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Abstract

Let G = (V,E) be a graph. A subset S of V is a 2-dominating set if every
vertex of V − S is dominated at least 2 times, and S is a 2-independent set
of G if every vertex of S has at most one neighbor in S. The minimum car-
dinality of a 2-dominating set a of G is the 2-domination number γ2(G) and
the maximum cardinality of a 2-independent set of G is the 2-independence
number β2(G). Fink and Jacobson proved that γ2(G) ≤ β2(G) for every
graph G. In this paper we provide a constructive characterization of trees
with equal 2-domination and 2-independence numbers.
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1. Introduction

Let G = (V (G), E(G)) be a simple graph with vertex set V (G) and edge set E(G).
The open neighborhood N(v) of a vertex v consists of the vertices adjacent to v,
the closed neighborhood of v is defined by N [v] = N(v)∪{v} and dG(v) = |N(v)|
is the degree of v. A vertex of degree one is called a leaf and its neighbor is called
a support vertex. If u is a support vertex, then Lu will denote the set of leaves
attached at u. We denote by K1,t a star of order t + 1. A tree T is a double

star if it contains exactly two vertices that are not leaves. A double star with,
respectively p and q leaves attached at each support vertex is denoted by Sp,q. A
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graph is G called a corona if it is constructed from a graph of H by adding for
each vertex v ∈ V (H), a new vertex v′ and a pendant edge vv′.

In [4], Fink and Jacobson generalized the concepts of independent and dom-
inating sets. Let k be a positive integer, a subset S of V (G) is k-independent if
the maximum degree of the subgraph induced by the vertices of S is less or equal
to k− 1. The subset S is k-dominating if every vertex of V (G)−S has at least k
neighbors in S. The k-domination number γk(G) is the minimum cardinality of
a k-dominating set and the k-independence number βk(G) is the maximum car-
dinality of a k-independent set. A minimum k-dominating set and a maximum
k-independent set of a graph G is called a γk(G)-set and βk(G)-set, respectively.
Thus for k = 1, the 1-independent and 1-dominating sets are the classical inde-
pendent and dominating sets. A survey on k-domination and k-independence in
graphs has been given by Chellali, Favaron, Hansberg and Volkmann and can be
found in [2]. Also for more details on domination and its variations see the books
of Haynes, Hedetniemi, and Slater [5, 6].

It is well known that every graph G satisfies γ1(G) ≤ β1(G). In [4], Fink and
Jacobson proved that γ2(G) ≤ β2(G) and conjectured that for every graph G and
positive integer k, γk(G) ≤ βk(G). The conjecture has been proved by Favaron
[3] by showing that every graph G admits a set that is both a k-independent and
a k-dominating. It follows from this stronger result that if G is a graph such that
βk(G) = γk(G), then G has a set that is both γk(G)-set and βk(G)-set. This
useful property will be used in the proof of the main result. Note that trees T
with γ1(T ) = β1(T ) have been characterized in [1] by Borowiecki who proved
that such trees must be either K1 or coronas.

In this paper, we give a characterization of all trees T with equal 2-domination
and 2-independence numbers. We will call such trees (γ2, β2)-trees. Note that
the difference β2(G) − γ2(G) can be arbitrarily large even for trees. To see this
consider a tree Tj obtained from a path of order 2j + 1 where the vertices are
labelled from 1 to 2j + 1 by attaching a path P2 to each of the odd numbered
vertices. Then β2(Tj) = 3j + 2 and γ2(Tj) = 2j + 2.

2. (γ2, β2)-trees

2.1. Observations

We give some useful observations.

Observation 1. Every 2-dominating set of a graph G contains every leaf.

Observation 2. Let T be a non-trivial tree and w ∈ V (T ). Then γ2(T ) ≤
γ2(T − w) + 1.
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Proof. If D is a γ2(T − w)-set, then D ∪ {w} is a 2-dominating set of T and
hence γ2(T ) ≤ |D|+ 1.

Observation 3. Let T be a non-trivial tree and v a vertex of T . Then β2(T−v) ≤
β2(T ) ≤ β2(T − v) + 1.

Proof. β2(T − v) ≤ β2(T ) follows from the fact that any 2-independent set of
T − v is also a 2-independent set of T. Now if D is β2(T )-set, then D − {v} is a
2-independent set of T − v and hence β2(T − v) ≥ |D| − 1.

Observation 4. Let T be a tree obtained from a nontrivial tree T ′ and a star

K1,p of center vertex v by adding an edge vw at any vertex w of T ′. Then,

(1) γ2(T
′) ≤ γ2(T )− p, with equality if either p ≥ 2 or w is a leaf of T ′.

