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Abstract

Let F be a graph and let G, H denote nonempty families of graphs.
We write F → (G,H) if in any 2-coloring of edges of F with red and blue,
there is a red subgraph isomorphic to some graph from G or a blue subgraph
isomorphic to some graph from H. The graph F without isolated vertices
is said to be a (G,H)-minimal graph if F → (G,H) and F − e 6→ (G,H) for
every e ∈ E(F ).

We present a technique which allows to generate infinite family of (G,H)-
minimal graphs if we know some special graphs. In particular, we show how
to receive infinite family of (K1,2,Kn)-minimal graphs, for every n ≥ 3.
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1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Let
G be a graph with the vertex set V (G) and the edge set E(G). By degG(v1),
dG(v1, v2) we denote the degree of the vertex v1 in G and the distance between two
vertices v1, v2, respectively. If G is known we can shortly write deg(v1), d(v1, v2).
We use the notation and terminology of [8].

Let F be a graph and let G, H be nonempty families of graphs. We write
F → (G,H) if in any 2-coloring of edges of F with red and blue, there is a red
subgraph isomorphic to some graph from G or a blue subgraph isomorphic to
some graph from H. Otherwise, if there exists a 2-coloring of edges such that
neither a red subgraph isomorphic to some graph from G nor a blue subgraph
isomorphic to some graph from H occur, then we write F 6→ (G,H). The graph
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F without isolated vertices is said to be a (G,H)-minimal graph if F → (G,H)
and F − e 6→ (G,H) for any e ∈ E(F ). The Ramsey set ℜ(G,H) is defined to be
the set of all (G,H)-minimal graphs (up to isomorphism). For the simplicity of
the notation, instead of ℜ({G}, {H}) we write ℜ(G,H).

Many papers study the problem of determining the family ℜ(G,H). One can
easily observe that the set ℜ(K1,2,K1,2) is infinite and consists of star with three
rays and all cycles of odd length. Burr et al. [6] proved that ℜ(K1,2k+1,K1,2l+1) =
{K1,2(k+l)+1} and ℜ(K1,2k,K1,2l) is infinite, for every k, l ≥ 1. Next Borowiecki
et al. [3] characterized graphs belonging to ℜ(K1,2,K1,m) for m ≥ 3.

The graphs belonging to ℜ(2K2,K1,n) were characterized in [10]. Moreover,
 Luczak [9] showed that ℜ(K1,2m, G) is finite if and only if G is a matching. It
means that, for n ≥ 3, ℜ(K1,2,Kn) has infinite number of graphs.

Borowiecki, et al. described in [4] the whole set ℜ(K1,2,K3). In [1, 2] the au-
thors presented how we can generate an infinite family of (K1,2, C4)-minimal
graphs. In this paper we describe a method which can be applied to the con-
struction of infinitely many graphs belonging to ℜ(K1,2,Kn), for any n ≥ 3.

2. The Main Results

First we extend, in the same way as in [2], the already given standard definitions
by adding some restriction on a chosen set of vertices. This allows us to construct
the infinite family ℜ(K1,2,G), for any given family G of 2-connected graphs.

Definition 1. Let F be a graph with U ⊆ V (F ) and let G, H be families of
graphs. If for any red-blue coloring of edges of F , such that all vertices in U

are not incident with red edges, there exists a red copy of some graph from G or
a blue copy of some graph from H, then we write F (U) → (G,H). Otherwise,
there exists a (G,H)-coloring of edges of F (U) and we write F (U) 6→ (G,H).

Definition 2. Let F be a graph and U ⊆ V (F ). Let i ∈ {1, 2, . . . , |U |}. We say
that F (U)i is (G,H)-minimal if

1. F (Ui) → (G,H), for every Ui ∈
(

U
i

)

,

2. (F − e)(Ui) 6→ (G,H), for every e ∈ E(F ) and every Ui ∈
(

U
i

)

,

3. F (Ui−1) 6→ (G,H), for every Ui−1 ∈
(

U
i−1

)

.

We write F (U)i ∈ ℜ̃(G,H) if F (U)i is (G,H)-minimal. If U = ∅ or i = 0, then
we assume that F (U)i ∈ ℜ̃(G,H) ⇔ F ∈ ℜ(G,H).

