4}, a_{4} a_{5}\right)=2$. As $\left[x_{3}, x_{4}, x_{5}, a_{4}, a_{5}\right] \nsupseteq F, e\left(x_{5}, a_{4} a_{5}\right)=0$ by Lemma 2.1(a). As $x_{1} \rightarrow\left(L, a_{2}\right)$ and $H \nsupseteq F \uplus C_{5}, a_{2} x_{5} \notin E$. Thus $e\left(x_{5}, a_{1} a_{3}\right)=2$. It follows that $\left[x_{1}, x_{2}, a_{1}, a_{5}, a_{4}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, x_{5}, a_{3}, a_{2}\right] \supseteq C_{5}$, a contradiction. Hence $e\left(x_{2}, a_{1} a_{3}\right)=0$. Thus $e\left(x_{3} x_{4}, L\right) \geq 9$. As $e\left(x_{3} x_{4}, L\right) \leq 10, e\left(x_{2}, L\right) \geq 2$ and so $e\left(x_{2}, a_{4} a_{5}\right) \geq 1$. Say w.l.o.g. $x_{2} a_{4} \in E$. Then $\left[x_{1}, x_{2}, a_{4}, a_{5}, a_{1}\right] \supseteq C_{5}$. As $H \nsupseteq F \uplus C_{5}$ and by Lemma 2.1(a), $e\left(x_{3} x_{4}, a_{2} a_{3}\right) \leq 2$ and so $e\left(x_{3} x_{4}, L\right) \leq 8$, a contradiction. Therefore the two vertices in $N\left(x_{1}, L\right)$ are consecutive on L. Say $N\left(x_{1}, L\right)=\left\{a_{1}, a_{2}\right\}$. Assume $x_{2} a_{4} \in E$. Then $\left[x_{1}, x_{2}, a_{4}, a_{5}, a_{1}\right] \supseteq C_{5}$ and $\left[x_{1}, x_{2}, a_{4}, a_{3}, a_{2}\right] \supseteq C_{5}$. Thus $e\left(x_{3} x_{4}, a_{2} a_{3}\right) \leq 2$ and $e\left(x_{3} x_{4}, a_{1} a_{5}\right) \leq 2$ since $H \nsupseteq F \uplus C_{5}$. Hence $e\left(x_{3} x_{4}, L\right) \leq 6$, a contradiction. Hence $x_{2} a_{4} \notin E$. Thus $e\left(x_{3} x_{4}, L\right) \geq 8$. Assume $e\left(x_{2}, a_{3} a_{5}\right) \geq 1$. Say $x_{2} a_{3} \in E$. Then $\left[x_{1}, x_{2}, a_{3}, a_{2}, a_{1}\right] \supseteq$ C_{5} and so $e\left(x_{3} x_{4}, a_{4} a_{5}\right) \leq 2$. It follows that $e\left(x_{3} x_{4}, a_{1} a_{2} a_{3}\right)=6, e\left(x_{3} x_{4}, a_{4} a_{5}\right)=$ $2, e\left(x_{2}, L-a_{4}\right)=4$ and $e\left(x_{5}, L\right)=2$. As $x_{2} a_{5} \in E$ and by the symmetry, we also have $e\left(x_{3} x_{4}, a_{5} a_{1} a_{2}\right)=6$. Then $H \supseteq F \uplus C_{5}$, a contradiction. Therefore $e\left(x_{2}, a_{3} a_{5}\right)=0$. It follows that $e\left(x_{2}, a_{1} a_{2}\right)=2, e\left(x_{3} x_{4}, L\right)=10$ and $e\left(x_{5}, L\right)=2$. Then $H \supseteq F \uplus C_{5}$, a contradiction

Lemma 2.4. Let D and L be disjoint subgraphs of G with $D \cong F_{2}$ and $L \cong C_{5}$. Let R be the set of the three vertices of D with degree 2 in D. If e $(R, L) \geq 10$, then $[D, L] \supseteq F_{1} \uplus C_{5}$.

Proof. As $e(R, L) \geq 10, e(u, L) \geq 4$ for some $u \in R$. Thus $u \rightarrow(L, v)$ for some $v \in V(L)$ with $e(v, R-\{u\}) \geq 1$. Clearly, $[D-u+v] \supseteq F_{1}$.

Lemma 2.5. Let D and L be disjoint subgraphs of G with $D \cong F$ and $L \cong C_{5}$. Suppose that $\{D, L\}$ is optimal and $e(D, L) \geq 16$. Then $[D, L]$ contains one of $F_{1} \uplus C_{5}, F_{2} \uplus C_{5}, B \uplus C_{5}$ and $2 C_{5}$, or there exist two labellings $D=x_{0} x_{1} x_{2} x_{3} x_{4} x_{1}$ and $L=a_{1} a_{2} a_{3} a_{4} a_{5} a_{1}$ such that $e\left(x_{0}, L\right)=0, e\left(x_{1} x_{3}, L\right)=10, N\left(x_{2}, L\right)=$ $N\left(x_{4}, L\right)=\left\{a_{1}, a_{2}, a_{4}\right\}, \tau(L)=4$ and $a_{3} a_{5} \notin E$.

Proof. Say $H=[D, L]$. Suppose that H does not contain any of $F_{1} \uplus C_{5}$, $F_{2} \uplus C_{5}, B \uplus C_{5}$ and $2 C_{5}$. We shall prove that there exist two labellings of D and L satisfying the property in the lemma. Say $D=x_{0} x_{1} x_{2} x_{3} x_{4} x_{1}$ and $L=a_{1} a_{2} a_{3} a_{4} a_{5} a_{1}$. Then $x_{2} x_{4} \notin E$. Let $Q=x_{1} x_{2} x_{3} x_{4} x_{1}$. If $e\left(x_{0}, L\right) \geq 4$, then for each $a_{i} \in V(L),\left[L-a_{i}+x_{0}\right] \supseteq C_{5}$ or $\left[L-a_{i}+x_{0}\right] \supseteq F_{1}$. Thus $\left[Q+a_{i}\right] \nsupseteq C_{5}$ and so $e\left(a_{i}, Q\right) \leq 2$ for each $a_{i} \in V(L)$. Consequently, $e(D, L) \leq 15$, a contradiction. Therefore $e\left(x_{0}, L\right) \leq 3$. We divide the proof into the following cases.

Case 1. $e\left(x_{0}, L\right)=0$. First, suppose that $e\left(x_{2}, L\right) \geq 4$ or $e\left(x_{4}, L\right) \geq 4$. Say, $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \subseteq N\left(x_{2}, L\right)$. Assume $e\left(x_{1}, a_{2} a_{3}\right) \geq 1$. Say w.l.o.g. $x_{1} a_{2} \in E$.

Then $\left[x_{0}, x_{1}, x_{2}, a_{2}, a_{1}\right] \supseteq F_{1}$ and $\left[x_{0}, x_{1}, x_{2}, a_{2}, a_{3}\right] \supseteq F_{1}$. As $H \nsupseteq F_{1} \uplus C_{5}$, we see that $e\left(x_{3} x_{4}, a_{3} a_{5}\right) \leq 2$ and $e\left(x_{3} x_{4}, a_{1} a_{4}\right) \leq 2$. As $e(Q, L) \geq 16$, it follows that $e\left(x_{1} x_{2}, L\right)=10$ and $e\left(a_{2}, x_{3} x_{4}\right)=2$. Thus $\left[x_{0}, x_{1}, a_{2}, x_{3}, x_{4}\right] \supseteq F_{1}$ and $x_{2} \rightarrow$
$\left(L, a_{2}\right)$, a contradiction. Hence $e\left(x_{1}, a_{2} a_{3}\right)=0$. As $e\left(x_{1}, L\right) \geq 1$, this argument implies that $e\left(x_{2}, L\right) \neq 5$. Similarly, $e\left(x_{4}, L\right) \neq 5$. As $e(Q, L) \geq 16$, it follows that $e\left(x_{1}, a_{1} a_{5} a_{4}\right)=3, e\left(x_{3}, L\right)=5$ and $e\left(x_{4}, L\right)=4$. Then $\left[x_{0}, x_{1}, x_{2}, a_{1}, a_{2}\right] \supseteq F_{1}$ and $\left[x_{3}, x_{4}, a_{3}, a_{4}, a_{5}\right] \supseteq C_{5}$, a contradiction. Hence $e\left(x_{2}, L\right) \leq 3$ and $e\left(x_{4}, L\right) \leq 3$. Consequently, $e\left(x_{1} x_{3}, L\right)=10, e\left(x_{2}, L\right)=e\left(x_{4}, L\right)=3$. Then x_{2} is adjacent two consecutive vertices of L. Say w.l.o.g. $e\left(x_{2}, a_{1} a_{2}\right)=2$. Then $\left[x_{0}, x_{1}, x_{2}, a_{1}, a_{2}\right] \supseteq$ F_{1}. Thus $e\left(x_{4}, a_{3} a_{5}\right)=0$ as $H \nsupseteq F_{1} \uplus C_{5}$. Hence $e\left(x_{4}, a_{1} a_{2} a_{4}\right)=3$. Similarly, $e\left(x_{2}, a_{1} a_{2} a_{4}\right)=3$. Clearly, $\left[D-x_{3}+a_{i}\right] \supseteq F$ for $i \in\{1,2\}$. As $\{D, L\}$ is optimal, $x_{3} \xrightarrow{n a}\left(L, a_{i}\right)$ for $i \in\{1,2\}$. This implies that $\tau\left(a_{1}, L\right)=\tau\left(a_{2}, L\right)=2$. As $\left[x_{0}, x_{1}, x_{2}, a_{1}, a_{2}\right] \supseteq F_{1},\left[x_{3}, x_{4}, a_{3}, a_{4}, a_{5}\right] \nsupseteq C_{5}$. This implies that $a_{3} a_{5} \notin E$. Therefore these two labellings satisfy the property described in the lemma.

Case 2. $e\left(x_{0}, L\right)=1$. Then $e(Q, L) \geq 15$. Say $x_{0} a_{1} \in E$. First, suppose $e\left(x_{1}, a_{3} a_{4}\right) \geq 1$. Say w.l.o.g. $x_{1} a_{3} \in E$. Then $\left[x_{1}, x_{0}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$. By Lemma 2.1(c), we have $e\left(a_{4} a_{5}, x_{2} x_{3} x_{4}\right) \leq 3$ since $H \nsupseteq 2 C_{5}, H \nsupseteq F_{1} \uplus C_{5}$ and $H \nsupseteq F_{2} \uplus C_{5}$. Thus $e\left(a_{4} a_{5}, Q\right) \leq 5$. Similarly, if $x_{1} a_{4} \in E$ then $e\left(a_{2} a_{3}, Q\right) \leq 5$ and so $e(Q, L) \leq 14$, a contradiction. Hence $x_{1} a_{4} \notin E$. Thus $e\left(a_{4} a_{5}, Q\right) \leq 4$ and so $e\left(a_{1} a_{2} a_{3}, Q\right) \geq 11$. This implies that if $e\left(a_{2}, x_{1} x_{3}\right)=2$ then there is a choice $\{i, j\}=\{2,4\}$ such that $e\left(x_{i}, a_{1} a_{3}\right)=2$ and $e\left(a_{2}, x_{1} x_{j} x_{3}\right)=3$. Thus $\left[x_{0}, x_{1}, x_{j}, x_{3}, a_{2}\right] \supseteq F_{1}$ and $x_{i} \rightarrow\left(L, a_{2}\right)$, a contradiction. Hence $e\left(a_{2}, x_{1} x_{3}\right)=1$, $e\left(a_{1} a_{3}, Q\right)=8, e\left(a_{2}, x_{2} x_{4}\right)=2$ and $e\left(a_{4} a_{5}, Q\right)=4$ with $a_{5} x_{1} \in E$. Consequently, $\left[a_{4}, a_{5}, a_{1}, x_{0}, x_{1}\right] \supseteq F_{1}$ and $\left[a_{2}, a_{3}, x_{2}, x_{3}, x_{4}\right] \supseteq C_{5}$, a contradiction. Therefore $e\left(x_{1}, a_{3} a_{4}\right)=0$.

Next, suppose $e\left(x_{1}, a_{1} a_{5}\right)=2$ or $e\left(x_{1}, a_{1} a_{2}\right)=2$. Say w.l.o.g. $e\left(x_{1}, a_{1} a_{5}\right)=2$. Then $\left[a_{4}, a_{5}, a_{1}, x_{0}, x_{1}\right] \supseteq F_{1}$. Thus $e\left(a_{2} a_{3}, x_{2} x_{4}\right) \leq 2$. Hence $e\left(a_{2} a_{3}, Q\right) \leq 5$ and so $e\left(a_{1} a_{5} a_{4}, x_{2} x_{3} x_{4}\right) \geq 8$. This implies that if $x_{3} a_{5} \in E$ then there is a choice $\{i, j\}=\{2,4\}$ such that $e\left(a_{5}, x_{1} x_{i} x_{3}\right)=3, e\left(x_{j}, a_{1} a_{4}\right)=2$ and consequently, $H \supseteq F_{1} \uplus C_{5}$, a contradiction. Hence $a_{5} x_{3} \notin E$ and it follows that $e\left(a_{1}, x_{2} x_{3} x_{4}\right)=$ $3, e\left(a_{5}, x_{2} x_{4}\right)=2, e\left(a_{4}, x_{2} x_{3} x_{4}\right)=3, e\left(a_{2} a_{3}, Q\right)=5$ with $a_{2} x_{1} \in E$. Then $\left[a_{3}, a_{2}, a_{1}, x_{0}, x_{1}\right] \supseteq F_{1}$ and $\left[a_{4}, a_{5}, x_{2}, x_{3}, x_{4}\right] \supseteq C_{5}$, a contradiction. Therefore $e\left(x_{1}, a_{1} a_{5}\right) \leq 1$ and $e\left(x_{1}, a_{1} a_{2}\right) \leq 1$. Thus $e\left(x_{1}, L\right) \leq 2$. Assume that $a_{1} x_{3} \in$ E. Then $x_{2} \nrightarrow\left(L, a_{1}\right)$ as $H \nsupseteq 2 C_{5}$. Hence $e\left(x_{2}, a_{2} a_{5}\right) \leq 1$, and similarly, $e\left(x_{4}, a_{2} a_{5}\right) \leq 1$. As $e(Q, L) \geq 15$, it follows that $e\left(x_{1}, a_{2} a_{5}\right)=2, e\left(x_{3}, L\right)=5$, $e\left(x_{2} x_{4}, a_{1} a_{3} a_{4}\right)=6$ and $e\left(x_{2}, a_{2} a_{5}\right)=e\left(x_{4}, a_{2} a_{5}\right)=1$. Say w.l.o.g. $a_{5} x_{4} \in E$. Then $\left[D-x_{2}+a_{5}\right] \supseteq F_{1}$ and $x_{2} \rightarrow\left(L, a_{5}\right)$, a contradiction. Therefore $a_{1} x_{3} \notin E$. If $x_{1} a_{1} \in E$ then $e\left(x_{1}, a_{2} a_{5}\right)=0$ and so $e\left(a_{1}, Q-x_{3}\right)+e\left(L-a_{1}, Q-x_{1}\right) \geq 15$. Then $\left[D-x_{2}+a_{1}\right] \supseteq F_{1}$ and $x_{2} \rightarrow\left(L, a_{1}\right)$, a contradiction. Hence $N\left(x_{1}, L\right) \subseteq\left\{a_{2}, a_{5}\right\}$. As $e(Q, L) \geq 15, e\left(a_{2} a_{5}, x_{2} x_{4}\right) \geq 3$ and $e\left(a_{2} a_{4}, x_{3} x_{i}\right) \geq 3$ for $i \in\{2,4\}$. Say w.l.o.g. $x_{2} a_{5} \in E$. Then $\left[x_{0}, x_{1}, x_{2}, a_{5}, a_{1}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, a_{2}, a_{3}, a_{4}\right] \supseteq C_{5}$, a contradiction.

