Discussiones Mathematicae
Graph Theory 32 (2012) 331-339
doi:10.7151/dmgt.1604

ON RAMSEY (K., K,)-MINIMAL GRAPHS

MARIUSZ HALUSZCZAK

Faculty of Mathematics, Computer Science and Econometrics
University of Zielona Gora
Z. Szafrana 4a, Zielona Gdra, Poland

Abstract

Let F' be a graph and let G, H denote nonempty families of graphs.
We write F' — (G, H) if in any 2-coloring of edges of F' with red and blue,
there is a red subgraph isomorphic to some graph from G or a blue subgraph
isomorphic to some graph from H. The graph F without isolated vertices
is said to be a (G, H)-minimal graph if F — (G,H) and F —e 4 (G, H) for
every e € E(F).

We present a technique which allows to generate infinite family of (G, H)-
minimal graphs if we know some special graphs. In particular, we show how
to receive infinite family of (K 2, K, )-minimal graphs, for every n > 3.

Keywords: Ramsey minimal graph, edge coloring, 1-factor, complete graph.

2010 Mathematics Subject Classification: 05C55, 05C70, 05C76,
05D10.

1. INTRODUCTION

We consider only finite undirected graphs without loops or multiple edges. Let
G be a graph with the vertex set V(G) and the edge set E(G). By degg(vi),
da(v1, v2) we denote the degree of the vertex vy in G and the distance between two
vertices vy, vg, respectively. If G is known we can shortly write deg(v), d(vy, v2).
We use the notation and terminology of [8].

Let F' be a graph and let G, H be nonempty families of graphs. We write
F — (G,H) if in any 2-coloring of edges of F' with red and blue, there is a red
subgraph isomorphic to some graph from G or a blue subgraph isomorphic to
some graph from H. Otherwise, if there exists a 2-coloring of edges such that
neither a red subgraph isomorphic to some graph from G nor a blue subgraph
isomorphic to some graph from H occur, then we write F' 4 (G, #H). The graph
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F without isolated vertices is said to be a (G, H)-minimal graph if F' — (G, H)
and F' —e /4 (G, H) for any e € E(F). The Ramsey set R(G,H) is defined to be
the set of all (G,H)-minimal graphs (up to isomorphism). For the simplicity of
the notation, instead of R({G},{H}) we write R(G, H).

Many papers study the problem of determining the family R(G, H). One can
easily observe that the set R(Kj 2, K 2) is infinite and consists of star with three
rays and all cycles of odd length. Burr et al. [6] proved that R(K7 op+1, K1 2141) =
{K1 2(k41y41} and R(K7 2, K7,21) is infinite, for every k,l > 1. Next Borowiecki
et al. [3] characterized graphs belonging to R(K 2, K1 ) for m > 3.

The graphs belonging to #(2K5, K ,,) were characterized in [10]. Moreover,
Luczak [9] showed that R(K7 2m,G) is finite if and only if G is a matching. It
means that, for n > 3, R(K; 2, K,,) has infinite number of graphs.

Borowiecki, et al. described in [4] the whole set (K 2, K3). In [1, 2] the au-
thors presented how we can generate an infinite family of (K2, C4)-minimal
graphs. In this paper we describe a method which can be applied to the con-
struction of infinitely many graphs belonging to R(Kj 2, Ky,), for any n > 3.

2. THE MAIN RESULTS

First we extend, in the same way as in [2], the already given standard definitions
by adding some restriction on a chosen set of vertices. This allows us to construct
the infinite family R(K; 2,G), for any given family G of 2-connected graphs.

Definition 1. Let F' be a graph with U C V(F) and let G, H be families of
graphs. If for any red-blue coloring of edges of F', such that all vertices in U
are not incident with red edges, there exists a red copy of some graph from G or

a blue copy of some graph from #, then we write F(U) — (G, H). Otherwise,
there exists a (G, H)-coloring of edges of F(U) and we write F(U) 4 (G, H).

Definition 2. Let F' be a graph and U C V(F). Let i € {1,2,...,|U|}. We say
that F'(U); is (G, H)-minimal if

1. F(U;) = (G, H), for every U; € (L[),
2. (F—e)(U;) 4 (G,H), for every e € E(F) and every U; € ([{),
3. F(Ui_1) / (G, H), for every U;_1 € (,Y)).

We write F(U); € R(G,H) if F(U); is (G, H)-minimal. If U = or i = 0, then
we assume that F(U); € R(G,H) & F € R(G, H).
For the simplicity of the notation we write F{vy,...,vp); instead of F({v1,...,vp});

and Flvy,...,v,) instead of Flvy, ..., vp)p.
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Remark 1. F(ry,2); € R(G, M) if and only if F(r;) € R(G, M), for i = 1,2.