For the simplicity of the notation we write F(v1, . . . , vp)i instead of F ({v1, . . . , vp})i
and F(v1, . . . , vp) instead of F(v1, . . . , vp)p.
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Remark 1. F (r1, r2)1 ∈ ℜ̃(G,H) if and only if F (ri) ∈ ℜ̃(G,H), for i = 1, 2.

Lemma 2. Let G be a family of 2-connected graphs. Let M1,M2 be disjoint

graphs and Ui ⊂ V (Mi), |Ui| ∈ {1, 2} and ri ∈ Ui, for i = 1, 2, and let M be a

graph obtained from disjoint graphs M1 and M2 by identifying the vertices r1 and

r2. If M1(U1),M2(U2) ∈ ℜ̃(K1,2,G), then M(U1 ∪ U2 \ {r1, r2}) ∈ ℜ̃(K1,2,G).

Proof. Let U = U1 ∪ U2 \ {r1, r2}. First we prove that M(U) → (K1,2,G).
If we assume that M(U) 6→ (K1,2,G), then there exists a coloring of edges of
M such that there is at most one red edge e incident with r1. It means that
M1(U1) 6→ (K1,2,G) or M2(U2) 6→ (K1,2,G). Hence, we obtain a contradiction.

Now we show that (M − e)(U) 6→ (K1,2,G). Without loss of generality we
can consider only the situation when e ∈ E(M1). We know that (M1 − e)(U1) 6→
(K1,2,G) and M2(U2 \ {r2}) 6→ (K1,2,G). Thus, there exist a (K1,2,G)-coloring
of edges of (M1 − e)(U1), let us denote it by φ1, and a (K1,2,G)-coloring of edges
of M2(U2 \ {r2}), let us denote it by φ2. Let φ be a coloring of edges of (M − e)
such that φ(f) = φ1(f) for f ∈ E(M1) and φ(f) = φ2(f) for f ∈ E(M2). Since
M2(U2 \ {r2}) 6→ (K1,2,G), it is easy to notice that the vertex r1 is incident
with exactly one red edge which belongs to E(M2). We can notice that there
does not exist a blue copy of a graph G ∈ G such that |V (G) ∩ V (M1)| > 1 and
|V (G) ∩ V (M2)| > 1, because G contains only 2-connected graphs. Hence, φ is
a (K1,2,G)-coloring of edges of (M − e)(U).

Finally, we prove that M(Ui − ri) 6→ (K1,2,G) for i = 1, 2. Without loss of
generality we can assume that i = 1. We know that M1(U1 − {r1}) 6→ (K1,2,G)
and M2(r2) 6→ (K1,2,G). Hence, there exist (K1,2,G)-colorings φ1 and φ2 of edges
of M1(U1 − {r1}) and M2(r2), respectively. Let φ be a coloring of edges of M

such that φ(f) = φ1(f), if f ∈ E(M1) and φ(f) = φ2(f), otherwise. It is easy
to observe that the vertex r1 is incident with exactly one red edge belonging to
E(M1) in M . For the same reason as previously we can notice that there does
not exist a blue copy of a graph G ∈ G such that |V (G) ∩ V (M1)| > 1 and
|V (G) ∩ V (M2)| > 1. Hence, φ is a (K1,2,G)-coloring of edges of M(U1 − {r1}).
This observation finishes the proof.

Lemma 3. Let c ≥ 3 be an integer, M1,M2 be disjoint graphs, G be a family of 2-
connected graphs without induced cycles of the length greater than c. Let ri,1, ri,2
be vertices of Mi, for i = 1, 2, such that dM1

(r1,1, r1,2) + dM2
(r2,1, r2,2) > c, and

let L be a graph obtained from graphs M1 and M2 by identifying the vertices r1,1
and r2,1, and the vertices r1,2 and r2,2. If Mi(ri,1, ri,2) ∈ ℜ̃(K1,2,G), for i = 1, 2,
then L(r1,1, r1,2)1 ∈ ℜ̃(K1,2,G).