Case 3. $N\left(x_{0}, L\right)=\left\{a_{i}, a_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$. Say $N\left(x_{0}, L\right)=$ $\left\{a_{1}, a_{3}\right\}$. Then $e(Q, L) \geq 14$. As $H \nsupseteq 2 C_{5}, e\left(a_{2}, Q\right) \leq 2$. We claim that
$e\left(x_{1}, a_{1} a_{3}\right)=0$. On the contrary, say $e\left(x_{1}, a_{1} a_{3}\right) \geq 1$. Then $\left[x_{0}, x_{1}, a_{1}, a_{2}, a_{3}\right] \supseteq$ C_{5}. Since $H \nsupseteq 2 C_{5}, H \nsupseteq F_{1} \uplus C_{5}$ and $H \nsupseteq F_{2} \uplus C_{5}$, we see that $e\left(a_{4} a_{5}, x_{2} x_{3} x_{4}\right) \leq 3$ by Lemma 2.1(c). Thus $e\left(a_{4} a_{5}, Q\right) \leq 5$ and $e\left(a_{1} a_{3}, Q\right) \geq 14-e\left(a_{2}, Q\right)-$ $e\left(a_{4} a_{5}, Q\right) \geq 7$. As $e\left(a_{1} a_{3}, Q\right) \leq 8$, it follows that either $e\left(a_{1}, Q\right)=4$ and $x_{1} a_{5} \in E$ or $e\left(a_{3}, Q\right)=4$ and $x_{1} a_{4} \in E$. Say w.l.o.g. the former holds. Then $\left[D-x_{3}+a_{1}\right] \supseteq F_{2},\left[x_{0}, x_{1}, a_{1}, a_{5}, a_{4}\right] \supseteq F_{1}$ and $\left[x_{0}, x_{1}, a_{1}, a_{5}, x_{i}\right] \supseteq F_{2}$ for $i \in\{2,4\}$. Furthermore, if $x_{1} a_{2} \in E$ then $\left[x_{0}, x_{1}, a_{1}, a_{5}, a_{2}\right] \supseteq F_{2}$ and $\left[x_{0}, x_{1}, a_{1}, a_{2}, x_{i}\right] \supseteq F_{2}$ for $i \in\{2,4\}$. Assume for the moment that $e\left(a_{3}, x_{2} x_{4}\right)=2$. Then we see that $e\left(a_{2}, x_{2} x_{4}\right)=0$ as $H \nsupseteq F_{1} \uplus C_{5}$. If $x_{1} a_{2} \in E$, then $e\left(a_{4}, x_{2} x_{4}\right)=0$ as $H \nsupseteq F_{2} \uplus C_{5}$ and for the same reason, $\left[a_{3}, a_{4}, a_{5}, x_{3}, x_{i}\right] \nsupseteq C_{5}$ for $i \in\{2,4\}$. This implies that $x_{3} a_{5} \notin E$ and so $e\left(a_{5}, x_{2} x_{4}\right) \geq 1$ since $8 \geq e\left(a_{1} a_{3}, Q\right) \geq 14-e\left(a_{2}, Q\right)-$ $e\left(a_{4} a_{5}, Q\right) \geq 7$. Thus $x_{3} a_{3} \notin E$ since $\left[a_{3}, a_{4}, a_{5}, x_{3}, x_{i}\right] \nsupseteq C_{5}$ for $i \in\{2,4\}$. It follows that $\left\{a_{3} x_{1}, x_{3} a_{4}\right\} \subseteq E$. Consequently, $\left[a_{1}, a_{5}, a_{4}, x_{2}, x_{3}\right] \supseteq C_{5}$ and $\left[x_{0}, x_{1}, x_{4}, a_{2}, a_{3}\right] \supseteq F_{2}$, a contradiction. Hence $x_{1} a_{2} \notin E$. As $e(Q, L) \geq 14$, it follows that $a_{2} x_{3} \in E, e\left(a_{1} a_{3}, Q\right)=8, e\left(x_{1}, a_{4} a_{5}\right)=2$ and $e\left(a_{4} a_{5}, x_{2} x_{3} x_{4}\right)=3$. Say w.l.o.g. $a_{4} x_{2} \in E$. Then $\left[a_{2}, a_{3}, a_{4}, x_{2}, x_{3}\right] \supseteq C_{5}$ and so $H \supseteq F_{2} \uplus C_{5}$, a contradiction. Hence $e\left(a_{3}, x_{2} x_{4}\right) \leq 1$. It follows that $e\left(a_{3}, x_{2} x_{4}\right)=1, e\left(a_{3}, x_{1} x_{3}\right)=2$, $e\left(a_{2}, Q\right)=2$ and $e\left(a_{4} a_{5}, Q\right)=5$ with $e\left(x_{1}, a_{4} a_{5}\right)=2$. Thus $\left[x_{0}, x_{1}, a_{5}, a_{4}, a_{3}\right] \supseteq$ C_{5} and so $e\left(a_{2}, x_{1} x_{3}\right)=2$ as $H \nsupseteq 2 C_{5}$. Say w.l.o.g. $a_{3} x_{2} \in E$. As $H \nsupseteq F_{2} \uplus C_{5}$, we see that $\left[x_{2}, x_{3}, a_{5}, a_{4}, a_{3}\right] \nsupseteq C_{5}$ and $\left[a_{3}, a_{4}, x_{2}, x_{3}, x_{4}\right] \nsupseteq C_{5}$. This implies that $e\left(a_{5}, x_{2} x_{3}\right)=0$ and $a_{4} x_{4} \notin E$. As $e\left(a_{4} a_{5}, x_{2} x_{3} x_{4}\right)=3$, it follows that $\left[a_{4}, a_{5}, x_{2}, x_{3}, x_{4}\right] \supseteq C_{5}$ and so $H \supseteq 2 C_{5}$, a contradiction. Therefore $e\left(x_{1}, a_{1} a_{3}\right)=$ 0 . Assume $e\left(x_{1}, a_{4} a_{5}\right)=0$. As $e(Q, L) \geq 14$, it follows that $e\left(x_{2} x_{3} x_{4}, L-a_{2}\right)=12$ and $e\left(a_{2}, Q\right)=2$. Thus $\left[x_{2}, x_{3}, x_{4}, a_{4}, a_{5}\right] \supseteq K_{5}^{-}$. As $\left[x_{1}, x_{0}, a_{1}, a_{2}, a_{3}\right] \supseteq F$, we have $\tau(L) \geq 4$ by the optimality of $\{D, L\}$. Consequently, $x_{0} \rightarrow\left(L, a_{r}\right)$ for some $r \in\{4,5\}$ and so $H \supseteq 2 C_{5}$ as $\left[Q+a_{r}\right] \supseteq C_{5}$, a contradiction. Hence $e\left(x_{1}, a_{4} a_{5}\right) \geq 1$. Say w.l.o.g. $x_{1} a_{5} \in E$. Then $\left[x_{0}, x_{1}, a_{5}, a_{4}, a_{3}\right] \supseteq C_{5}$. Since $H \nsupseteq 2 C_{5}, H \nsupseteq F_{1} \uplus C_{5}$ and $H \nsupseteq F_{2} \uplus C_{5}$, we see that $e\left(a_{1} a_{2}, x_{2} x_{3} x_{4}\right) \leq 3$ by Lemma 2.1(c). Thus $e\left(a_{1} a_{2}, Q\right) \leq 4$ and so $e\left(a_{3} a_{4} a_{5}, Q\right) \geq 10$. Hence $e\left(a_{4} a_{5}, Q\right) \geq 7$. As above, we shall have that $\left[x_{2}, x_{3}, x_{4}, a_{4}, a_{5}\right] \nsupseteq K_{5}^{-}$. This implies that $e\left(a_{4} a_{5}, x_{2} x_{3} x_{4}\right) \neq 6$. Thus $e\left(a_{4} a_{5}, x_{2} x_{3} x_{4}\right)=5, e\left(x_{1}, a_{4} a_{5}\right)=2$, $e\left(a_{3}, x_{2} x_{3} x_{4}\right)=3$ and $e\left(a_{1} a_{2}, Q\right)=4$. Similarly, we shall have $e\left(a_{1}, x_{2} x_{3} x_{4}\right)=3$ as $\left[x_{0}, x_{1}, a_{4}, a_{5}, a_{1}\right] \supseteq C_{5}$. As $e\left(a_{4} a_{5}, x_{2} x_{3} x_{4}\right)=5$, we may assume w.l.o.g. that $e\left(a_{4}, x_{2} x_{3} x_{4}\right)=3$. Thus $\left[a_{3}, a_{4}, x_{2}, x_{3}, x_{4}\right] \supseteq K_{5}^{-}$and $\left[a_{2}, a_{1}, a_{5}, x_{1}, x_{0}\right] \supseteq F$. By the optimality of $\{D, L\}$, we shall have $\tau(L) \geq 4$. Thus $x_{0} \rightarrow\left(L, a_{r}\right)$ for some $r \in\{4,5\}$ and so $H \supseteq 2 C_{5}$, a contradiction.

Case 4. $N\left(x_{0}, L\right)=\left\{a_{i}, a_{i+1}\right\}$ for some $i \in\{1,2,3,4,5\}$. Say, $N\left(x_{0}, L\right)=$ $\left\{a_{1}, a_{2}\right\}$. First, suppose that $x_{1} a_{4} \in E$. Then $\left[x_{0}, x_{1}, a_{4}, a_{5}, a_{1}\right] \supseteq C_{5}$ and $\left[x_{0}, x_{1}, a_{4}, a_{3}, a_{2}\right] \supseteq C_{5}$. Since $H \nsupseteq 2 C_{5}, H \nsupseteq F_{1} \uplus C_{5}$ and $H \nsupseteq F_{2} \uplus C_{5}$, we see that $e\left(a_{2} a_{3}, Q-x_{1}\right) \leq 3$ and $e\left(a_{1} a_{5}, Q-x_{1}\right) \leq 3$ by Lemma 2.1(c). As $e(Q, L) \geq 14$, it follows that $e\left(x_{1}, L\right)=5, e\left(a_{4}, Q\right)=4, e\left(a_{2} a_{3}, Q-x_{1}\right)=3$ and
$e\left(a_{1} a_{5}, Q-x_{1}\right)=3$. Then $\left[x_{0}, x_{1}, a_{5}, a_{1}, a_{2}\right] \supseteq C_{5}$ and so $e\left(a_{3} a_{4}, Q-x_{1}\right) \leq 3$. Thus $e\left(a_{3}, Q-x_{1}\right)=0$ as $e\left(a_{4}, Q-x_{1}\right)=3$. Similarly, $e\left(a_{5}, Q-x_{1}\right)=0$. Thus $e\left(a_{1} a_{2}, Q-x_{1}\right)=6$. Then $\left[a_{1}, x_{2}, x_{3}, a_{4}, a_{5}\right] \supseteq C_{5}$ and $\left[a_{3}, a_{2}, x_{0}, x_{1}, x_{4}\right] \supseteq F_{2}$, a contradiction. Hence $x_{1} a_{4} \notin E$.