Lemma 2. Let G be a family of 2-connected graphs. Let My, Ms be disjoint
graphs and U; C V(M;), |U;| € {1,2} and r; € U;, for i = 1,2, and let M be a
graph obtained from disjoint graphs My and My by identifying the vertices r1 and
ro. If Ml(Ul), MQ(UQ) € %(KLQ, g), then M(U1 U U, \ {Tl,’r‘g}) S %(KLQ, g)

Proof. Let U = Uy U Uy \ {r1,r2}. First we prove that M(U) — (K12,G).
If we assume that M(U) /4 (K12,G), then there exists a coloring of edges of
M such that there is at most one red edge e incident with 7;. It means that
My(Ur) 4 (Ki12,G) or Ma(Usz) 4 (K12,G). Hence, we obtain a contradiction.

Now we show that (M —e)(U) 4 (K12,G). Without loss of generality we
can consider only the situation when e € E(M;). We know that (M; —e)(Uy) /4
(K12,G) and My(Usz \ {r2}) # (K12,G). Thus, there exist a (K 2,G)-coloring
of edges of (M; —e)(Uy), let us denote it by ¢1, and a (K7 2, G)-coloring of edges
of Ma(Us \ {r2}), let us denote it by ¢2. Let ¢ be a coloring of edges of (M — e)
such that ¢(f) = ¢1(f) for f € E(M;y) and ¢(f) = ¢a2(f) for f € E(My). Since
My(Uz \ {r2}) # (Ki2,G), it is easy to notice that the vertex 7y is incident
with exactly one red edge which belongs to E(Ms). We can notice that there
does not exist a blue copy of a graph G' € G such that |V(G) NV (M;)| > 1 and
|[V(G) NV (Mz)| > 1, because G contains only 2-connected graphs. Hence, ¢ is
a (K12, G)-coloring of edges of (M —e)(U).

Finally, we prove that M (U; — r;) /4 (K12,G) for i = 1,2. Without loss of
generality we can assume that ¢ = 1. We know that M;(U; — {r1}) /4 (K12,G)
and Ms(rg) # (K1,2,G). Hence, there exist (K 2,G)-colorings ¢ and ¢9 of edges
of My(Uy — {r1}) and Ma(rq), respectively. Let ¢ be a coloring of edges of M
such that ¢(f) = ¢1(f), if f € E(M;) and ¢(f) = ¢2(f), otherwise. It is easy
to observe that the vertex r; is incident with exactly one red edge belonging to
E(Mj) in M. For the same reason as previously we can notice that there does
not exist a blue copy of a graph G € G such that |V(G) NV (M;p)| > 1 and
|[V(G) NV (Ms)| > 1. Hence, ¢ is a (K 2,G)-coloring of edges of M (U; — {r1}).
This observation finishes the proof. [

Lemma 3. Let ¢ > 3 be an integer, My, My be disjoint graphs, G be a family of 2-
connected graphs without induced cycles of the length greater than c. Let r;1,7;2
be vertices of M;, for i = 1,2, such that dyp, (11,1,71,2) + dumy(r2,1,722) > ¢, and
let L be a graph obtained from graphs My and Ma by identifying the vertices ri 1
and ro 1, and the vertices 112 and ro2. If Mi(ri1,7i2) € EfE(KLg,g), fori=1,2,
then L(Tl,la 7‘1,2)1 S %(KLQ, g)