Proof. First we prove that L(r1,1, r1,2)1 → (K1,2,G). Conversely, suppose that
L(r1,1, r1,2)1 6→(K1,2,G). Without loss of generality we can assume that L(r1,1) 6→
(K1,2,G). Then there exists a (K1,2,G)-coloring of edges of L such that every edge
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e incident with r1,1 in L is blue and at most one edge incident with r2,2 is red.
Without loss of generality we can assume that the red edge belongs to E(M1).
Hence, we obtain a contradiction with the fact that M2(r2,1, r2,2) → (K1,2,G).

Now we show that (L− e)(r1,1, r1,2)1 6→ (K1,2,G). Without loss of generality
we can assume that e ∈ E(M1). We know that (M1 − e)(r1,1, r1,2) 6→ (K1,2,G)
and M2(r2,1) 6→ (K1,2,G). Thus, there exist a (K1,2,G)-coloring of edges of
(M1− e)(r1,1, r1,2) and a (K1,2,G)-coloring of edges of M2(r2,1). We denote these
colorings by φ1 and φ2, respectively. Let φ be a coloring of edges (L−e) such that
φ(f) = φ1(f), if f ∈ E(M1) and φ(f) = φ2(f), otherwise. It is easy to notice that
the vertex r1,2 is incident with exactly one red edge belonging to E(M2). Since
G contains only 2-connected graphs and dM1

(r1,1, r1,2) + dM2
(r2,1, r2,2) > c, there

does not exist a blue copy of a graph G ∈ G such that |V (G)∩V (Mi−ri,1−ri,2)| >
0, for i = 1, 2. Hence, φ is a (K1,2,G)-coloring of edges of (L− e)(r1,1, r1,2).

Finally, we prove that L 6→ (K1,2,G). From our assumption, it follows that
M1(r1,1) 6→ (K1,2,G) and M2(r2,2) 6→ (K1,2,G). Thus once again, we can indicate
two colorings φ1 and φ2 such that φi is a (K1,2,G)-coloring of edges of Mi(ri,i), for
i = 1, 2. Let φ be a coloring of edges of L such that φ(f) = φi(f) for f ∈ E(Mi)
and i = 1, 2. We can observe that the vertex r1,1 is incident with exactly one
red edge belonging to E(M2) and the vertex r1,2 is incident with exactly one
red edge belonging to E(M1). We can notice that there does not exist a blue
copy of a graph G ∈ G such that |V (G) ∩ V (Mi − ri,1 − ri,2)| > 0 for i = 1, 2,
because G contains only 2-connected graphs and dM1

(r1,1, r1,2) +dM2
(r2,1, r2,2) >

c. Therefore φ is a (K1,2,G)-coloring edges of L.

Corollary 4. Let c ≥ 3 be an integer, M1,M2 be disjoint graphs, G be a family of

2-connected graphs without induced cycles of the length greater than c. Let ri,1, ri,2
be vertices of Mi, for i = 1, 2, such that dM1

(r1,1, r1,2) + dM2
(r2,1, r2,2) > c, and

let B be a graph obtained from graphs M1 and M2 by identifying the vertices r1,1
and r2,1, and the vertices r1,2 and r2,2. If Mi(ri,1, ri,2) ∈ ℜ̃(K1,2,G), for i = 1, 2,
then B(r1,1) ∈ ℜ̃(K1,2,G).

Proof. From Lemma 3 and Remark 1.

The next theorems give us a method of the construction of infinitely many graphs
that belong to ℜ(K1,2,G), where G is any given family of graphs. In this con-
struction we use graphs with adding some restriction on a chosen set of vertices,
i.e., graphs that belong to the family ℜ̃(K1,2,G).

Theorem 5. Let c ≥ 3 be an integer, L,M be disjoint graphs, G be a family

of 2-connected graphs without induced cycles of the length greater than c. Let

{r1,1, r1,2}⊂V (L) and {r2,1, r2,2}⊂V (M) such that dL(r1,1, r1,2)+dM (r2,1, r2,2)>c,

and let F be a graph obtained from graphs L and M by identifying the vertices r1,1
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and r2,1 and the vertices r1,2, and r2,2. If L(r1,1, r1,2),M(r2,1, r2,2) ∈ ℜ̃(K1,2,G),
then F ∈ ℜ(K1,2,G).