Next, suppose $e\left(x_{3}, a_{1} a_{2}\right)=2$. Then $e\left(x_{i}, a_{1} a_{3}\right) \leq 1$ and $e\left(x_{i}, a_{2} a_{5}\right) \leq 1$ for each $i \in\{2,4\}$ as $H \nsupseteq 2 C_{5}$. Thus $e\left(x_{2} x_{4}, L-a_{4}\right) \leq 4$ and so $e\left(x_{1}, L-a_{4}\right)+e\left(x_{3}, L\right)+$ $e\left(a_{4}, x_{2} x_{4}\right) \geq 10$. Then $e\left(x_{1}, a_{1} a_{2}\right) \geq 1$. Thus $\left[x_{i}, x_{1}, x_{0}, a_{1}, a_{2}\right] \supseteq F_{1}$ for $i \in\{2,4\}$. Clearly, $e\left(x_{3}, a_{3} a_{5}\right) \geq 1$. Assume $e\left(x_{3}, a_{3} a_{5}\right)=2$. Then $e\left(x_{2} x_{4}, a_{3} a_{5}\right)=0$ as $H \nsupseteq F_{1} \uplus C_{5}$. If $e\left(a_{4}, x_{2} x_{4}\right)=1$, then $e\left(x_{1}, L-a_{4}\right)=4, e\left(x_{3}, L\right)=5$ and $e\left(x_{2} x_{4}, a_{1} a_{2}\right)=4$. Thus $\left[x_{0}, x_{1}, x_{4}, a_{2}, a_{3}\right] \supseteq F_{2}$ and $\left[x_{3}, a_{4}, a_{5}, a_{1}, x_{2}\right] \supseteq C_{5}$, a contradiction. Hence $e\left(a_{4}, x_{2} x_{4}\right)=2$. If $x_{3} a_{4} \in E$ then $\left[x_{2}, x_{3}, x_{4}, a_{4}, a_{i}\right] \supseteq F_{2}$ for $i \in\{3,5\}$. As $e\left(x_{1}, a_{3} a_{5}\right) \geq 1$, we see that $H \supseteq F_{2} \uplus C_{5}$, a contradiction. Thus $x_{3} a_{4} \notin E, e\left(x_{1}, L-a_{4}\right)=4, e\left(x_{3}, L-a_{4}\right)=4, e\left(a_{4}, x_{2} x_{4}\right)=2$ and $e\left(x_{2} x_{4}, a_{1} a_{2}\right)=$ 4. Thus $\left[x_{0}, x_{1}, x_{4}, a_{2}, a_{3}\right] \supseteq F_{2}$ and $\left[x_{3}, a_{1}, a_{5}, a_{4}, x_{2}\right] \supseteq C_{5}$, a contradiction. We conclude that $e\left(x_{3}, a_{3} a_{5}\right)=1$. Thus $e\left(x_{1}, L-a_{4}\right)=4, e\left(x_{3}, L\right)=4$ and $e\left(a_{4}, x_{2} x_{4}\right)=2$. Say w.l.o.g. $x_{3} a_{5} \in E$. Then $\left[x_{2}, x_{4}, a_{5}, a_{4}, x_{3}\right] \supseteq F_{2}$ and $\left[x_{0}, x_{1}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$, a contradiction. Therefore $e\left(x_{3}, a_{1} a_{2}\right) \leq 1$. Next, suppose that $e\left(x_{2}, a_{1} a_{2}\right) \geq 1$ and $e\left(x_{4}, a_{1} a_{2}\right) \geq 1$. Then $\left[x_{i}, x_{1}, x_{0}, a_{1}, a_{2}\right] \supseteq C_{5}$ for $i \in\{2,4\}$. Since $H \nsupseteq 2 C_{5}, H \nsupseteq F_{1} \uplus C_{5}$ and $H \nsupseteq F_{2} \uplus C_{5}$, we see that $e\left(x_{3} x_{i}, a_{3} a_{4} a_{5}\right) \leq 3$ for $i \in\{2,4\}$ by Lemma 2.1(c). Furthermore, if for some $i \in\{2,4\}$, say $i=2$, we have $e\left(x_{2}, a_{3} a_{4} a_{5}\right)=3$, then $\left[x_{2}, a_{3}, a_{4}, a_{5}, a_{j}\right] \supseteq$ F_{1} for $j \in\{1,2\}$ and so $e\left(x_{3}, a_{1} a_{2}\right)=0$ since $H \nsupseteq C_{5} \uplus F_{1}$. Consequently, $e\left(x_{1}, L-a_{4}\right)=4, e\left(x_{2} x_{4}, L\right)=10$ and so $H \supseteq 2 C_{5}$, a contradiction. Therefore if $e\left(x_{3}, a_{3} a_{4} a_{5}\right)=0$ then $e\left(x_{i}, a_{3} a_{4} a_{5}\right) \leq 2$ for $i \in\{2,4\}$. Together with $x_{1} a_{4} \notin E$ and $e\left(x_{3}, a_{1} a_{2}\right) \leq 1$, we see that if $e\left(x_{3}, a_{3} a_{4} a_{5}\right)=0$ or $e\left(x_{3}, a_{3} a_{4} a_{5}\right)>1$ then $e(Q, L) \leq 13$, a contradiction. Hence $e\left(x_{3}, a_{3} a_{4} a_{5}\right)=1$. It follows that $e\left(x_{1}, L-a_{4}\right)=4, e\left(x_{3}, a_{1} a_{2}\right)=1, e\left(x_{2} x_{4}, a_{1} a_{2}\right)=4, e\left(x_{2}, a_{3} a_{4} a_{5}\right)=2$ and $e\left(x_{4}, a_{3} a_{4} a_{5}\right)=2$. If $e\left(x_{3}, a_{3} a_{5}\right)=1$, then either $\left[x_{2}, x_{3}, a_{3}, a_{4}, a_{5}\right] \supseteq C_{5}$ or $\left[x_{2}, x_{3}, a_{3}, a_{4}, a_{5}\right] \supseteq F_{1}$, and consequently, $H \supseteq C_{5} \uplus F_{1}$, a contradiction. Hence $x_{3} a_{4} \in E$. Then we see that $\left[x_{2}, x_{3}, a_{4}, a_{5}, a_{1}\right] \supseteq C_{5}$ and $\left[x_{0}, x_{1}, x_{4}, a_{2}, a_{3}\right] \supseteq F_{2}$, a contradiction. Therefore either $e\left(x_{2}, a_{1} a_{2}\right)=0$ or $e\left(x_{4}, a_{1} a_{2}\right)=0$. Say w.l.o.g. $e\left(x_{4}, a_{1} a_{2}\right)=0$.

Finally, if $e\left(x_{2}, a_{1} a_{2}\right) \geq 1$ then, as above, we would have $e\left(x_{3} x_{4}, a_{3} a_{4} a_{5}\right) \leq 3$ and so $e(Q, L) \leq 13$, a contradiction. Hence $e\left(x_{2}, a_{1} a_{2}\right)=0$. As $e(Q, L) \geq 14$, it follows that $e\left(x_{1}, L-a_{4}\right)=4, e\left(x_{3}, L-a_{i}\right)=4$ for some $i \in\{1,2\}$ and $e\left(x_{2} x_{4}, a_{3} a_{4} a_{5}\right)=6$. As $\left[x_{2}, x_{3}, x_{4}, a_{4}, a_{5}\right] \supseteq C_{5}$, we see $H \supseteq 2 C_{5}$, a contradiction.

Case 5. $N\left(x_{0}, L\right)=\left\{a_{i}, a_{i+1}, a_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$.
Say $N\left(x_{0}, L\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Then for each $i \in\{2,4,5\},\left[L-a_{i}+x_{0}\right] \supseteq C_{5}$ or $\left[L-a_{i}+x_{0}\right] \supseteq F_{1}$ and so $e\left(a_{i}, Q\right) \leq 2$. Thus $e\left(a_{1} a_{3}, Q\right) \geq 7$. Hence $\left[Q+a_{i}\right] \supseteq C_{5}$ for each $i \in\{1,3\}$. Therefore $\left[L-a_{i}+x_{0}\right] \nsupseteq C_{5}$ and $\left[L-a_{i}+x_{0}\right] \nsupseteq B$ for each $i \in\{1,3\}$. This implies that $\tau(L) \leq 1$. As $e\left(a_{1} a_{3}, Q\right) \leq 8, e\left(a_{4} a_{5}, Q\right) \geq 3$. Say
w.l.o.g. $e\left(a_{5}, Q\right)=2$. As $\left[Q+a_{5}\right] \nsupseteq C_{5}, N\left(a_{5}, Q\right)=\left\{x_{2}, x_{4}\right\}$ or $N\left(a_{5}, Q\right)=$ $\left\{x_{1}, x_{3}\right\}$. First, assume $N\left(a_{5}, Q\right)=\left\{x_{2}, x_{4}\right\}$. Then $\left[a_{4}, a_{5}, x_{2}, x_{3}, x_{4}\right] \supseteq F$. As $e\left(a_{1} a_{3}, Q\right) \geq 7, e\left(x_{1}, a_{1} a_{3}\right) \geq 1$ and so $\left[x_{0}, x_{1}, a_{1}, a_{2}, a_{3}\right] \supseteq C^{\prime} \cong C_{5}$ with $\tau\left(C^{\prime}\right) \geq$ 2 , contradicting the optimality of $\{D, L\}$. Hence $N\left(a_{5}, Q\right)=\left\{x_{1}, x_{3}\right\}$. Then $\left[a_{4}, a_{5}, x_{1}, x_{i}, x_{3}\right] \supseteq F$ for each $i \in\{2,4\}$. By the optimality of $\{D, L\}$ and Lemma 2.1(b), we get $e\left(x_{i}, a_{1} a_{3}\right) \leq 1$ for each $i \in\{2,4\}$ and so $e\left(a_{1} a_{3}, Q\right) \leq 6$, a contradiction.

Case 6. $N\left(x_{0}, L\right)=\left\{a_{i}, a_{i+1}, a_{i+3}\right\}$ for some $i \in\{1,2,3,4,5\}$.
Say $N\left(x_{0}, L\right)=\left\{a_{1}, a_{2}, a_{4}\right\}$. Clearly, $x_{0} \rightarrow\left(L, a_{3}\right)$ and $x_{0} \rightarrow\left(L, a_{5}\right)$. Thus $e\left(a_{3}, Q\right) \leq 2$ and $e\left(a_{5}, Q\right) \leq 2$ for otherwise $H \supseteq 2 C_{5}$. As $H \nsupseteq 2 C_{5}$, we see that $x_{0} \nrightarrow L$ and so $a_{3} a_{5} \notin E$. As $e(Q, L) \geq 13, e\left(a_{3} a_{5}, Q\right) \geq 1$. Say w.l.o.g. $e\left(a_{5}, Q\right) \geq 1$. Then $\left[Q+a_{5}\right] \supseteq F$. By the optimality of $\{D, L\}, \tau(L) \geq$ $\tau\left(x_{0} a_{1} a_{2} a_{3} a_{4} x_{0}\right)$. This implies that $a_{2} a_{5} \in E$. Similarly, if $e\left(a_{3}, Q\right) \geq 1$ then $a_{1} a_{3} \in E$. Assume $a_{1} a_{3} \notin E$. Then $e\left(a_{3}, Q\right)=0$ and so $e\left(a_{1} a_{2} a_{4}, Q\right) \geq 11$. Then $e\left(a_{r}, Q\right)=4$ for some $r \in\{1,2\}$ and $\left[L-a_{r}+x_{0}\right] \supseteq F$. As $\tau\left(a_{r} x_{1} x_{2} x_{3} x_{4} a_{r}\right) \geq 3$, it follows that $\tau(L)=3$ and so $\left\{a_{1} a_{4}, a_{2} a_{4}\right\} \subseteq E$. Thus $\left[L-a_{1}+x_{0}\right] \supseteq F_{2}$ and $\left[Q+a_{1}\right] \supseteq C_{5}$, a contradiction. Therefore $a_{1} a_{3} \in E$. Thus $\left[L-a_{4}+x_{0}\right] \supseteq F_{2}$. Hence $\left[Q+a_{4}\right] \nsupseteq C_{5}$ and so $e\left(a_{4}, Q\right) \leq 2$. Consequently, $e\left(a_{1} a_{2}, Q\right) \geq 7$ and so $\left[Q+a_{i}\right] \supseteq C_{5}$ for each $i \in\{1,2\}$. Hence $a_{1} a_{4} \notin E$ and $a_{2} a_{4} \notin E$ for otherwise $H \supseteq F_{2} \uplus C_{5}$. Hence $\tau(L)=2$. By the optimality of $\{D, L\},\left[Q+a_{i}\right] \nsupseteq C$ with $C \cong C_{5}$ and $\tau(C) \geq 3$ for each $i \in\{1,2\}$. This implies that $e\left(a_{i}, Q\right) \leq 3$ for each $i \in\{1,2\}$ and therefore $e\left(a_{1} a_{2}, Q\right) \leq 6$, a contradiction.

Lemma 2.6. Let D, L_{1} and L_{2} be disjoint subgraphs of G with $D \cong F$ and $L_{1} \cong L_{2} \cong C_{5}$. Suppose that $L_{1}=a_{1} a_{2} a_{3} a_{4} a_{5} a_{1}, V(D)=\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $E(D)=\left\{x_{0} x_{1}, x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{1}\right\}$ such that $e\left(x_{0}, L_{1}\right)=0$, and $e\left(x_{1} x_{3}, L_{1}\right)=$ $10, N\left(x_{2}, L_{1}\right)=N\left(x_{4}, L_{1}\right)=\left\{a_{1}, a_{2}, a_{4}\right\}, \tau\left(L_{1}\right)=4$ and $a_{3} a_{5} \notin E$. Suppose that $e\left(x_{0} x_{2} a_{3} a_{5}, L_{2}\right) \geq 13$. Then $\left[D, L_{1}, L_{2}\right]$ contains either of $F_{1} \uplus 2 C_{5}$ or $3 C_{5}$.

Proof. For the proof, we may assume that none of $x_{0} x_{3}, x_{1} x_{3}$ and $x_{2} x_{4}$ is an edge as they will not be used in the proof. Set $G_{1}=\left[D, L_{1}\right], G_{2}=\left[G_{1}, L_{2}\right]$ and $R=$ $\left\{x_{0}, x_{2}, a_{3}, a_{5}\right\}$. It is easy to see that for any permutation f of $\left\{x_{2}, a_{3}, a_{5}\right\}$, we can extend f to be an automorphism of G_{1} such that every vertex of $G_{1}-\left\{x_{2}, a_{3}, a_{5}\right\}$ is fixed under f. Therefore x_{2}, a_{3} and a_{5} are in the symmetric position in the following argument. On the contrary, suppose that $G_{2} \nsupseteq F_{1} \uplus 2 C_{5}$ and $G_{2} \nsupseteq 3 C_{5}$. It is easy to check that if $u \rightarrow\left(L_{2} ; R-\{u\}\right)$ for some $u \in R$ then $G_{2} \supseteq F_{1} \uplus 2 C_{5}$ or $G_{2} \supseteq 3 C_{5}$. Therefore $u \nrightarrow\left(L_{2} ; R-\{u\}\right)$ for each $u \in R$. By Lemma 2.1(d), there exist two labellings $R=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ and $L_{2}=b_{1} b_{2} b_{3} b_{4} b_{5} b_{1}$ such that $e\left(y_{1} y_{2}, b_{1} b_{2} b_{3} b_{4}\right)=8, e\left(y_{3}, b_{1} b_{5} b_{4}\right)=3$ and $e\left(y_{4}, b_{1} b_{4}\right)=2$. If $x_{0} \in$ $\left\{y_{1}, y_{2}\right\}$, we may assume that $\left\{y_{1}, y_{2}\right\}=\left\{x_{0}, x_{2}\right\}$. Then $\left[x_{0}, x_{1}, x_{2}, b_{2}, b_{3}\right] \supseteq C_{5}$, $\left[a_{3}, a_{5}, b_{1}, b_{5}, b_{4}\right] \supseteq C_{5}$ and $\left[x_{3}, x_{4}, a_{1}, a_{2}, a_{4}\right] \supseteq C_{5}$, a contradiction. Hence $x_{0} \notin$
$\left\{y_{1}, y_{2}\right\}$. Say w.l.o.g. that $\left\{y_{1}, y_{2}\right\}=\left\{a_{3}, a_{5}\right\}$. Thus $\left[a_{3}, a_{4}, a_{5}, b_{2}, b_{3}\right] \supseteq C_{5}$, $\left[x_{0}, x_{2}, b_{1}, b_{5}, b_{4}\right] \supseteq C_{5}$ and $\left[x_{1}, x_{4}, x_{3}, a_{1}, a_{2}\right] \supseteq C_{5}$, a contradiction.