Proof. First we prove that L(ri1,712)1 — (K1,2,G). Conversely, suppose that
L(ri1,712)17 (K1,2,G). Without loss of generality we can assume that L(rq 1) /4
(K1,2,G). Then there exists a (K 2, G)-coloring of edges of L such that every edge
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e incident with r1 7 in L is blue and at most one edge incident with 729 is red.
Without loss of generality we can assume that the red edge belongs to E(Mj).
Hence, we obtain a contradiction with the fact that Ma(r21,722) = (K1,2,G).
Now we show that (L —e)(r1,1,712)1 / (Ki1,2,G). Without loss of generality
we can assume that e € E(M;). We know that (M —e)(r1,1,7m12) /~ (K1,2,G)
and Ma(ra1) # (Ki2,G). Thus, there exist a (Kj2,G)-coloring of edges of
(M; —e)(r1,1,7r1,2) and a (K7 2, G)-coloring of edges of Ma(rg,1). We denote these
colorings by ¢1 and ¢, respectively. Let ¢ be a coloring of edges (L —e) such that
o(f) = o1(f), if f € E(My) and ¢(f) = ¢p2(f), otherwise. It is easy to notice that
the vertex 71 2 is incident with exactly one red edge belonging to E(M3). Since
G contains only 2-connected graphs and day, (r1,1,71,2) + da, (72,1, 72,2) > ¢, there
does not exist a blue copy of a graph G € G such that |V (G)NV (M;—r;1—7ri2)| >
0, for i = 1,2. Hence, ¢ is a (K 2,G)-coloring of edges of (L —e)(r1,1,71,2).
Finally, we prove that L /4 (Kj2,G). From our assumption, it follows that
Mi(r11) /4 (Ki12,G) and Ma(re2) 4 (K1,2,G). Thus once again, we can indicate
two colorings ¢1 and ¢2 such that ¢; is a (K7 2, G)-coloring of edges of M;(r;;), for
i =1,2. Let ¢ be a coloring of edges of L such that ¢(f) = ¢;(f) for f € E(M;)
and ¢ = 1,2. We can observe that the vertex rq 1 is incident with exactly one
red edge belonging to E(Mz) and the vertex 72 is incident with exactly one
red edge belonging to E(M;). We can notice that there does not exist a blue
copy of a graph G € G such that |[V(G) NV (M; — 11 —1ri2)] > 0 for i = 1,2,
because G contains only 2-connected graphs and day, (71,1, 71,2) +das, (12,1, 72,2) >
c. Therefore ¢ is a (K7 2,G)-coloring edges of L. |

Corollary 4. Let ¢ > 3 be an integer, My, My be disjoint graphs, G be a family of
2-connected graphs without induced cycles of the length greater than c. Letr;1,7;2
be vertices of M;, for i = 1,2, such that dpy, (11,1,71,2) + day(r2,1,722) > ¢, and
let B be a graph obtained from graphs My and My by identifying the vertices 71,1
and o1, and the vertices 19 and rog. If M;(ri1,752) € %(Klg,g), fori=1,2,
then B(r11) € R(K12,G).

Proof. From Lemma 3 and Remark 1. [

The next theorems give us a method of the construction of infinitely many graphs
that belong to (K 2,G), where G is any given family of graphs. In this con-
struction we use graphs with adding some restriction on a chosen set of vertices,
i.e., graphs that belong to the family §)EE(K172, G).

Theorem 5. Let ¢ > 3 be an integer, L, M be disjoint graphs, G be a family
of 2-connected graphs without induced cycles of the length greater than c. Let
{r11,m2} CV(L) and {ro1,r22} CV (M) such that dr,(r1,1,m12)4dr (2,1, 72,2 >,
and let I be a graph obtained from graphs L and M by identifying the vertices 111
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and ro 1 and the vertices r12, and roo. If L(r11,7m12), M(ro1,722) € @(Kl’g,g),
then F € R(K12,G).

Proof. We start with proving that ' — (K 2,G). Suppose, on the contrary, that
there exists a (K7 2,G)-coloring of edges of F'. From the fact that L(ry1,r12)1 —
(K1,2,G) it follows that in this coloring one edge incident with 71 ; and one edge
incident with r;2 in L is red. Hence, every edge incident with 721 and rg9 in
M is blue. We obtain a contradiction with the assumption that M (r21,722) —
(K12,9).

It remains to prove that F' — e /4 (K 2,G), for every e € E(F).

Case 1. Let e € E(L). We know that (L — e)(r1;) # (Ki2,G) and
M(ros—i) # (Ki2,G), for i = 1,2. Without loss of generality we can assume
that ¢ = 1. Thus, there exists a (K 2,G)-coloring of edges of (L — e)(r1,1) and
a (K12, G)-coloring of edges of M (r22). Let us denote these colorings by ¢; and
¢2, respectively. Let ¢ be a coloring of edges of (F' — e) such that ¢(f) = ¢1(f),
if f € E(L) and ¢(f) = ¢2(f), otherwise. Let us notice that the vertices r;;
and 712 must be incident with at most one red edge in the graph F' —e. We
also know that there does not exist a blue copy of a graph G € G such that
\V(G)N V(L — r1,1 — 7“172)‘ > 0 and |V(G) N V(M — o1 — T272)| > 0. This
observation follows from the fact that G contains only 2-connected graphs and
dr(r1,1,71,2) +dum(ra,1,m2,2) > c. Hence, ¢ is a (K7 2, G)-coloring of edges of F'—e.