Proof. We start with proving that F → (K1,2,G). Suppose, on the contrary, that
there exists a (K1,2,G)-coloring of edges of F . From the fact that L(r1,1, r1,2)1 →
(K1,2,G) it follows that in this coloring one edge incident with r1,1 and one edge
incident with r1,2 in L is red. Hence, every edge incident with r2,1 and r2,2 in
M is blue. We obtain a contradiction with the assumption that M(r2,1, r2,2) →
(K1,2,G).

It remains to prove that F − e 6→ (K1,2,G), for every e ∈ E(F ).

Case 1. Let e ∈ E(L). We know that (L − e)(r1,i) 6→ (K1,2,G) and
M(r2,3−i) 6→ (K1,2,G), for i = 1, 2. Without loss of generality we can assume
that i = 1. Thus, there exists a (K1,2,G)-coloring of edges of (L − e)(r1,1) and
a (K1,2,G)-coloring of edges of M(r2,2). Let us denote these colorings by φ1 and
φ2, respectively. Let φ be a coloring of edges of (F − e) such that φ(f) = φ1(f),
if f ∈ E(L) and φ(f) = φ2(f), otherwise. Let us notice that the vertices r1,1
and r1,2 must be incident with at most one red edge in the graph F − e. We
also know that there does not exist a blue copy of a graph G ∈ G such that
|V (G) ∩ V (L − r1,1 − r1,2)| > 0 and |V (G) ∩ V (M − r2,1 − r2,2)| > 0. This
observation follows from the fact that G contains only 2-connected graphs and
dL(r1,1, r1,2)+dM (r2,1, r2,2) > c. Hence, φ is a (K1,2,G)-coloring of edges of F−e.

Case 2. Let e ∈ E(M). From the fact that L 6→ (K1,2,G) and (M −
e)(r2,1, r2,2) 6→ (K1,2,G) it follows that there exist a (K1,2,G)-coloring φ1 of edges
of L and a (K1,2,G)-coloring φ2 of edges of (M−e)(r2,1, r2,2). Let φ be a coloring
of edges of (F − e) such that φ(f) = φ1(f), if f ∈ E(L) and φ(f) = φ2(f),
otherwise. Since L(r1,i) 6→ (K1,2,G), for i = 1, 2 and L 6→ (K1,2,G), the vertices
r1,1 and r1,2 are incident with exactly one red edge in F − e. For the same reason
as in Case 1 we know that there does not exist a blue copy of a graph G ∈ G such
that |V (G)∩ V (L− r1,1 − r1,2)| > 0 and |V (G)∩ V (M − r2,1 − r2,2)| > 0. Hence,
we can conclude that φ is a (K1,2,G)-coloring of edges of F − e.

Corollary 6. Let B1, B2 be disjoint graphs, G be a family of 2-connected graphs.

Let r1, r2 be vertices of B1 and B2, respectively, and let F be a graph obtained

from graphs B1 and B2 by identifying the vertices r1 and r2. If B1(r1), B2(r2) ∈
ℜ̃(K1,2,G), then F ∈ ℜ(K1,2,G).

Proof. From Lemma 2.

Theorem 7. Let c ≥ 3 be an integer, L be a graph, G be a family of 2-connected
graphs without induced cycles of the length greater than c. Let r1, r2 be vertices

of L such that dL(r1, r2) > c, and let F be a graph obtained from the graph L

by identifying the vertices r1 and r2. If L(r1,1, r1,2)1 ∈ ℜ̃(K1,2,G), then F ∈
ℜ(K1,2,G).
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Proof. First we show that F → (K1,2,G). Suppose, on the contrary, that there
exists a (K1,2,G)-coloring of edges of F such that there is at most one red edge
incident with r1. Since dL(r1, r2) > c, it follows that r1r2 6∈ E(L), so L(r1) 6→
(K1,2,G) or L(r2) 6→ (K1,2,G), what leads us to a contradiction.

To finish the proof we show that F − e 6→ (K1,2,G), for e ∈ E(F ). We know
that (L − e)(r1) 6→ (K1,2,G). Hence, there exists a (K1,2,G)-coloring of edges
of (L − e)(r1). It is easy to notice that the vertex r2 is incident with at most
one red edge in the graph F − e. Since G contains only 2-connected graphs and
dL(r1, r2) > c, there does not exist a blue copy of a graph G ∈ G. Hence, φ is
a (K1,2,G)-coloring of edges of F − e.