Lemma 2.7. Let D and L be disjoint subgraphs of G with $D \cong K_{4}^{+}$and $L \cong B$. Let R be the set of the four vertices of L with degree 2 in L. Suppose that $e(D, R) \geq 13$. Then either $[D, L] \supseteq K_{4}^{+} \uplus C_{5}$ or $[D, L] \supseteq 2 C_{5}$ or $[D, L] \supseteq B \uplus C_{5}$.

Proof. Say $H=[D, L]$. On the contrary, suppose that H contains none of $K_{4}^{+} \uplus C_{5}, 2 C_{5}$ and $B \uplus C_{5}$. Say $V(D)=\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ with $e\left(x_{0}, D\right)=1$ and $x_{0} x_{1} \in E$. Let $Q=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. Say $L=a_{0} a_{1} a_{2} a_{0} a_{3} a_{4} a_{0}$. Then $Q \cong K_{4}$ and $R=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. If $e\left(x_{0}, R\right) \geq 3$, say w.l.o.g. $e\left(x_{0}, a_{1} a_{2} a_{3}\right)=3$, then $\left[L-a_{i}+x_{0}\right] \supseteq C_{5}$ and so $Q+a_{i} \nsupseteq C_{5}$ for each $i \in\{1,2,4\}$. Consequently, $e\left(a_{i}, Q\right) \leq 1$ for all $i \in\{1,2,4\}$ and so $e(D, R) \leq 11$, a contradiction. Hence $e\left(x_{0}, R\right) \leq 2$. Suppose that $e\left(x_{0}, R\right)=2$. Then $e(R, Q) \geq 11$. First, assume $e\left(x_{0}, a_{1} a_{2}\right)=1$ and $e\left(x_{0}, a_{3} a_{4}\right)=1$. Say w.l.o.g. $e\left(x_{0}, a_{1} a_{3}\right)=2$. Then $e\left(a_{2}, Q\right) \leq 1$ and $e\left(a_{4}, Q\right) \leq 1$ as $H \nsupseteq 2 C_{5}$. Consequently, $e(R, Q) \leq 10$, a contradiction. Therefore we may assume w.l.o.g. that $e\left(x_{0}, a_{1} a_{2}\right)=2$. We claim $e\left(x_{1}, a_{1} a_{2}\right)=$ 0 . To see this, suppose $e\left(x_{1}, a_{1} a_{2}\right) \geq 1$. Then $\left[x_{0}, x_{1}, a_{1}, a_{2}, a_{0}\right] \supseteq C_{5}$. Thus $e\left(a_{3} a_{4}, x_{2} x_{3} x_{4}\right) \leq 2$ for otherwise $\left[a_{3}, a_{4}, x_{2}, x_{3}, x_{4}\right] \supseteq C_{5}$ or $\left[a_{3}, a_{4}, x_{2}, x_{3}, x_{4}\right] \supseteq$ K_{4}^{+}. Thus $e\left(a_{3} a_{4}, Q\right) \leq 4$ and so $e\left(a_{1} a_{2}, Q\right) \geq 7$. Say w.l.o.g. $e\left(a_{1}, Q\right)=4$. Then $\left[D-x_{i}+a_{1}\right] \supseteq K_{4}^{+}$for each $i \in\{2,3,4\}$ and so $\left[L-a_{1}+x_{i}\right] \nsupseteq C_{5}$ for each $i \in\{2,3,4\}$. Thus $I\left(a_{2} a_{3}, Q-x_{1}\right)=\emptyset$ and so $e\left(a_{2} a_{3}, Q\right) \leq 5$. Hence $e\left(a_{4}, Q\right) \geq 2$. Similarly, $e\left(a_{3}, Q\right) \geq 2$. It follows that $\left[a_{3}, a_{4}, x_{2}, x_{3}, x_{4}\right] \supseteq C_{5}$ or $\left[a_{3}, a_{4}, x_{2}, x_{3}, x_{4}\right] \supseteq B$, a contradiction. This shows that $e\left(x_{1}, a_{1} a_{2}\right)=0$. Suppose $e\left(a_{1}, Q-x_{1}\right)=3$ or $e\left(a_{2}, Q-x_{1}\right)=3$. Then $\left[x_{0}, x_{1}, x_{i}, a_{1}, a_{2}\right] \supseteq C_{5}$ for each $i \in\{2,3,4\}$. Thus $\left[x_{i}, x_{j}, a_{0}, a_{3}, a_{4}\right] \nsupseteq C_{5}$ and $\left[x_{i}, x_{j}, a_{0}, a_{3}, a_{4}\right] \nsupseteq B$ for each $2 \leq i<j \leq 4$. This implies that $e\left(a_{3} a_{4}, Q-x_{1}\right) \leq 2$. Hence $e\left(a_{1} a_{2}, Q\right) \geq 7$ and so $e\left(x_{1}, a_{1} a_{2}\right) \geq 1$, a contradiction. Hence $e\left(a_{i}, Q-x_{1}\right) \leq 2$ for each $i \in$ $\{1,2\}$ and so $e\left(a_{3} a_{4}, Q\right) \geq 7$. Say w.l.o.g. $e\left(a_{4}, Q\right)=4$. Then $\left[D-x_{i}+a_{4}\right] \supseteq$ K_{4}^{+}for each $i \in\{2,3,4\}$ and therefore $I\left(a_{1} a_{3}, Q-x_{1}\right)=\emptyset$ as $H \nsupseteq K_{4}^{+} \uplus$ C_{5}. Thus $e\left(a_{1} a_{3}, Q\right) \leq 4$ and so $e\left(a_{2}, Q\right) \geq 3$, a contradiction. Next, suppose $e\left(x_{0}, R\right)=1$. Then $e(Q, R) \geq 12$. Say $x_{0} a_{1} \in E$. Suppose $e\left(x_{1}, a_{1} a_{2}\right) \geq 1$. Then $\left[x_{0}, x_{1}, a_{1}, a_{2}, a_{0}\right] \supseteq C_{5}$ or $\left[x_{0}, x_{1}, a_{1}, a_{2}, a_{0}\right] \supseteq B$. Thus $\left[x_{2}, x_{3}, x_{4}, a_{3}, a_{4}\right] \nsupseteq C_{5}$. This implies that $e\left(a_{3} a_{4}, Q-x_{1}\right) \leq 3$. Thus $e\left(a_{3} a_{4}, Q\right) \leq 5$ and so $e\left(a_{1} a_{2}, Q\right) \geq 7$. Thus $\left[D-x_{i}+a_{1}\right] \supseteq C_{5}$ for all $i \in\{2,3,4\}$. As $H \nsupseteq 2 C_{5}, I\left(a_{2} a_{3}, Q-x_{1}\right)=\emptyset$ and $I\left(a_{2} a_{4}, Q-x_{1}\right)=\emptyset$. Hence $e\left(a_{2} a_{3}, Q\right) \leq 5$ and so $e\left(a_{4}, Q\right) \geq 3$. Then $I\left(a_{2} a_{4}, Q-x_{1}\right) \neq \emptyset$, a contradiction. Hence $e\left(x_{1}, a_{1} a_{2}\right)=0$. Thus $e\left(a_{1} a_{2}, Q\right) \leq 6$ and $e\left(a_{3} a_{4}, Q\right) \geq 6$. Then $\left[x_{i}, x_{j}, a_{3}, a_{4}, a_{0}\right] \supseteq C_{5}$ for some $2 \leq i<j \leq 4$. Say $\{i, j, k\}=\{2,3,4\}$. Then $a_{2} x_{k} \notin E$ as $H \nsupseteq 2 C_{5}$. Therefore $e\left(a_{1} a_{2}, Q\right) \leq 5$ and so $e\left(a_{3} a_{4}, Q\right) \geq 7$. Thus $\left[x_{r}, x_{t}, a_{3}, a_{4}, a_{0}\right] \supseteq C_{5}$ for all $2 \leq r<t \leq 4$. Therefore $e\left(a_{2}, Q-x_{1}\right)=0$ as $H \nsupseteq 2 C_{5}$. Consequently, $e(Q, R) \leq 11$, a contradiction.

Finally, suppose $e\left(x_{0}, R\right)=0$. As $e(R, Q) \geq 13, e\left(a_{i}, Q\right)=4$ for some $a_{i} \in R$.

Say $e\left(a_{1}, Q\right)=4$. Then $I\left(a_{2} a_{3}, Q-x_{1}\right)=\emptyset$ as $H \nsupseteq K_{4}^{+} \uplus C_{5}$. Thus $e\left(a_{4}, Q\right)=4$ as $e(R, Q) \geq 13$. Similarly, $e\left(a_{3}, Q\right)=4$. Then we readily see that $H \supseteq K_{4}^{+} \uplus C_{5}$, a contradiction.

Lemma 2.8. Let B_{1} and B_{2} be disjoint subgraphs of G such that $B_{1} \cong B$ and $B_{2} \cong B$. Let R be the set of the four vertices of B_{1} with degree 2 in B_{1}. Suppose that $e\left(R, B_{2}\right) \geq 13$. Then $\left[B_{1}, B_{2}\right] \supseteq 2 C_{5}$ or $\left[B_{1}, B_{2}\right] \supseteq B \uplus C_{5}$.

Proof. On the contrary, suppose that $\left[B_{1}, B_{2}\right] \nsupseteq 2 C_{5}$ and $\left[B_{1}, B_{2}\right] \nsupseteq B \uplus C_{5}$. Say $B_{1}=a_{0} a_{1} a_{2} a_{0} a_{3} a_{4} a_{0}$ and $B_{2}=b_{0} b_{1} b_{2} b_{0} b_{3} b_{4} b_{0}$. Then $R=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $e\left(R, B_{2}-b_{0}\right) \geq 9$. This implies that $e\left(a_{i} a_{i+1}, b_{j} b_{j+1}\right) \geq 3$ for some $i \in\{1,3\}$ and $j \in\{1,3\}$. Say w.l.o.g. $e\left(a_{1} a_{2}, b_{1} b_{2}\right) \geq 3$. Then $\left[a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] \supseteq C_{5}$ and $\left[b_{1}, b_{2}, a_{0}, a_{1}, a_{2}\right] \supseteq C_{5}$.

Therefore $\left[a_{0}, a_{3}, a_{4}, b_{3}, b_{4}\right] \nsupseteq C_{5},\left[a_{0}, a_{3}, a_{4}, b_{3}, b_{4}\right] \nsupseteq B,\left[b_{0}, b_{3}, b_{4}, a_{3}, a_{4}\right] \nsupseteq C_{5}$ and $\left[b_{0}, b_{3}, b_{4}, a_{3}, a_{4}\right] \nsupseteq B$. This implies that $e\left(a_{3} a_{4}, b_{3} b_{4}\right) \leq 1$ and $e\left(b_{0}, a_{3} a_{4}\right) \leq 1$. If $e\left(a_{1} a_{2}, b_{3} b_{4}\right) \geq 3$, then we also have that $e\left(a_{3} a_{4}, b_{1} b_{2}\right) \leq 1$ and it follows that $e\left(a_{1} a_{2}, B_{2}\right)=10$ and $e\left(a_{3} a_{4}, b_{3} b_{4}\right)=1$ as $e\left(R, B_{2}\right) \geq 13$. Consequently, $\left[B_{2}-b_{r}+a_{1}\right] \supseteq C_{5}$ and $\left[B_{1}-a_{1}+b_{r}\right] \supseteq C_{5}$ where $r \in\{3,4\}$ with $e\left(b_{r}, a_{3} a_{4}\right)=1$, a contradiction. Hence $e\left(a_{1} a_{2}, b_{3} b_{4}\right) \leq 2$. Suppose $e\left(a_{3} a_{4}, b_{1} b_{2}\right) \geq 3$. Similarly, we shall have $e\left(a_{1} a_{2}, b_{3} b_{4}\right) \leq 1, e\left(b_{0}, a_{1} a_{2}\right) \leq 1$ and so $e\left(R, B_{2}\right) \leq 12$, a contradiction. Therefore, $e\left(a_{3} a_{4}, b_{1} b_{2}\right) \leq 2$. Thus $e\left(a_{3} a_{4}, B_{2}\right) \leq 4$ and so $e\left(a_{1} a_{2}, B_{2}\right) \geq 9$. Consequently, $e\left(a_{1} a_{2}, b_{3} b_{4}\right) \geq 3$, a contradiction.

Lemma 2.9. Let D and L be disjoint subgraphs of G with $D \cong F_{1}$ and $L \cong C_{5}$. Suppose that $\{D, L\}$ is optimal and $e(D, L) \geq 16$. Then $[D, L]$ contains one of $K_{4}^{+} \uplus C_{5}, K_{4}^{+} \uplus B, 2 C_{5}$ and $B \uplus C_{5}$, or there exist two labellings $L=a_{1} a_{2} a_{3} a_{4} a_{5} a_{1}$ and $V(D)=\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ with $E(D)=\left\{x_{0} x_{1}, x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{1}, x_{2} x_{4}\right\}$ such that $e\left(x_{0}, L\right)=0, e\left(a_{1} a_{2} a_{4}, D-x_{0}\right)=12, N\left(a_{3}, D\right)=N\left(a_{5}, D\right)=\left\{x_{2}, x_{4}\right\}$, $\tau(L)=4$ and $a_{3} a_{5} \notin E$.
Proof. Say $H=[D, L]$. Say that H does not contain any of $K_{4}^{+} \uplus C_{5}, K_{4}^{+} \uplus B$, $2 C_{5}$ and $B \uplus C_{5}$.
Let $V(D)=\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}, E(D)=\left\{x_{0} x_{1}, x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{1}, x_{2} x_{4}\right\}$ and $L=a_{1} a_{2} a_{3} a_{4} a_{5} a_{1}$, Set $Q=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. Since $H \nsupseteq 2 C_{5}$ and $H \nsupseteq B \uplus C_{5}$, we see that for each $a_{i} \in V(L)$, if $x_{0} \rightarrow\left(L, a_{i}\right)$ or $x_{0} \xrightarrow{z}\left(L, a_{i}\right)$ then $e\left(a_{i}, Q\right) \leq 2$. Thus $x_{0} \nrightarrow L$ for otherwise $e(D, L) \leq 15$. Hence $e\left(x_{0}, L\right) \leq 4$.