Case 2. Let e € E(M). From the fact that L 4 (Ki2,G) and (M —
e)(rg1,r22) # (K1,2,G) it follows that there exist a (K 2, G)-coloring ¢; of edges
of L and a (K72, G)-coloring ¢ of edges of (M —e)(r2,1,72,2). Let ¢ be a coloring
of edges of (F' — e) such that ¢(f) = ¢1(f), if f € E(L) and ¢(f) = ¢p2(f),
otherwise. Since L(r1;) 4 (K12,G), for i = 1,2 and L /4 (K 2,G), the vertices
r1,1 and 712 are incident with exactly one red edge in F'—e. For the same reason
as in Case 1 we know that there does not exist a blue copy of a graph G € G such
that ’V(G) N V(L —Tri1— 7’172)’ > 0 and ‘V(G) N V(M —Tro1— T272)‘ > (0. Hence,
we can conclude that ¢ is a (K7 2, G)-coloring of edges of F' — e. ]

Corollary 6. Let By, By be disjoint graphs, G be a family of 2-connected graphs.
Let r, 19 be vertices of B1 and Bo, respectively, and let F' be a graph obtained
from graphs By and Bs by identifying the vertices r1 and ro. If Bi(r1), Ba(rs) €
R(K12,G), then F € R(K12,G).

Proof. From Lemma 2. [

Theorem 7. Let ¢ > 3 be an integer, L be a graph, G be a family of 2-connected
graphs without induced cycles of the length greater than c. Let r1,7T9 be vertices
of L such that dr(r1,r2) > ¢, and let F be a graph obtained from the graph L
by identifying the vertices r1 and ro. If L(r11,m1,2)1 € §fﬁ(K172,g), then F €
R(K12,G).
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Proof. First we show that F' — (K 2,G). Suppose, on the contrary, that there
exists a (K12,G)-coloring of edges of F' such that there is at most one red edge
incident with 1. Since dp(r1,72) > ¢, it follows that riro & E(L), so L(r1) 4
(K1,2,G) or L(r2) / (K12,G), what leads us to a contradiction.

To finish the proof we show that F' —e /4 (K1 2,G), for e € E(F). We know
that (L —e)(r1) 4 (K12,G). Hence, there exists a (K 2,G)-coloring of edges
of (L —e)(r1). It is easy to notice that the vertex ry is incident with at most
one red edge in the graph F' — e. Since G contains only 2-connected graphs and
dr(ri,m2) > ¢, there does not exist a blue copy of a graph G € G. Hence, ¢ is
a (K12,G)-coloring of edges of F' — e. [

3. THE FAMILIES %(KLQ,KH) AND R(K 2, Ky,)
On the basis of results of Borowiecki et al. [4] we can observe the following facts:

Observation 1.
(1) K3(r1,72) € R(Ky 9, K3).
(ii) Let r be a vertex of degree 3 of K4 —e. Then (K4 — e)(r) € R(K) 2, K3).
(iii) Let T'C,, = K3s-cycle, which we obtain from n > 4 copies of K3 by identifying
the second vertex of the i-th copy of K3 with the first vertex of the ((i mod
n)+1)-th copy of K3, fori =1,2,...,n. Then T'C,(r) € (K 2, K3), where
re V(TC,).

(iv) Let r1,m2 be vertices of degree 3 of Ky —e. Then (Ky — e)(ri,m2)1 €
(K12, K3).
(v) Graphs L;(ry,r2)1, for i =1,...,6, in Figure 1 belong to @(KLQ,K},).

T - T T2
I i h ; T i 1 W
T2 LT "2 T T2

L1 L2 L3 L4 L5 L6
Figure 1. All presented graphs L;(r1,72); belong to R(K 2, K3).

In the next three theorems we indicate some special graphs. These graphs to-
gether with our previous results allow us to construct infinitely many (K7 2, Ky, )-
minimal graphs, i.e. graphs that belong to the Ramsey set R(K 2, Kj,) for every
n > 3.
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Theorem 8. Let n > 3. Let M = Kop—3 — (n — 3)Ks and ri,r2 be vertices of
degree 2n — 4 of M. Then M (r1,r2) € R(K1 2, Ky).

Proof. Note that for n = 3 the graph M (ry,r9) = K3(r1,72) € %(KLQ, K,) from
Observation 1(i). Hence, we can consider only n > 4.

In the first step of the proof we show that M (ry,r2) — (K2, K,,). Provided
that the vertices r1 and r9 are not incident with red edges, we consider every
red-blue coloring ¢ of edges of M, such that there is no red copy of the graph
Kio. Let By = E(M) and Es = {e € E(M) : ¢(e) = red}. We can notice that
the graph H = (V(M) \ {r1,r2}, E1 U E») is bipartite and A(H) < 2. Hence, we
can divide the set V(H) into V; and V5 such that H[V;] and H[V3] are edgeless.
Without loss of generality we can assume that |Vi| > |Va|. This implies that
|[Vi] > n — 2. One can see that the subgraph of M induced by Vi U {ry,ra}
contains only blue edges and is isomorphic to K.