3. The Families ℜ̃(K1,2,Kn) and ℜ(K1,2,Kn)

On the basis of results of Borowiecki et al. [4] we can observe the following facts:

Observation 1.

(i) K3(r1, r2) ∈ ℜ̃(K1,2,K3).

(ii) Let r be a vertex of degree 3 of K4 − e. Then (K4 − e)(r) ∈ ℜ̃(K1,2,K3).

(iii) Let TCn = K3-cycle, which we obtain from n ≥ 4 copies of K3 by identifying
the second vertex of the i-th copy of K3 with the first vertex of the ((i mod
n)+1)-th copy of K3, for i = 1, 2, . . . , n. Then TCn(r) ∈ ℜ̃(K1,2,K3), where
r ∈ V (TCn).

(iv) Let r1, r2 be vertices of degree 3 of K4 − e. Then (K4 − e)(r1, r2)1 ∈
ℜ̃(K1,2,K3).

(v) Graphs Li(r1, r2)1, for i = 1, . . . , 6, in Figure 1 belong to ℜ̃(K1,2,K3).
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Figure 1. All presented graphs Li(r1, r2)1 belong to ℜ̃(K1,2,K3).

In the next three theorems we indicate some special graphs. These graphs to-
gether with our previous results allow us to construct infinitely many (K1,2,Kn)-
minimal graphs, i.e. graphs that belong to the Ramsey set ℜ(K1,2,Kn) for every
n ≥ 3.
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Theorem 8. Let n ≥ 3. Let M = K2n−3 − (n − 3)K2 and r1, r2 be vertices of

degree 2n− 4 of M . Then M(r1, r2) ∈ ℜ̃(K1,2,Kn).

Proof. Note that for n = 3 the graph M(r1, r2) = K3(r1, r2) ∈ ℜ̃(K1,2,Kn) from
Observation 1(i). Hence, we can consider only n ≥ 4.

In the first step of the proof we show that M(r1, r2) → (K1,2,Kn). Provided
that the vertices r1 and r2 are not incident with red edges, we consider every
red-blue coloring φ of edges of M , such that there is no red copy of the graph
K1,2. Let E1 = E(M) and E2 = {e ∈ E(M) : φ(e) = red}. We can notice that
the graph H = (V (M) \ {r1, r2}, E1 ∪ E2) is bipartite and ∆(H) ≤ 2. Hence, we
can divide the set V (H) into V1 and V2 such that H[V1] and H[V2] are edgeless.
Without loss of generality we can assume that |V1| > |V2|. This implies that
|V1| ≥ n − 2. One can see that the subgraph of M induced by V1 ∪ {r1, r2}
contains only blue edges and is isomorphic to Kn.

Now we show that (M − e)(r1, r2) 6→ (K1,2,Kn). Let E(M) = {vi,1vi,2 : i =
1, 2, . . . , n− 3} and v ∈ V (M) \ {r1, r2}, where deg(v) = 2n− 4. Without loss of
generality we can consider only the case when e ∈ {v1,1r1, v1,1v, v1,1v2,1}. If n ≥ 5,
then for any choice of e we color red edges vv1,2, vi,1vi+1,2, for i = 1, 2, . . . , n− 4.
If n = 4, then we color red edges vv1,2 and v1,1r1. We color the remaining edges
blue. These colorings of (M − e)(r1, r2) contain neither a red copy of K1,2 nor
a blue copy of Kn.

To finish the proof we show that M(r1) 6→ (K1,2,Kn). Let us consider the
following coloring of edges of M . If n ≥ 5, then we color red edges r2vn−3,1, vv1,2,
vi,1vi+1,2, for i = 1, 2, . . . , n−4. If n = 4, then we color red edges r2v1,1 and vv1,2.
The remaining edges we color blue. One can see that this coloring of M contains
neither a red copy of K1,2 nor a blue copy of Kn. Similarly, we can prove that
M(r2) 6→ (K1,2,Kn).

Theorem 9. Let n ≥ 3. Let B = K2n−2 − (n− 2)K2 and r be a vertex of degree

2n− 3 of B. Then B(r) ∈ ℜ̃(K1,2,Kn).