Assume $e\left(x_{0}, L\right)=4$. Say $e\left(x_{0}, a_{1} a_{2} a_{3} a_{4}\right)=4$. As $x_{0} \nrightarrow L, \tau\left(a_{5}, L\right)=0$. Clearly, $e\left(a_{i}, Q\right) \leq 2$ for each $i \in\{2,3,5\}$ since $H \nsupseteq 2 C_{5}$. Thus $e\left(a_{1} a_{4}, Q\right) \geq 6$. Say $e\left(a_{1}, Q\right) \geq 3$. Then $\left[Q+a_{1}\right] \supseteq C$ with $C \cong C_{5}$ and $\tau(C) \geq 3$. Then $a_{2} a_{4} \notin E$ for otherwise $\left[L-a_{1}+x_{0}\right] \supseteq K_{4}^{+}$. Thus $\tau(L) \leq 2$. As $\left[L-a_{1}+x_{0}\right] \supseteq F_{1}$, we see that $2 \geq \tau(L) \geq \tau(C) \geq 3$ by the optimality of $\{D, L\}$, a contradiction. Therefore $e\left(x_{0}, L\right) \leq 3$ and so $e(Q, L) \geq 13$. Set $T=x_{2} x_{3} x_{4} x_{2}$. We divide the proof into the following six cases.

Case 1. $N\left(x_{0}, L\right)=\left\{a_{i}, a_{i+1}, a_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$.
Say $N\left(x_{0}, L\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Then $Q+a_{2} \nsupseteq C_{5}$ and so $e\left(a_{2}, Q\right) \leq 2$. As $x_{0} \nrightarrow L$, we see that $\tau\left(a_{2}, L\right) \leq 1$. If $\left\{a_{1} a_{4}, a_{3} a_{5}\right\} \subseteq E$ then $x_{0} \rightarrow\left(L, a_{i}\right)$ or $x_{0} \xrightarrow{z}$ $\left(L, a_{i}\right)$ and so $e\left(a_{i}, Q\right) \leq 2$ for each $a_{i} \in V(L)$. Consequently, $e(Q, L) \leq 10$, a contradiction. Hence $a_{1} a_{4} \notin E$ or $a_{3} a_{5} \notin E$. Thus $\tau(L) \leq 3$. Suppose $\tau\left(a_{2}, L\right)=1$. Say w.l.o.g. $a_{2} a_{4} \in E$. Then $x_{0} \rightarrow\left(L, a_{i}\right)$ for $i \in\{3,5\}$. Thus $e\left(a_{i}, Q\right) \leq 2$ for $i \in\{3,5\}$. As $e(Q, L) \geq 13, e\left(a_{1} a_{4}, Q\right) \geq 7$. Thus $\left[Q+a_{r}\right]$ contains a 5 -cycle with at least 4 chords, where $e\left(a_{r}, Q\right)=4$ with $r \in\{1,4\}$. As $\left[L-a_{r}+x_{0}\right] \supseteq F_{1}$ and by the optimality of $\{D, L\}$, we have $\tau(L) \geq 4$, a contradiction. Hence $\tau\left(a_{2}, L\right)=0$. Suppose $a_{1} a_{3} \in E$. Then $\left[L-a_{i}+x_{0}\right] \supseteq K_{4}^{+}$ for each $i \in\{4,5\}$. As $H \nsupseteq K_{4}^{+} \uplus C_{5}, e\left(a_{i}, Q\right) \leq 2$ for $i \in\{4,5\}$. As $e(Q, L) \geq 13$, $e\left(a_{1} a_{3}, Q\right) \geq 7$ and $e\left(a_{4} a_{5}, Q\right) \geq 3$. Say w.l.o.g. $e\left(a_{5}, Q\right)=2$. As $\left[Q+a_{5}\right] \nsupseteq C_{5}$, $e\left(a_{5}, x_{2} x_{4}\right)=2$. As $e\left(x_{1}, a_{1} a_{3}\right) \geq 1,\left[x_{1}, x_{0}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$. Thus $e\left(a_{4}, T\right)=0$ as $H \nsupseteq 2 C_{5}$. It follows that $e\left(a_{1} a_{3}, Q\right)=8$ and $a_{4} x_{1} \in E$. Consequently, $H \supseteq 2 C_{5}$, a contradiction. Hence $a_{1} a_{3} \notin E$ and so $\tau(L) \leq 1$. Since $\left[L-a_{i}+x_{0}\right] \supseteq F_{1}$ for each $i \in\{4,5\}$, we see that $\left[Q+a_{i}\right]$ does not contain a 5 -cycle with at least 2 chords for each $i \in\{4,5\}$ by the optimality of $\{D, L\}$. This implies that for each $i \in\{4,5\}, e\left(a_{i}, Q\right) \leq 2$ and if $e\left(a_{i}, Q\right)=2$ then $e\left(a_{i}, x_{2} x_{4}\right)=2$. Similar to the above, we see that $H \supseteq 2 C_{5}$, a contradiction.

Case 2. $N\left(x_{0}, L\right)=\left\{a_{i}, a_{i+1}, a_{i+3}\right\}$ for some $i \in\{1,2,3,4,5\}$.
Say $N\left(x_{0}, L\right)=\left\{a_{1}, a_{2}, a_{4}\right\}$. Then for each $i \in\{3,5\}, x_{0} \rightarrow\left(L, a_{i}\right)$ and so $e\left(a_{i}, Q\right) \leq 2$. Thus $e\left(a_{1} a_{2} a_{4}, Q\right) \geq 13-e\left(a_{3} a_{5}, Q\right) \geq 9$. Suppose that $e\left(a_{3}, Q\right)=2$ or $e\left(a_{5}, Q\right)=2$. Say w.l.o.g. $e\left(a_{5}, Q\right)=2$. Then $e\left(a_{5}, x_{2} x_{4}\right)=2$ as $\left[Q+a_{5}\right] \nsupseteq C_{5}$. If $a_{3} x_{3} \in E$ then $\left[a_{3}, a_{4}, a_{5}, x_{3}, x_{i}\right] \supseteq C_{5}$ for $i \in\{2,4\}$ and so $e\left(x_{i}, a_{1} a_{2}\right)=0$ for $i \in\{2,4\}$ since $H \nsupseteq 2 C_{5}$. Consequently, $e\left(a_{1} a_{2} a_{4}, Q\right) \leq 8$, a contradiction. Hence $a_{3} x_{3} \notin E$. If $a_{3} x_{1} \in E$ then $\left[x_{1}, x_{0}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$ and so $e\left(a_{4}, T\right)=0$ as $H \nsupseteq 2 C_{5}$. Thus $e\left(a_{1} a_{2} a_{4}, Q\right)=9$ and so $e\left(a_{3}, Q\right)=2$. Consequently, $\left[Q+a_{3}\right] \supseteq C_{5}$, a contradiction. Hence $N\left(a_{3}, Q\right) \subseteq\left\{x_{2}, x_{4}\right\}$. If $e\left(x_{1}, a_{2} a_{4}\right) \geq 1$ then $\left[x_{1}, x_{0}, a_{2}, a_{3}, a_{4}\right] \supseteq C_{5}$ and so $e\left(a_{1}, T\right)=0$ as $H \nsupseteq 2 C_{5}$. It follows that $e\left(a_{3}, x_{2} x_{4}\right)=2$ and $e\left(a_{2} a_{4}, Q\right)=8$. Consequently, $H \supseteq 2 C_{5}$, a contradiction. Hence $e\left(x_{1}, a_{2} a_{4}\right)=0$. Thus $e\left(a_{2} a_{4}, T\right) \geq 5$ as $e\left(a_{1} a_{2} a_{4}, Q\right) \geq 9$. Hence $\left[x_{3}, x_{4}, a_{2}, a_{3}, a_{4}\right] \supseteq C_{5}$ and $\left[x_{0}, x_{1}, x_{2}, a_{5}, a_{1}\right] \supseteq C_{5}$, a contradiction.

Therefore $e\left(a_{3}, Q\right) \leq 1$ and $e\left(a_{5}, Q\right) \leq 1$. Then $e\left(a_{1} a_{2} a_{4}, Q\right) \geq 11$. Thus $e\left(a_{1} a_{2}, Q\right) \geq 7$. Say w.l.o.g. $e\left(a_{1}, Q\right)=4$. Then $\left[a_{5}, a_{1}, x_{2}, x_{3}, x_{4}\right] \supseteq K_{4}^{+}$. As $e\left(x_{1}, a_{2} a_{4}\right) \geq 1,\left[x_{1}, x_{0}, a_{2}, a_{3}, a_{4}\right] \supseteq C_{5}$ and so $H \supseteq K_{4}^{+} \uplus C_{5}$, a contradiction.

Case 3. $N\left(x_{0}, L\right)=\left\{a_{i}, a_{i+1}\right\}$ for some $i \in\{1,2,3,4,5\}$. In this case, $e(Q, L) \geq 14$. Say $e\left(x_{0}, a_{1} a_{2}\right)=2$. Suppose $x_{1} a_{4} \in E$. Then $\left[x_{1}, x_{0}, a_{1}, a_{5}, a_{4}\right] \supseteq$ C_{5}. As H does not contain one of $2 C_{5}$ and $K_{4}^{+} \uplus C_{5}$, we see that $e\left(a_{2} a_{3}, T\right) \leq 2$. Similarly, $e\left(a_{1} a_{5}, T\right) \leq 2$ as $\left[x_{1}, x_{0}, a_{2}, a_{3}, a_{4}\right] \supseteq C_{5}$. Thus $e(Q, L) \leq 12$, a contradiction. Hence $x_{1} a_{4} \notin E$. Next, suppose that $e\left(x_{1}, a_{3} a_{5}\right) \geq 1$. Say w.l.o.g. $x_{1} a_{3} \in E$. Then $\left[x_{1}, x_{0}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$. As H does not contain one of $2 C_{5}$,
$B \uplus C_{5}$ and $K_{4}^{+} \uplus C_{5}$, we have that $e\left(a_{4} a_{5}, T\right) \leq 2$ and either $e\left(a_{4}, T\right)=0$ or $e\left(a_{5}, T\right)=0$. If we also have $x_{1} a_{5} \in E$ then $e\left(a_{3} a_{4}, T\right) \leq 2$ and either $e\left(a_{4}, T\right)=0$ or $e\left(a_{3}, T\right)=0$. Consequently, it follows, as $e(Q, L) \geq 14$, that $e\left(a_{5}, T\right)=2, e\left(a_{3}, T\right)=2, e\left(a_{4}, T\right)=0$ and $e\left(a_{1} a_{2}, Q\right)=8$. Then $x_{i} \rightarrow\left(L, a_{1}\right)$ for some $x_{i} \in V(T)$ with $e\left(x_{i}, a_{2} a_{5}\right)=2$ and so $H \supseteq 2 C_{5}$, a contradiction. Hence $x_{1} a_{5} \notin E$. Thus $e\left(a_{1} a_{2} a_{3}, Q\right) \geq 12$. Then $x_{3} \rightarrow\left(L, a_{2}\right)$ and so $H \supseteq 2 C_{5}$, a contradiction. We conclude that $e\left(x_{1}, a_{3} a_{4} a_{5}\right)=0$.

As $e(Q, L) \geq 14, e\left(x_{2} x_{4}, a_{1} a_{2}\right) \geq 1$. Say w.l.o.g. $e\left(x_{2}, a_{1} a_{2}\right) \geq 1$. Then $\left[x_{2}, x_{1}, x_{0}, a_{1}, a_{2}\right] \supseteq C_{5}$. As $H \nsupseteq 2 C_{5}$ and by Lemma 2.1(c), $e\left(x_{3} x_{4}, a_{3} a_{4} a_{5}\right) \leq 4$. Thus $e\left(a_{3} a_{4} a_{5}, Q\right) \leq 7$. Hence $e\left(a_{1} a_{2}, Q\right) \geq 7$. Say w.l.o.g. $e\left(a_{1}, Q\right)=4$. Then $x_{i} \nrightarrow\left(L, a_{1}\right)$ for each $x_{i} \in V(T)$ since $H \nsupseteq 2 C_{5}$. This implies that $I\left(a_{2} a_{5}, T\right)=\emptyset$ and so $e\left(a_{2} a_{5}, Q\right) \leq 4$. Consequently, $e\left(a_{3} a_{4}, T\right)=6$ as $e(Q, L) \geq 14$. Thus $\left[a_{5}, a_{4}, a_{3}, x_{3}, x_{4}\right] \supseteq K_{4}^{+}$and $\left[x_{2}, x_{1}, x_{0}, a_{2}, a_{1}\right] \supseteq C_{5}$, a contradiction.

Case 4. $N\left(x_{0}, L\right)=\left\{a_{i}, a_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$. Say, $N\left(x_{0}, L\right)=$ $\left\{a_{1}, a_{3}\right\}$. The $e\left(a_{2}, Q\right) \leq 2$ as $H \nsupseteq 2 C_{5}$. First, suppose $e\left(x_{1}, a_{1} a_{3}\right) \geq 1$. Then $\left[x_{1}, x_{0}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$ and therefore $e\left(a_{4} a_{5}, T\right) \leq 2$. Thus $e\left(a_{1} a_{3}, Q\right) \geq$ $14-2-2-e\left(x_{1}, a_{4} a_{5}\right) \geq 8$. It follows that $e\left(a_{1} a_{3}, Q\right)=8, e\left(a_{2}, Q\right)=2$, $e\left(a_{4} a_{5}, T\right)=2$ and $e\left(x_{1}, a_{4} a_{5}\right)=2$. Consequently, $H \supseteq 2 C_{5}$, a contradiction. Hence $e\left(x_{1}, a_{1} a_{3}\right)=0$. Next, suppose $e\left(x_{1}, a_{4} a_{5}\right) \geq 1$. Say w.l.o.g. $x_{1} a_{4} \in E$. Then $\left[x_{1}, x_{0}, a_{1}, a_{5}, a_{4}\right] \supseteq C_{5}$ and so $e\left(a_{2} a_{3}, T\right) \leq 2$. Thus $e\left(a_{1} a_{5} a_{4}, Q\right) \geq$ $14-3=11$. It follows that $e\left(a_{4} a_{5}, Q\right)=8, e\left(a_{1}, T\right)=3, x_{1} a_{2} \in E$ and $e\left(a_{2} a_{3}, T\right)=2$. Then $\left[D-x_{1}+a_{1}\right] \supseteq K_{4}^{+}$and $\left[L-a_{1}+x_{1}\right] \supseteq C_{5}$, a contradiction. Hence $e\left(x_{1}, a_{4} a_{5}\right)=0$. As $e(Q, L) \geq 14$, it follows that $e\left(T, L-a_{2}\right)=12$ and $e\left(a_{2}, Q\right)=2$. Then we readily see that $H \supseteq 2 C_{5}$, a contradiction.