(2) If p ≥ 2, then β2(T ) = β2(T
′) + p.

Proof. (1) Let D be a γ2(T )-set. Then by Observation 1, Lv ⊂ D and, without
loss of generality, v /∈ D (else substitute v by w inD). ThenD∩V (T ′) 2-dominates
T ′ and so γ2(T

′) ≤ |D ∩ V (T ′)| = γ2(T )− p. Now if p ≥ 2, then every γ2(T
′)-set

can be extended to a 2-dominating set of T by adding the p leaves of the added
star, and hence γ2(T ) ≤ γ2(T

′) + p. Assume now that p = 1 and let v′ be the
unique leaf adjacent to v. If w is a leaf in T ′, then w belongs to every γ2(T

′)-set
D′ and D′ ∪ {v′} is a 2-dominating set of T ′, implying that γ2(T ) ≤ γ2(T

′) + 1.
In both cases the equality is obtained.

(2) Let S′ be any β2(T
′)-set. Then clearly S′ ∪ Lv is a 2-independent set

of T, and so β2(T ) ≥ β2(T
′) + |Lv| . Now among all β2(T )-sets, let S be one

containing the maximum number of leaves. If there exists a leaf v′ ∈ Lv such
that v′ /∈ S, then v ∈ S (else S ∪ {v′} is a 2-independent set larger than S) but
then {v′} ∪ S − {v} is a 2-independent set of T containing more leaves than S,
a contradiction. Hence Lv ⊂ S and so S − Lv is a 2-independent set of T ′. It
follows that β2(T

′) ≥ β2(T )− |Lv| and the equality holds.

Observation 5. Let T be a tree obtained from a nontrivial tree T ′ and a double

star S1,p with support vertices u and v, where |Lv| = p by adding an edge vw at

a vertex w of T ′. Then,

(1) β2(T ) = β2(T
′) + (p+ 2).

(2) γ2(T ) ≤ γ2(T
′) + (p+ 2), with equality if β2(T ) = γ2(T ).

Proof. (1) Let u′ be the unique leaf neighbor of u and let S a β2(T )-set con-
taining the maximum number of leaves. Then as seen in the proof of Observation
4, Lv ∪ {u′} ⊂ S. Also S contains either u or v for otherwise S ∪ {u} is a 2-
independent set of T larger than S. Without loss of generality, u ∈ S and so
S− (Lv ∪{u, u′}) is a 2-independent set of T ′. Hence β2(T

′) ≥ β2(T )− (|Lv|+2).
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The equality is obtained from the fact that every β2(T
′)-set can be extended to

a 2-independent set of T by adding Lv ∪ {u, u′}.

(2) Clearly if D′ is a γ2(T
′)-set, then D′ ∪ Lv ∪ {u′, v} is a 2-dominating

set of T and so γ2(T ) ≤ γ2(T
′) + (p + 2). Now assume that β2(T ) = γ2(T ) and

suppose that γ2(T ) < γ2(T
′) + (p+ 2). Then by item (1) we have

β2(T
′) + (p+ 2) = β2(T ) = γ2(T ) < γ2(T

′) + (p+ 2),

implying that β2(T
′) < γ2(T

′), a contradiction. Therefore if β2(T ) = γ2(T ), then
γ2(T ) = γ2(T

′) + (p+ 2).

Observation 6. Let T be a tree obtained from a nontrivial tree T ′ and a path

P3 = xyz by adding an edge xw at a vertex w of T ′. Then

(1) β2(T ) = β2(T
′) + 2.

(2) γ2(T ) ≤ γ2(T
′) + 2, with equality if β2(T ) = γ2(T ).

Proof. (1) If D′ is a β2(T
′)-set, then D′ ∪{y, z} is a 2-independent set of T and

so β2(T ) ≥ β2(T
′)+2. Now let D be a β2(T )-set. Clearly 1 ≤ |D ∩ {x, y, z}| ≤ 2.

If |D ∩ {x, y, z}| = 1, then, without loss of generality, z ∈ D but D ∪ {y} is a
larger 2-independent set of T, a contradiction. Thus |D ∩ {x, y, z}| = 2. Also
D ∩ V (T ′) is a 2-independent set of T ′, implying that β2(T

′) ≥ β2(T )− 2. Hence
β2(T ) = β2(T

′) + 2.

(2) If S′ is a γ2(T
′)-set, then S′ ∪ {z, x} is a 2-dominating set of T, and

so γ2(T ) ≤ γ2(T
′) + 2. Assume now that T satisfies β2(T ) = γ2(T ). If γ2(T ) <

γ2(T
′) + 2, then by item (1) we have

β2(T
′) + 2 = β2(T ) = γ2(T ) < γ2(T

′) + 2,

implying that β2(T
′) < γ2(T

′), a contradiction. Therefore if β2(T ) = γ2(T ), then
γ2(T ) = γ2(T

′) + 2.