Proof. Notice that for n = 3 the graph B(r) = (K4 − e)(r) ∈ ℜ̃(K1,2,K3) from
Observation 1(ii). Hence, we can consider only n ≥ 4.

First we prove that B(r) → (K1,2,Kn). Consider a red-blue coloring φ of
edges of B. Suppose that in this coloring there is no red copy of K1,2. Let
E1 = E(B) and E2 = {e ∈ E(B) : φ(e) = red}. If we consider the graph
H = (V (B) \ {r}, E1 ∪ E2), then we can notice that H is bipartite and ∆(H) ≤ 2.
Therefore we can divide the set V (H) into V1 and V2 such that H[V1] and H[V2]
are edgeless. Without loss of generality we can assume that |V1| > |V2|. Hence
|V1| ≥ n − 1. Now, we can notice that the subgraph of B induced by V1 ∪ {r}
contains only blue edges and is isomorphic to Kn.
Let E(B) = {vi,1vi,2 : i = 1, 2, . . . , n−2} and v ∈ V (B)\{r}, where deg(v) = 2n−
3. In the next step of the proof we show that (B − e)(r) 6→ (K1,2,Kn). Without
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loss of generality we can consider only the case when e ∈ {v1,1r, v1,1v, v1,1v2,1}.
Regardless of the choice of e we color red edges vv1,2, vi,1vi+1,2, for i = 1, 2, . . . , n−
3. The remaining uncolored edges we color blue. Clearly, such a coloring of
(B − e)(r) contains neither a red copy of K1,2 nor a blue copy of Kn.

Finally, we show that B 6→ (K1,2,Kn). One can see that a coloring of B

such that edges rvn−2,1, vv1,2, vi,1vi+1,2, for i = 1, 2, . . . , n − 3, are red and the
other edges are blue contains neither a red copy of K1,2 nor a blue copy Kn. This
observation finishes the proof.

Theorem 10. Let n ≥ 3. Let L = K2n−2 − (n − 2)K2 and r1, r2 be vertices of

degree 2n− 3 of L. Then L(r1, r2)1 ∈ ℜ̃(K1,2,Kn).

Proof. From Remark 1 and Theorem 9.

In the next theorem we indicate one more graph belonging to ℜ(K1,2,Kn), for
every n ≥ 3. Moreover, from [7] this graph is minimal with respect to the number
of vertices.

Theorem 11. Let F = K2n−1 − (n− 1)K2, n ≥ 3. Then F ∈ ℜ(K1,2,Kn).

Proof. From Theorem 9 we have B(r) = (K2n − (n− 1)K2)(r) → (K1,2,Kn+1),
where deg(r) = 2n− 1. It easy to see that B − r = F and F → (K1,2,Kn).

Let E(F ) = {vi,1vi,2 : i = 1, 2, . . . , n−1} and v ∈ V (B)\{r}, where deg(v) =
2n − 2. We show that (F − e) 6→ (K1,2,Kn). Without loss of generality we can
consider only the case when e ∈ {v1,1v, v1,1v2,1}. Regardless of the choice of e

we color red edges vv1,2, vi,1vi+1,2, for i = 1, 2, . . . , n− 2. We color the remaining
uncolored edges blue. Clearly, such a coloring of F contains neither a red copy
of K1,2 nor a blue copy of Kn.
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[2] E.T. Baskoro, T. Vetŕık and L. Yulianti, Ramsey (K1,2, C4)-minimal graphs, Discuss.
Math. Graph Theory, 30 (2010) 637–649.
doi:10.7151/dmgt.1519

[3] M. Borowiecki, M. Ha luszczak and E. Sidorowicz, On Ramsey minimal graphs, Dis-
crete Math. 286 (2004) 37–43.
doi:10.1016/j.disc.2003.11.043

[4] M. Borowiecki, I. Schiermeyer and E. Sidorowicz, Ramsey (K1,2,K3)-minimal

graphs, Electron. J. Combin. 12 (2005) #R20.

http://dx.doi.org/10.7151/dmgt.1519
http://dx.doi.org/10.1016/j.disc.2003.11.043


On Ramsey (K1,2,Kn)-minimal Graphs 339
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