Case 5. $e\left(x_{0}, L\right)=1$. Then $e(Q, L) \geq 15$. Say $x_{0} a_{1} \in E$. First, suppose $e\left(x_{1}, a_{3} a_{4}\right) \geq 1$. Say w.l.o.g. $x_{1} a_{3} \in E$. Then $\left[x_{1}, x_{0}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$. Thus $e\left(a_{4} a_{5}, T\right) \leq 2$ and so $e\left(a_{4} a_{5}, Q\right) \leq 4$. If we also have $x_{1} a_{4} \in E$ then $e\left(a_{2} a_{3}, T\right) \leq 2$ as $\left[x_{1}, x_{0}, a_{1}, a_{5}, a_{4}\right] \supseteq C_{5}$. But then we obtain $e(Q, L) \leq 12$, a contradiction. Hence $x_{1} a_{4} \notin E$. As $e(Q, L) \geq 15$, it follows that $e\left(a_{1} a_{2} a_{3}, Q\right)=12$, $e\left(a_{4} a_{5}, T\right)=2$ and $x_{1} a_{5} \in E$. Then $\left[a_{4}, a_{5}, x_{1}, x_{0}, a_{1}\right] \supseteq F_{1}$ and $\left[T, a_{2}, a_{3}\right] \supseteq K_{5}$. By the optimality of $\{D, L\},[L] \cong K_{5}$ and so $H \supseteq 2 C_{5}$, a contradiction. Hence $e\left(x_{1}, a_{3} a_{4}\right)=0$. Then $e\left(a_{2} a_{5}, Q\right) \geq 15-e\left(a_{1} a_{3} a_{4}, Q\right) \geq 15-10=5$. Thus $e\left(x_{2} x_{4}, a_{2} a_{5}\right) \geq 1$. Say w.l.o.g. $x_{2} a_{5} \in E$. Then $\left[x_{0}, x_{1}, x_{2}, a_{5}, a_{1}\right] \supseteq C_{5}$. As $H \nsupseteq 2 C_{5}, e\left(a_{2} a_{4}, x_{3} x_{4}\right) \leq 2$. Clearly, $e\left(a_{2} a_{3} a_{4}, x_{1} x_{2}\right) \leq 4$. Then $e\left(a_{1} a_{5}, Q\right) \geq$ $15-6-e\left(a_{3}, x_{3} x_{4}\right) \geq 7$ and so $e\left(a_{1}, T\right) \geq 2$. Suppose that $a_{1} x_{3} \in E$. Then $x_{i} \nrightarrow\left(L, a_{1}\right)$ for all $x_{i} \in V(T)$ for otherwise $H \supseteq 2 C_{5}$. This implies that $I\left(a_{2} a_{5}, T\right)=\emptyset$. As $x_{2} a_{5} \in, x_{2} a_{2} \notin E$ and so $e\left(a_{2} a_{3} a_{4}, x_{1} x_{2}\right) \leq 3$. As $e(Q, L) \geq$ 15, it follows that $e\left(a_{1} a_{5}, Q\right)=8, e\left(a_{2} a_{3} a_{4}, x_{3} x_{4}\right)=4$ and so $e\left(x_{3} x_{4}, a_{3} a_{4}\right)=4$. Thus $\left[a_{2}, a_{3}, a_{4}, x_{3}, x_{4}\right] \supseteq K_{4}^{+}$and so $H \supseteq K_{4}^{+} \uplus C_{5}$, a contradiction. Hence $a_{1} x_{3} \notin E$. Thus $e\left(a_{1} a_{5}, Q\right)=7$. It follows that $e\left(a_{1}, Q-x_{3}\right)=3, e\left(a_{5}, Q\right)=4$, $e\left(a_{2} a_{4}, x_{3} x_{4}\right)=2, e\left(a_{3}, x_{3} x_{4}\right)=2, e\left(x_{2}, a_{3} a_{4}\right)=2$ and $e\left(a_{2}, x_{1} x_{2}\right)=2$. Then
$\left[x_{2}, x_{1}, x_{0}, a_{1}, a_{2}\right] \supseteq C_{5}$ and $\left[a_{5}, a_{4}, a_{3}, x_{3}, x_{4}\right] \supseteq C_{5}$, a contradiction.
Case 6. $e\left(x_{0}, L\right)=0$. As $H \nsupseteq K_{4}^{+} \uplus C_{5}$, we see that for each $a_{i} \in V(L)$, if $e\left(a_{i}, Q-x_{3}\right)=3$ then $x_{3} \nrightarrow\left(L, a_{i}\right)$. Since $e\left(a_{i}, Q\right)=4$ for some $a_{i} \in V(L)$ as $e(Q, L) \geq 16$, it follows that $x_{3} \nrightarrow L$ and so $e\left(x_{3}, L\right) \leq 4$. First, suppose $e\left(x_{3}, L\right)=4$. Say $e\left(x_{3}, L-a_{5}\right)=4$. Then $e\left(a_{i}, Q-x_{3}\right) \leq 2 \quad$ for each $i \in\{2,3,5\}$. As $e(Q, L) \geq 16$, it follows that $e\left(a_{i}, Q-x_{3}\right)=2$ for $i \in\{2,3,5\}$ and $e\left(a_{1} a_{4}, Q-x_{3}\right)=6$. If $x_{1} a_{5} \in E$, then $e\left(a_{5}, x_{1} x_{2}\right)=2$ or $e\left(a_{5}, x_{1} x_{4}\right)=2$. Say w.l.o.g. $e\left(a_{5}, x_{1} x_{2}\right)=2$. Then $\left[x_{0}, x_{1}, x_{2}, a_{1}, a_{5}\right] \supseteq K_{4}^{+}$and $\left[x_{3}, x_{4}, a_{2}, a_{3}, a_{4}\right] \supseteq$ C_{5}, a contradiction. Hence $e\left(a_{5}, x_{2} x_{4}\right)=2$. Then $\left[D-x_{3}+a_{5}\right] \supseteq F_{1}$. By the optimality of $\{D, L\}, \tau(L) \geq \tau\left(x_{3} a_{1} a_{2} a_{3} a_{4} x_{3}\right)$. This implies that $\tau\left(a_{5}, L\right)=2$ and so $x_{3} \rightarrow\left(L, a_{1}\right)$, a contradiction.

Next, suppose that $e\left(x_{3}, L\right)=3$ and $N\left(x_{3}, L\right)=\left\{a_{i}, a_{i+1}, a_{i+3}\right\}$ for some $i \in\{1,2,3,4,5\}$. Say $N\left(x_{3}, L\right)=\left\{a_{1}, a_{2}, a_{4}\right\}$. Then $e\left(a_{3}, Q-x_{3}\right) \leq 2$ and $e\left(a_{5}, Q-x_{3}\right) \leq 2$. As $e(Q, L) \geq 16$, it follows that $e\left(a_{1} a_{2} a_{4}, Q-x_{3}\right)=9$, $e\left(a_{3}, Q-x_{3}\right)=2$ and $e\left(a_{5}, Q-x_{3}\right)=2$. If $e\left(x_{1}, a_{3} a_{5}\right) \geq 1$, then we may assume w.l.o.g. that $e\left(a_{3}, x_{1} x_{2}\right)=2$. Consequently, $\left[x_{0}, x_{1}, x_{2}, a_{2}, a_{3}\right] \supseteq K_{4}^{+}$ and $\left[x_{3}, x_{4}, a_{1}, a_{5}, a_{4}\right] \supseteq C_{5}$, a contradiction. Hence $e\left(a_{3} a_{5}, x_{2} x_{4}\right)=4$. Clearly, $\left[x_{0}, x_{1}, x_{2}, a_{2}, a_{3}\right] \supseteq F_{1}$ and $\tau\left(x_{4} x_{3} a_{1} a_{5} a_{4} x_{4}\right) \geq 3$. Thus $\tau(L) \geq 3$ by the optimality of $\{D, L\}$. As $x_{3} \nrightarrow\left(L, a_{1}\right), a_{3} a_{5} \notin E$. Thus $a_{1} a_{4} \in E$ or $a_{2} a_{4} \in E$. Say w.l.o.g. $a_{1} a_{4} \in E$. Then $\tau\left(x_{4} x_{3} a_{1} a_{5} a_{4} x_{4}\right)=4$. Thus $\tau(L)=4$ and so the lemma holds.

Next, suppose that $N\left(x_{3}, L\right)=\left\{a_{i}, a_{i+1}, a_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$. Say $N\left(x_{3}, L\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Then $e\left(a_{2}, Q-x_{3}\right) \leq 2$. As $e(D, L) \geq 16$, either $e\left(a_{1} a_{5}, Q-x_{3}\right)=6$ or $e\left(a_{3} a_{4}, Q-x_{3}\right)=6$. Say w.l.o.g. $e\left(a_{1} a_{5}, Q-x_{3}\right)=6$. Then $\left[x_{0}, x_{1}, x_{i}, a_{1}, a_{5}\right] \supseteq K_{4}^{+}$and so $\left[x_{3}, x_{j}, a_{2}, a_{3}, a_{4}\right] \nsupseteq C_{5}$ for each $\{i, j\}=\{2,4\}$. This implies that $e\left(a_{4}, x_{2} x_{4}\right)=0$ and so $e(D, L) \leq 15$, a contradiction.

Next, suppose that $e\left(x_{3}, L\right)=2$ and $N\left(x_{3}, L\right)=\left\{a_{i}, a_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$. Say $N\left(x_{3}, L\right)=\left\{a_{1}, a_{3}\right\}$. Then $e\left(a_{2}, Q-x_{3}\right) \leq 2$. As $e(Q, L) \geq 16$, it follows that $e\left(L-a_{2}, Q-x_{3}\right)=12$ and $e\left(a_{2}, Q-x_{3}\right)=2$. Then $\left[x_{0}, x_{1}, x_{2}, a_{4}, a_{5}\right] \supseteq K_{4}^{+}$and $\left[x_{3}, x_{4}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$, a contradiction.

Next, suppose that $e\left(x_{3}, L\right)=2$ and $N\left(x_{3}, L\right)=\left\{a_{i}, a_{i+1}\right\}$ for some $i \in$ $\{1,2,3,4,5\}$. Say $N\left(x_{3}, L\right)=\left\{a_{1}, a_{2}\right\}$. As $e(Q, L) \geq 16$, either $e\left(a_{1} a_{5}, Q-x_{3}\right)=6$ or $e\left(a_{2} a_{3}, Q-x_{3}\right)=6$. Say w.l.o.g. $e\left(a_{1} a_{5}, Q-x_{3}\right)=6$. Then $\left[x_{0}, x_{1}, x_{i}, a_{1}, a_{5}\right] \supseteq$ K_{4}^{+}and so $\left[x_{j}, x_{3}, a_{2}, a_{3}, a_{4}\right] \nsupseteq C_{5}$ for each $\{i, j\}=\{2,4\}$. This implies that $e\left(a_{4}, x_{2} x_{4}\right)=0$. Consequently, $e(Q, L) \leq 15$, a contradiction.

Finally, we have $e\left(x_{3}, L\right)=1$. Then $e\left(L, Q-x_{3}\right)=15$, clearly, $H \supseteq K_{4}^{+} \uplus C_{5}$, a contradiction.

Lemma 2.10. Let D, L_{1} and L_{2} be disjoint subgraphs of G with $D \cong F_{1}$ and $L_{1} \cong L_{2} \cong C_{5}$. Suppose that $L_{1}=a_{1} a_{2} a_{3} a_{4} a_{5} a_{1}, V(D)=\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $E(D)=\left\{x_{0} x_{1}, x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{1}, x_{2} x_{4}\right\}$ such that
$e\left(x_{0}, L_{1}\right)=0, e\left(a_{1} a_{2} a_{4}, D-x_{0}\right)=12, N\left(a_{3}, D\right)=N\left(a_{5}, D\right)=\left\{x_{2}, x_{4}\right\}, \tau\left(L_{1}\right)=4$ and $a_{3} a_{5} \notin E$. Suppose that $\left\{D, L_{1}, L_{2}\right\}$ is optimal and $e\left(x_{0} x_{3} a_{3} a_{5}, L_{2}\right) \geq 13$. Then $\left[D, L_{1}, L_{2}\right]$ contains either $K_{4}^{+} \uplus 2 C_{5}$ or $3 C_{5}$.

Proof. Let $G_{1}=\left[D, L_{1}\right], G_{2}=\left[D, L_{1}, L_{2}\right]$ and $R=\left\{x_{0}, x_{3}, a_{3}, a_{5}\right\}$. On the contrary, suppose that G_{2} does not contain any of $K_{4}^{+} \uplus 2 C_{5}$ and $3 C_{5}$. It is easy to see that for any permutation f of $\left\{x_{3}, a_{3}, a_{5}\right\}$, we can extend f to be an automorphism of G_{1} such that any vertex in $G_{1}-\left\{x_{3}, a_{3}, a_{5}\right\}$ is fixed under f. Thus x_{3}, a_{3} and a_{5} are in the symmetric position in the following argument. It is easy to check that if $u \rightarrow\left(L_{2} ; R-\{u\}\right)$ for some $u \in R$, then $G_{2} \supseteq K_{4}^{+} \uplus 2 C_{5}$ or $G_{2} \supseteq 3 C_{5}$. Thus $u \nrightarrow\left(L_{2} ; R-\{u\}\right)$ for each $u \in R$. By Lemma 2.1(d), there exist two labellings $R=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ and $L_{2}=b_{1} b_{2} b_{3} b_{4} b_{5} b_{1}$ such that $e\left(y_{1} y_{2}, b_{1} b_{2} b_{3} b_{4}\right)=8, e\left(y_{3}, b_{1} b_{5} b_{4}\right)=3$ and $e\left(y_{4}, b_{1} b_{4}\right)=2$. If $x_{0} \in\left\{y_{1}, y_{2}\right\}$, we may assume w.l.o.g. that $\left\{x_{0}, x_{3}\right\}=\left\{y_{1}, y_{2}\right\}$. Then $\left[G_{1}-x_{0}+b_{5}\right] \supseteq F_{1} \uplus K_{5}^{-}$. By the optimality of $\left\{D, L_{1}, L_{2}\right\}, x_{0} \xrightarrow{n a}\left(L_{2}, b_{5}\right)$. This implies that $\tau\left(b_{5}, L_{2}\right)=2$. Thus $x_{0} \rightarrow\left(L_{2}, b_{1} ; R-\left\{x_{0}\right\}\right)$, a contradiction. Hence $x_{0} \notin\left\{y_{1}, y_{2}\right\}$. W.l.o.g., say $\left\{a_{3}, a_{5}\right\}=\left\{y_{1}, y_{2}\right\}$. Then $\left[a_{3}, a_{4}, a_{5}, b_{2}, b_{3}\right] \supseteq C_{5},\left[x_{0}, x_{3}, b_{1}, b_{5}, b_{4}\right] \supseteq C_{5}$ and $\left[x_{2}, x_{1}, x_{4}, a_{1}, a_{2}\right] \supseteq C_{5}$, a contradiction.