2.2. Main result

For the purpose of characterizing (γ2, β2)-trees, we define the family O of all trees
T that can be obtained from a sequence T1, T2, . . . , Tk (k ≥ 1) of trees, where T1

is a star K1,p (p ≥ 1), T = Tk, and, if k ≥ 2, Ti+1 is obtained recursively from Ti

by one of the operations defined below.

• Operation O1 : Add a star K1,p, p ≥ 2, centered at a vertex u and join u
by an edge to a vertex of Ti.

• Operation O2 : Add a double star S1,p with support vertices u and v, where
|Lv| = p and join v by an edge to a vertex w of Ti with the condition that if
γ2(Ti−w) = γ2(Ti)−1, then no neighbor of w in Ti belongs to a γ2(Ti−w)-set.
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• Operation O3 : Add a path P2 = u′u and join u by an edge to a leaf v of Ti

that belongs to every β2(Ti)-set and satisfies in addition β2(Ti−v)+1 = β2(Ti).

• Operation O4: Add a path P3 = u′uv and join v by an edge to a vertex w
that belongs to a γ2(Ti)-set and satisfies further γ2(Ti−w) ≤ γ2(Ti), with the
condition that if γ2(Ti −w) = γ2(Ti)− 1, then no neighbor of w in Ti belongs
to a γ2(Ti − w)-set.

We state the following lemma.

Lemma 7. If T ∈ O then, γ2(T ) = β2(T ).

Proof. Let T be a tree of O. Then T is obtained from a sequence T1, T2, . . . , Tk

(k ≥ 1) of trees, where T1 is a star K1,p (p ≥ 1), T = Tk, and, if k ≥ 2, Tk+1

is obtained recursively from Tk by one of the four operations defined above. We
use an induction on the number of operations performed to construct T . Clearly
the property is true if k = 1. This establishes the basis case.

Assume now that k ≥ 2 and that the result holds for all trees T ∈ O that
can be constructed from a sequence of length at most k − 1, and let T ′ = Tk−1.
By the inductive hypothesis, T ′ is a (γ2, β2)-tree. Let T be a tree obtained from
T ′ by using one of the operations O1, O2, O3 and O4. We examine each of the
following cases. Note that we will use in the proof the same notation as used for
the construction.

Case 1. T is obtained from T ′ by using operation O1. By Observation 4,
γ2(T ) = γ2(T

′) + p and β2(T ) = β2(T
′) + p. Since T ′ is a (γ2, β2)-tree it follows

that γ2(T ) = β2(T ).

Case 2. T is obtained from T ′ by using operation O2. By Observation 5,
β2(T ) = β2(T

′) + (p + 2) and γ2(T ) ≤ γ2(T
′) + (p + 2). Now assume that

γ2(T ) < γ2(T
′)+(p+2) and letD be a γ2(T )-set. Then, without loss of generality,

D contains Lv ∪{v} and the unique leaf neighbor of u. If w ∈ D, then D∩V (T ′)
is a 2-dominating set of T ′ with cardinality γ2(T ) − (p + 2) < γ2(T

′), which is
impossible. Hence w /∈ D and so D′ = D∩V (T ′) is a 2-dominating set of T ′−w.
Note that since w /∈ D and v ∈ D, D′ contains a neighbor of w in T ′. Hence
γ2(T

′ − w) ≤ |D′| = γ2(T ) − (p + 2) < γ2(T
′). It follows from Observation 2

that γ2(T
′ − w) = γ2(T

′) − 1 and D′ is a γ2(T
′ − w)-set containing a neighbor

of w, a contradiction with the construction. Therefore γ2(T ) = γ2(T
′) + (p+ 2).

Now using the fact that γ2(T
′) = β2(T

′) we obtain γ2(T ) = β2(T ), that is T is a
(γ2, β2)-tree.

Case 3. T is obtained from T ′ by using operation O3. By Observation 4,
γ2(T

′) = γ2(T ) − 1. Also β2(T ) ≥ β2(T
′) + 1 since every β2(T

′)-set can be
extended to a 2-independent set of T by adding u′. Now assume that β2(T ) >
β2(T

′) + 1 and let S be a β2(T )-set. Since β2(T
′) ≥ |S ∩ V (T ′)|, it follows that
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u, u′ ∈ S. Hence v /∈ S and S ∩ V (T ′) is a 2-independent set of T ′ − v. Thus
β2(T

′ − v) ≥ |S ∩ V (T ′)| = β2(T ) − 2. Also from the construction v satisfies
β2(T

′ − v) + 1 = β2(T
′). Therefore

β2(T
′)− 1 = β2(T

′ − v) ≥ β2(T )− 2 >
(

β2(T
′) + 1

)

− 2,

a contradiction. Consequently β2(T ) = β2(T
′) + 1. Since γ2(T

′) = β2(T
′) we

obtain γ2(T ) = β2(T ).