Now we show that (M — €)(r1,72) /4 (K12, K,). Let E(M) = {v;jv;2:i =
1,2,...,n—3}and v € V(M) \ {r1, 72}, where deg(v) = 2n — 4. Without loss of
generality we can consider only the case when e € {vy 171, v1,1v,v1,1v21}. If n > 5,
then for any choice of e we color red edges vv1 2, v;10i41,2, for i =1,2,...,n—4.
If n = 4, then we color red edges vv1 2 and vy 171. We color the remaining edges
blue. These colorings of (M — e)(r1,72) contain neither a red copy of K2 nor
a blue copy of K.

To finish the proof we show that M(r1) /4 (K12, K,). Let us consider the
following coloring of edges of M. If n > 5, then we color red edges m2v,—3 1, vv1 2,
Vi 1Vi41,2, for e =1,2,...,n—4. If n = 4, then we color red edges rav1,1 and vvy 2.
The remaining edges we color blue. One can see that this coloring of M contains
neither a red copy of Ki 2 nor a blue copy of K,. Similarly, we can prove that
M(Tg) 7L> (KLQ, Kn). |

Theorem 9. Let n > 3. Le~t B = Koy—92— (n—2)Ky and r be a vertex of degree
2n —3 of B. Then B(r) € R(K 2, Ky).

Proof. Notice that for n = 3 the graph B(r) = (K4 — e)(r) € R(K1 2, K3) from
Observation 1(ii). Hence, we can consider only n > 4.

First we prove that B(r) — (Kj2,Ky,). Consider a red-blue coloring ¢ of
edges of B. Suppose that in this coloring there is no red copy of Kja. Let
E; = E(B) and E; = {e € E(B) : ¢(e) = red}. If we consider the graph
H = (V(B)\ {r}, E1 U E3), then we can notice that H is bipartite and A(H) < 2.
Therefore we can divide the set V(H) into V; and V3 such that H[V1] and H[V3]
are edgeless. Without loss of generality we can assume that |Vi| > |V|. Hence
|[Vi] > n — 1. Now, we can notice that the subgraph of B induced by V; U {r}
contains only blue edges and is isomorphic to K.

Let E(B) = {vi1vig :i=1,2,...,n—2} and v € V(B)\{r}, where deg(v) = 2n—
3. In the next step of the proof we show that (B —e)(r) /4 (K12, K,,). Without
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loss of generality we can consider only the case when e € {vy17,v11v,v1 1021}
Regardless of the choice of e we color red edges vvy 2, Vi 1Vi41,2, fori =1,2,... ,n—
3. The remaining uncolored edges we color blue. Clearly, such a coloring of
(B — €)(r) contains neither a red copy of K2 nor a blue copy of K.

Finally, we show that B /4 (Ki2,K,). One can see that a coloring of B

such that edges rv,—o1,vv1 2,0 10i41,2, for ¢ = 1,2,...,n — 3, are red and the
other edges are blue contains neither a red copy of K1 2 nor a blue copy K,. This
observation finishes the proof. [

Theorem 10. Let n > 3. Let L = Kop—3 — (n —2)Ky and ri,79 be vertices of
degree 2n — 3 of L. Then L(r1,72)1 € R(K1 2, Kp).

Proof. From Remark 1 and Theorem 9. [

In the next theorem we indicate one more graph belonging to (K 2, K3,), for
every n > 3. Moreover, from [7] this graph is minimal with respect to the number
of vertices.

Theorem 11. Let F = Ko,—1 — (n —1)Ka, n > 3. Then F € R(K; 2, Ky).

Proof. From Theorem 9 we have B(r) = (Kay — (n — 1)K2)(r) — (K12, Kny1),
where deg(r) = 2n — 1. It easy to see that B —r = F and F' — (K2, Kp).

Let BE(F) = {v;1vi2:i=1,2,...,n—1} and v € V(B)\{r}, where deg(v) =
2n — 2. We show that (F' —e) 4 (K2, K,). Without loss of generality we can

consider only the case when e € {v;1v,v11v21}. Regardless of the choice of e

we color red edges vv1 2, v;1Vi4+1,2, for ¢ = 1,2,...,n —2. We color the remaining

uncolored edges blue. Clearly, such a coloring of F' contains neither a red copy

of K12 nor a blue copy of K. [}
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