3. Proof of Theorem 1

Let G be a graph of order $5 k$ with minimum degree at least $3 k$. Suppose, for a contradiction, that $G \nsupseteq k C_{5}$. We may assume that G is maximal, i.e., $G+x y \supseteq$ $k C_{5}$ for each pair of non-adjacent vertices x and y of G. Thus $G \supseteq P_{5} \uplus(k-1) C_{5}$. Our proof will follow from the following three lemmas.

Lemma 3.1. For each $s \in\{1,2, \ldots, k\}, G \nsupseteq s B \uplus(k-s) C_{5}$.
Proof. On the contrary, suppose that $G \supseteq s B \uplus(k-s) C_{5}$ for some $s \in\{1,2, \ldots, k\}$. Let s be the minimum number in $\{1,2, \ldots, k\}$ such that $G \supseteq$ $s B \uplus(k-s) C_{5}$. Say $G \supseteq s B \uplus(k-s) C_{5}=\left\{B_{1}, \ldots, B_{s}, L_{1}, \ldots, L_{k-s}\right\}$ with $B_{i} \cong B$ for $i \in\{1,2, \ldots, s\}$. Let R be the set of the four vertices of B_{1} whose degrees in B_{1} are 2. By Lemma 2.2, Lemma 2.8 and the minimality of s, we see that $e\left(R, B_{i}\right) \leq 12$ and $e\left(R, L_{j}\right) \leq 12$ for all $i \in\{2,3, \ldots, s\}$ and $j \in\{1,2, \ldots, k-s\}$. Therefore $e(R, G) \leq 12(k-1)+8=12 k-4$. As the minimum degree of G is $3 k$, we obtain $12 k-4 \geq e(R, G) \geq 12 k$, a contradiction.

Lemma 3.2. There exists a sequence ($D, L_{1}, L_{2}, \ldots, L_{k-1}$) of disjoint subgraphs of G such that $D \cong K_{4}^{+}$and $L_{i} \cong C_{5}$ for all $i \in\{1,2, \ldots, k-1\}$.

Proof. First, we claim that $G \supseteq F \uplus(k-1) C_{5}$. We choose a sequence ($P, L_{1}, L_{2}, \ldots, L_{k-1}$) of disjoint subgraphs of G such that $P \cong P_{5}$ and $L_{i} \cong C_{5}$ for
all $i \in\{1,2, \ldots, k-1\}$ with $\sum_{i=1}^{k-1} \tau\left(L_{i}\right)$ as large as possible. As $G \nsupseteq k C_{5}$ and by Lemma 2.1(c), $e(P, P) \leq 14$ and so $e(P, G-V(P)) \geq 15 k-14=15(k-1)+1$. Thus $e\left(P, L_{i}\right) \geq 16$ for some $i \in\{1,2, \ldots, k-1\}$. By Lemma 2.3, $\left[P, L_{i}\right] \supseteq F \uplus C_{5}$ and so $G \supseteq F \uplus(k-1) C_{5}$.

Next, we claim that $G \supseteq F_{1} \uplus(k-1) C_{5}$. Assume for the moment that $G \supseteq F_{2} \uplus(k-1) C_{5}=\left\{D, L_{1}, L_{2}, \ldots, L_{k-1}\right\}$ with $D \cong F_{2}$. Let R be the three vertices of D with degree 2 in D. Then $e(R, G-V(D)) \geq 9 k-6=9(k-$ $1)+3$. Thus $e\left(R, L_{i}\right) \geq 10$ for some $i \in\{1,2, \ldots, k-1\}$. By Lemma 2.4, [$\left.D, L_{i}\right] \supseteq F_{1} \uplus C_{5}$ and so $G \supseteq F_{1} \uplus(k-1) C_{5}$. Hence we may assume that $G \nsupseteq F_{2} \uplus(k-1) C_{5}$. Then we choose a sequence ($D, L_{1}, L_{2}, \ldots, L_{k-1}$) of disjoint subgraphs of G such that $D \cong F$ and $L_{i} \cong C_{5}$ for all $i \in\{1,2, \ldots, k-1\}$ with $\sum_{i=1}^{k-1} \tau\left(L_{i}\right)$ as large as possible. Then $e\left(D, L_{i}\right) \geq 16$ for some $i \in\{1,2, \ldots, k-1\}$. By Lemma 2.5 and Lemma 3.1, we may assume that there exist two labellings $D=x_{0} x_{1} x_{2} x_{3} x_{4} x_{1}$ and $L_{1}=a_{1} a_{2} a_{3} a_{4} a_{5} a_{1}$ such that $e\left(x_{0}, L_{1}\right)=0, e\left(x_{1} x_{3}, L_{1}\right)=$ $10, N\left(x_{2}, L_{1}\right)=N\left(x_{4}, L_{1}\right)=\left\{a_{1}, a_{2}, a_{4}\right\}, \tau\left(L_{1}\right)=4$ and $a_{3} a_{5} \notin E$. Then $e\left(x_{0} x_{2} a_{3} a_{5}, G-V\left(D \cup L_{1}\right)\right) \geq 12 k-17=12(k-2)+7$. Thus $e\left(x_{0} x_{2} a_{3} a_{5}, L_{i}\right) \geq 13$ for some $i \in\{2,3, \ldots, k-1\}$. By Lemma 2.6 , we obtain $\left[D, L_{1}, L_{i}\right] \supseteq F_{1} \uplus 2 C_{5}$ and so $G \supseteq F_{1} \uplus(k-1) C_{5}$.

Suppose that $G \supseteq K_{4}^{+} \uplus B \uplus(k-2) C_{5}=\left\{D, B_{1}, L_{1}, L_{2}, \ldots, L_{k-2}\right\}$ with $D \cong K_{4}^{+}$and $B_{1} \cong B$. Let R be the four vertices of B_{1} with degree 2 in B_{1}. Then either $e(R, D) \geq 13$ or $e\left(R, L_{i}\right) \geq 13$ for some $i \in\{1,2, \ldots, k-2\}$. By Lemma 2.2, Lemma 2.7 and Lemma 3.1, we see that $G \supseteq K_{4}^{+} \uplus(k-1) C_{5}$. Hence we may suppose that $G \nsupseteq K_{4}^{+} \uplus B \uplus(k-2) C_{5}$.

We now choose an optimal sequence $\left(D, L_{1}, L_{2}, \ldots, L_{k-1}\right)$ of disjoint subgraphs of G with $D \cong F_{1}$ and $L_{i} \cong C_{5}$ for all $i \in\{1,2, \ldots, k-1\}$. Then $e\left(D, L_{i}\right) \geq$ 16 for some $i \in\{1,2, \ldots, k-1\}$. Say w.l.o.g. $e\left(D, L_{1}\right) \geq 16$. By Lemma 2.9 and Lemma 3.1, we may assume that there exist two labellings $L_{1}=a_{1} a_{2} a_{3} a_{4} a_{5} a_{1}$ and $V(D)=\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ with $E(D)=\left\{x_{0} x_{1}, x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{1}, x_{2} x_{4}\right\}$ such that $e\left(x_{0}, L_{1}\right)=0, e\left(a_{1} a_{2} a_{4}, D-x_{0}\right)=12, N\left(a_{3}, L_{1}\right)=N\left(a_{5}, L_{1}\right)=$ $\left\{x_{2}, x_{4}\right\}, \tau\left(L_{1}\right)=4$ and $a_{3} a_{5} \notin E$. Let $R=\left\{x_{0}, x_{3}, a_{3}, a_{5}\right\}$ and $G_{1}=\left[D, L_{1}\right]$. Then $e\left(R, G_{1}\right) \leq 16$ and so $e\left(R, G-V\left(G_{1}\right)\right) \geq 12 k-16=12(k-2)+8$. This implies that $e\left(R, L_{i}\right) \geq 13$ for some $i \in\{2,3, \ldots, k-1\}$. Say w.l.o.g. $e\left(R, L_{2}\right) \geq 13$. By Lemma 2.10, it follows that $\left[G_{1}, L_{2}\right] \supseteq K_{4}^{+} \uplus 2 C_{5}$ and so $G \supseteq K_{4}^{+} \uplus(k-1) C_{5}$.

Let $\sigma=\left(D, L_{1}, \ldots, L_{k-1}\right)$ be an optimal sequence of disjoint subgraphs in G with $D \cong K_{4}^{+}$and $L_{i} \cong C_{5}$ for all $i \in\{1,2, \ldots, k-1\}$. Say $V(D)=\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ with $N\left(x_{0}, D\right)=\left\{x_{1}\right\}$. Let $Q=D-x_{0}$ and $T=Q-x_{1}$. Then $Q \cong K_{4}$ and $T \cong C_{3}$.

Lemma 3.3. For each $t \in\{1,2, \ldots, k-1\}$, the following statements hold: (a) If $e\left(x_{0}, L_{t}\right)=5$, then $e\left(Q, L_{t}\right) \leq 5$.
(b) If $e\left(x_{0}, L_{t}\right)=4$, then $e\left(Q, L_{t}\right) \leq 9$.
(c) If $e\left(x_{0}, L_{t}\right)=r$, then $e\left(Q, L_{t}\right) \leq 18-2 r$ for $r \in\{1,3\}$ and if $e\left(x_{0}, L_{t}\right)=2$, then $e\left(Q, L_{t}\right) \leq 15$.

Proof. For convenience, we may assume $L_{t}=L_{1}=a_{1} a_{2} a_{3} a_{4} a_{5} a_{1}$. Let $G_{1}=$ $\left[D, L_{1}\right]$. As $G_{1} \nsupseteq 2 C_{5}$, we see that if $x_{0} \rightarrow L_{1}$, then $e\left(a_{i}, Q\right) \leq 1$ for all $a_{i} \in$ $V\left(L_{1}\right)$ and so the lemma holds. Hence we may assume that $x_{0} \nrightarrow L_{1}$ and so $e\left(x_{0}, L_{1}\right) \leq 4$.

To prove (b), say w.l.o.g. $e\left(x_{0}, L_{1}-a_{5}\right)=4$. On the contrary, suppose $e\left(Q, L_{1}\right) \geq 10$. It is easy to see that $\tau\left(a_{5}, L_{1}\right)=0$ for otherwise $x_{0} \rightarrow L_{1}$ and so $G_{1} \supseteq 2 C_{5}$. As $x_{0} \rightarrow\left(L_{1}, a_{i}\right)$ for $i \in\{2,3,5\}, e\left(a_{i}, Q\right) \leq 1$ for $i \in\{2,3,5\}$. If $e\left(a_{5}, Q\right)=1$ then $\left[Q+a_{5}\right] \cong K_{4}^{+}$and $\tau\left(x_{0} a_{1} a_{2} a_{3} a_{4} x_{0}\right)>\tau\left(L_{1}\right)$, contradicting the optimality of σ. Hence $e\left(a_{5}, Q\right)=0$. It follows that $e\left(a_{2}, Q\right)=e\left(a_{3}, Q\right)=1$ and $e\left(a_{1} a_{4}, Q\right)=8$. Clearly, $\tau\left(x_{0} a_{3} a_{4} a_{5} a_{1} x_{0}\right) \geq \tau\left(L_{1}\right)$ with equality only if $a_{2} a_{4} \in E$. As $\left[Q+a_{2}\right] \supseteq K_{4}^{+}$and by the optimality of σ, we obtain $a_{2} a_{4} \in E$. Thus $\left[a_{5}, a_{4}, a_{3}, a_{2}, x_{0}\right] \supseteq K_{4}^{+}$and $\left[Q+a_{1}\right] \cong K_{5}$. By the optimality of σ, we obtain $\left[L_{1}\right] \cong K_{5}$, a contradiction.

To prove (c), we suppose, for a contradiction, that either $e\left(x_{0}, L_{1}\right)=r$ and $e\left(Q, L_{1}\right) \geq 19-2 r$ for some $r \in\{1,3\}$ or $e\left(x_{0}, L_{1}\right)=2$ and $e\left(Q, L_{1}\right) \geq 16$. We divide the proof into the following three cases.

Case 1. $e\left(x_{0}, L_{1}\right)=3$ and $e\left(Q, L_{1}\right) \geq 13$. First, suppose that $N\left(x_{0}, L_{1}\right)=$ $\left\{a_{i}, a_{i+1}, a_{i+3}\right\}$ for some $i \in\{1,2,3,4,5\}$. Say w.l.o.g. $N\left(x_{0}, L_{1}\right)=\left\{a_{1}, a_{2}, a_{4}\right\}$. As $x_{0} \nrightarrow L_{1}, a_{3} a_{5} \notin E$. Clearly, $x_{0} \rightarrow\left(L_{1}, a_{3}\right)$ and $x_{0} \rightarrow\left(L_{1}, a_{5}\right)$. Thus $e\left(a_{3}, Q\right) \leq 1$ and $e\left(a_{5}, Q\right) \leq 1$. It follows that $e\left(a_{1} a_{2} a_{4}, Q\right) \geq 11, e\left(x_{1}, a_{1} a_{4}\right) \geq 1$ and $e\left(x_{1}, a_{2} a_{4}\right) \geq 1$. Thus $\left[x_{0}, x_{1}, a_{1}, a_{5}, a_{4}\right] \supseteq C_{5}$ and $\left[x_{0}, x_{1}, a_{2}, a_{3}, a_{4}\right] \supseteq C_{5}$. As $e\left(a_{i}, T\right) \geq 2$ for $i \in\{1,2\}$, it is easy to see that $e\left(a_{3} a_{5}, T\right)=0$, i.e., $N\left(a_{3} a_{5}, Q\right) \subseteq$ $\left\{x_{1}\right\}$, for otherwise $G_{1} \supseteq 2 C_{5}$.

Let $R=\left\{x_{0}, x_{3}, a_{3}, a_{5}\right\}$. Then $e\left(R, G_{1}\right) \leq 18$ and so $e\left(R, G-V\left(G_{1}\right)\right) \geq$ $12 k-18=12(k-2)+6$. Then $e\left(R, L_{i}\right) \geq 13$ for some $i \in\{2,3, \ldots, k-$ $1\}$. Say w.l.o.g. $e\left(R, L_{2}\right) \geq 13$. Let $G_{2}=\left[G_{1}, L_{2}\right]$. Then $G_{2} \nsupseteq 3 C_{5}$. Since $e\left(Q, L_{1}\right) \geq 13$ and $N\left(a_{3} a_{5}, Q\right) \subseteq\left\{x_{1}\right\}$, it is easy to check that if $u \rightarrow\left(L_{2} ; R-\right.$ $\{u\})$ for some $u \in R$, then $G_{2} \supseteq 3 C_{5}$. Hence $u \nrightarrow\left(L_{2} ; R-\{u\}\right)$ for all $u \in$ R. By Lemma 2.1(d), there exist two labellings $L_{2}=b_{1} b_{2} b_{3} b_{4} b_{5} b_{1}$ and $R=$ $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ such that $e\left(y_{1} y_{2}, L_{2}-b_{5}\right)=8, e\left(y_{3}, b_{1} b_{5} b_{4}\right)=3$ and $e\left(y_{4}, b_{1} b_{4}\right)=2$. If $\left\{y_{1}, y_{2}\right\}=\left\{x_{0}, x_{3}\right\}$, let $\{s, t\}=\{1,2\}$ with $a_{s} \in I\left(x_{0} x_{3}, L_{1}\right)$ and then we see that $\left[x_{0}, a_{s}, x_{3}, b_{2}, b_{3}\right] \supseteq C_{5},\left[a_{3}, a_{5}, b_{1}, b_{5}, b_{4}\right] \supseteq C_{5}$ and $\left[Q-x_{3}+a_{4}+a_{t}\right] \supseteq$ C_{5}, a contradiction. If $\left\{y_{1}, y_{2}\right\}=\left\{x_{0}, a_{i}\right\}$ for some $i \in\{3,5\}$, we may assume w.l.o.g. that $\left\{y_{1}, y_{2}\right\}=\left\{x_{0}, a_{5}\right\}$ and then we see that $\left[x_{0}, a_{1}, a_{5}, b_{2}, b_{3}\right] \supseteq C_{5}$, [$\left.a_{3}, x_{3}, b_{1}, b_{5}, b_{4}\right] \supseteq C_{5}$ and $\left[a_{2}, a_{4}, x_{1}, x_{2}, x_{4}\right] \supseteq C_{5}$, a contradiction. If $\left\{y_{1}, y_{2}\right\}=$ $\left\{x_{3}, a_{i}\right\}$ for some $i \in\{3,5\}$, we may assume w.l.o.g. that $\left\{y_{1}, y_{2}\right\}=\left\{x_{3}, a_{5}\right\}$ and let $\{s, t\}=\{1,4\}$ be such that $x_{3} a_{s} \in E$. Then we see that $\left\{x_{3}, a_{s}, a_{5}, b_{2}, b_{3}\right] \supseteq$
$C_{5},\left[x_{0}, a_{3}, b_{1}, b_{5}, b_{4}\right] \supseteq C_{5}$ and $\left[x_{1}, x_{2}, x_{4}, a_{2}, a_{t}\right] \supseteq C_{5}$, a contradiction. Hence $\left\{y_{1}, y_{2}\right\}=\left\{a_{3}, a_{5}\right\}$. Then $\left[a_{3}, a_{4}, a_{5}, b_{2}, b_{3}\right] \supseteq C_{5},\left[x_{0}, x_{3}, b_{1}, b_{5}, b_{4}\right] \supseteq C_{5}$ and $\left[x_{1}, x_{2}, x_{4}, a_{1}, a_{2}\right] \supseteq C_{5}$, a contradiction.

Next, suppose that $N\left(x_{0}, L_{1}\right)=\left\{a_{i}, a_{i+1}, a_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$. Say w.l.o.g. $N\left(x_{0}, L_{1}\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. Then $e\left(a_{2}, Q\right) \leq 1$ as $G_{1} \nsupseteq 2 C_{5}$ and so $e\left(Q, L_{1}-a_{2}\right) \geq 12$. First, assume $e\left(x_{1}, a_{4} a_{5}\right) \geq 1$. Say w.l.o.g. $x_{1} a_{5} \in E$. Then $\left[x_{0}, x_{1}, a_{5}, a_{1}, a_{2}\right] \supseteq C_{5}$. Then $e\left(a_{3} a_{4}, T\right) \leq 3$ as $G_{1} \nsupseteq 2 C_{5}$. If we also have $x_{1} a_{4} \in E$, then similarly, $e\left(a_{1} a_{5}, T\right) \leq 3$ and so $e\left(Q, L_{1}-a_{2}\right) \leq 11$, a contradiction. Hence $x_{1} a_{4} \notin E$. As $e\left(Q, L_{1}\right) \geq 13$, it follows that $e\left(a_{1} a_{5}, Q\right)=8$, $e\left(a_{3} a_{4}, T\right)=3, x_{1} a_{3} \in E$ and $e\left(a_{2}, Q\right)=1$. Clearly, $\left[T+a_{4}+a_{5}\right] \nsupseteq C_{5}$ as $G_{1} \nsupseteq$ $2 C_{5}$. This implies that $e\left(a_{4}, T\right)=0$ and so $e\left(a_{3}, Q\right)=4$. Obviously, $G_{1} \supseteq 2 C_{5}$, a contradiction. Hence $e\left(x_{1}, a_{4} a_{5}\right)=0$. Next, assume $e\left(x_{1}, a_{1} a_{3}\right) \geq 1$. Then $\left[x_{0}, x_{1}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$ and so $e\left(a_{4} a_{5}, T\right) \leq 3$. It follows that $e\left(Q, L_{1}-a_{2}\right) \leq 12$, a contradiction. Hence $e\left(x_{1}, L_{1}-a_{2}\right)=0$. Thus $e\left(T, L_{1}-a_{2}\right)=12$. Obviously, $G_{1} \supseteq 2 C_{5}$, a contradiction.

Case 2. $e\left(x_{0}, L_{1}\right)=2$ and $e\left(Q, L_{1}\right) \geq 16$. First, suppose that $N\left(x_{0}, L_{1}\right)=$ $\left\{a_{i}, a_{i+2}\right\}$ for some $i \in\{1,2,3,4,5\}$. Say, $N\left(x_{0}, L_{1}\right)=\left\{a_{1}, a_{3}\right\}$. Then $e\left(a_{2}, Q\right) \leq$ 1 and $e\left(Q, L_{1}-a_{2}\right) \geq 15$. Thus $e\left(x_{1}, a_{1} a_{3}\right) \geq 1$. Then $\left[x_{0}, x_{1}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$ and so $e\left(a_{4} a_{5}, T\right) \leq 3$. Thus $e\left(Q, L_{1}-a_{2}\right) \leq 13$, a contradiction. Therefore we may assume w.l.o.g. that $N\left(x_{0}, L_{1}\right)=\left\{a_{1}, a_{2}\right\}$. First, assume $x_{1} a_{4} \in E$. Then $\left[x_{0}, x_{1}, a_{4}, a_{5}, a_{1}\right] \supseteq C_{5}$ and $\left[x_{0}, x_{1}, a_{4}, a_{3}, a_{2}\right] \supseteq C_{5}$. As $G_{1} \nsupseteq 2 C_{5}, e\left(a_{2} a_{3}, T\right) \leq 3$ and $e\left(a_{1} a_{5}, T\right) \leq 3$. Thus $e\left(Q, L_{1}\right) \leq 14$, a contradiction. Hence $x_{1} a_{4} \notin E$. Next, assume $e\left(x_{1}, a_{3} a_{5}\right) \geq 1$. Say w.l.o.g. $x_{1} a_{5} \in E$. Then $\left[x_{0}, x_{1}, a_{5}, a_{1}, a_{2}\right] \supseteq$ C_{5} and so $e\left(a_{3} a_{4}, T\right) \leq 3$. As $e\left(Q, L_{1}\right) \geq 16$, it follows that $e\left(a_{5} a_{1} a_{2}, Q\right)=$ $12, e\left(a_{3} a_{4}, T\right)=3$ and $x_{1} a_{3} \in E$. Thus $e\left(x_{3}, a_{2} a_{5}\right)=2$ and so $G_{1} \supseteq 2 C_{5}$, a contradiction. Hence $e\left(x_{1}, a_{3} a_{4} a_{5}\right)=0$. Thus $e\left(T, L_{1}\right) \geq 14$. This implies that $e\left(x_{i}, a_{2} a_{5}\right)=2$ and $a_{1} x_{j} \in E$ for some $\{i, j\} \subseteq\{2,3,4\}$ with $i \neq j$. Consequently, $H \supseteq 2 C_{5}$, a contradiction.

Case 3. $e\left(x_{0}, L_{1}\right)=1$ and $e\left(Q, L_{1}\right) \geq 17$. Say w.l.o.g. $x_{0} a_{1} \in E$. Suppose $e\left(x_{1}, a_{3} a_{4}\right) \geq 1$. Say $x_{1} a_{3} \in E$. Then $\left[x_{1}, x_{0}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$ and so $e\left(a_{4} a_{5}, T\right) \leq$ 3 as $G_{1} \nsupseteq 2 C_{5}$. As $e\left(Q, L_{1}\right) \geq 17$, it follows that $e\left(a_{1} a_{2} a_{3}, Q\right)=12, e\left(a_{4} a_{5}, T\right)=$ 3 and $e\left(x_{1}, a_{4} a_{5}\right)=2$. Then $\left[x_{0}, x_{1}, a_{4}, a_{5}, a_{1}\right] \supseteq C_{5}$ and $\left[T, a_{2}, a_{3}\right] \supseteq C_{5}$, a contradiction. Hence $e\left(x_{1}, a_{3} a_{4}\right)=0$. As $e\left(Q, L_{1}\right) \geq 17, e\left(T, L_{1}\right) \geq 14$. This implies that $e\left(x_{i}, a_{2} a_{5}\right)=2$ and $a_{1} x_{j} \in E$ for some $\{i, j\} \subseteq\{2,3,4\}$ with $i \neq j$. Consequently, $H \supseteq 2 C_{5}$, a contradiction.

We are now in the position to complete the proof of Theorem 1. Let $\mathcal{A}_{r}=$ $\left\{L_{t} \mid e\left(x_{0}, L_{t}\right)=r, 1 \leq t \leq k-1\right\}$ for each $0 \leq r \leq 5$. Set $p_{r}=\left|\mathcal{A}_{r}\right|$ for each $0 \leq r \leq 5$. Clearly, $p_{0}+p_{1}+p_{2}+p_{3}+p_{4}+p_{5}=k-1$. By Lemma 3.3, we obtain

$$
\begin{align*}
e\left(x_{0}, G\right) & =e\left(x_{0}, D\right)+\sum_{r=0}^{5} \sum_{L_{t} \in \mathcal{A}_{r}} e\left(x_{0}, L_{t}\right) \\
& =1+p_{1}+2 p_{2}+3 p_{3}+4 p_{4}+5 p_{5} \tag{2}\\
e(D, G) & =e(D, D)+\sum_{r=0}^{5} \sum_{L_{t} \in \mathcal{A}_{r}} e\left(D, L_{t}\right) \\
& \leq 14+20 p_{0}+17 p_{1}+17 p_{2}+15 p_{3}+13 p_{4}+10 p_{5} . \tag{3}
\end{align*}
$$

Then we obtain

$$
\begin{align*}
e\left(x_{0}, G\right)+e(D, G) & \leq 15+20 p_{0}+18 p_{1}+19 p_{2}+18 p_{3}+17 p_{4}+15 p_{5} \\
& =18 k+2 p_{0}+p_{2}-p_{4}-3 p_{5}-3 . \tag{4}
\end{align*}
$$

As $3 \sum_{r=0}^{5} p_{r}=3 k-3$ and $e\left(x_{0}, G\right) \geq 3 k$, we obtain, by using (2), the following

$$
\begin{align*}
& 1+p_{1}+2 p_{2}+3 p_{3}+4 p_{4}+5 p_{5} \\
& \geq 3+3 p_{0}+3 p_{1}+3 p_{2}+3 p_{3}+3 p_{4}+3 p_{5} \tag{5}
\end{align*}
$$

This implies that $3 p_{0}+2 p_{1}+p_{2}-p_{4}-2 p_{5}+2 \leq 0$. Thus $2 p_{0}+p_{2}-p_{4}-3 p_{5} \leq-2$. Together with (4), we obtain $e\left(x_{0}, G\right)+e(D, G) \leq 18 k-5$. But by the degree condition on G, we have $e\left(x_{0}, G\right)+e(D, G) \geq 3 k+15 k=18 k$, a contradiction. This proves Theorem 1.

References

[1] S. Abbasi, PhD Thesis (Rutgers University 1998).
[2] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439.
doi:10.1007/BF01895727
[4] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227-230. doi:10.1016/0012-365X(84)90050-5
[5] P. Erdős, Some recent combinatorial problems, Technical Report, University of Bielefeld, Nov. 1990.
[6] B. Randerath, I. Schiermeyer and H. Wang, On quadrilaterals in a graph, Discrete Math. 203 (1999) 229-237. doi:10.1016/S0012-365X(99)00053-9
[7] H. Wang, On quadrilaterals in a graph, Discrete Math. 288 (2004) 149-166. doi:10.1016/j.disc.2004.02.020
[8] H. Wang, Proof of the Erdös-Faudree conjecture on quadrilaterals, Graphs and Combin. 26 (2010) 833-877.
doi:10.1007/s00373-010-0948-3
Received 26 October 2010
Revised 17 April 2011
Accepted 17 April 2011