Case 4. T is obtained from T ′ by using operation O4. By Observation 6,
β2(T ) = β2(T

′) + 2 and γ2(T ) ≤ γ2(T
′) + 2. Assume that γ2(T ) < γ2(T

′) + 2
and let D be a γ2(T )-set. Clearly u′ ∈ D and |D ∩ {u′, u, v}| = 2. If u ∈ D,
then v /∈ D and so w ∈ D. Hence D ∩ V (T ′) is a 2-dominating set of T ′ having
cardinality |D| − 2 < γ2(T

′), a contradiction. Therefore u /∈ D and so v ∈ D. If
w ∈ D, then using the same argument than used above leads to a contradiction.
Thus w /∈ D and hence D∩V (T ′) is a 2-dominating set of T ′−w. It follows that
γ2(T

′ − w) ≤ |D| − 2 < γ2(T
′) and by Observation 2 we obtain γ2(T

′ − w) =
γ2(T

′)−1. Therefore D∩V (T ′) is a γ2(T
′−w)-set. Note that w is 2-dominated in

T by v and some vertex, say w′ ∈ V (T ′). But then w′ belongs to a γ2(T
′−w)-set,

a contradiction with the construction. Consequently, γ2(T ) = γ2(T
′)+2 implying

that γ2(T ) = β2(T ), that is, T is a (γ2, β2)-tree.

We now are ready to state our main result.

Theorem 8. Let T be a tree of order n. Then γ2(T ) = β2(T ) if and only if

T = K1 or T ∈ O.

Proof. If T = K1, then γ2(T ) = β2(T ). If T ∈ O, then by Lemma 7, γ2(T ) =
β2(T ). Let us prove the necessity. Obviously, γ2(K1) = β2(K1), so assume n ≥ 2.
We use an induction on the order n of T . If n = 2, then T = K1,1 that belongs
to O. Assume that every (γ2, β2)-tree T ′ of order 2 ≤ n′ < n is in O. Let T be
(γ2, β2)-tree of order n. If T is a star, then T ∈ O. If T is a double star, then
T is obtained from T1 by using Operation O1 if n ≥ 5, and T is obtained from
T1 = K1,1 by using Operation O3 if n = 4. Therefore both stars and double stars
are in O. Thus we may assume that T has diameter at least four.

We now root T at a leaf r of a longest path. Among all vertices at distance
diam(T ) − 1 from r on a longest path starting at r, let u be one of maximum
degree. Since diam(T ) ≥ 4, let v, w be the parents of u and v, respectively. Also
let D be a set that is both β2(T )-set and γ2(T )-set. Recall that such a set exists
as mentioned in the introduction (see [3]). Denote by Tx the subtree induced by
a vertex x and its descendants in the rooted tree T . We examine the following
cases.

Case 1. degT (u) ≥ 3, that is u is adjacent to at least two leaves. Let
T ′ = T−Tu. By Observation 4, γ2(T ) = γ2(T

′)+|Lu| and β2(T ) = β2(T
′)+|Lu| .
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Hence γ2(T
′) = β2(T

′). By induction on T ′, T ′ ∈ O and so T ∈ O because it is
obtained from T ′ by using operation O1.

Case 2. degT (u) = 2. Let u′ be the unique leaf neighbor of u. By our choice
of u, every child of v has degree at most two. First we claim that every child
of v besides u (if any) is a leaf. Suppose to the contrary that a child b of v is a
support vertex with Lb = {b′}. Then u′, b′ ∈ D. If v ∈ D, then u, b /∈ D (since D
is a β2(T )-set) but {u, b}∪D−{v} would be a 2-independent set of T larger than
D, a contradiction. Hence v /∈ D and so u, b ∈ D but {v} ∪D − {u, b} would be
a 2-dominating set of T smaller than D, a contradiction too. Thus every child of
v besides u is a leaf. We consider two subcases.

Subcase 2.1. degT (v) ≥ 3. Hence v is a support vertex and Tv is a double
star S1,|Lv |. Let T

′ = T −Tv. Clearly T ′ is nontrivial. By Observation 5, γ2(T ) =
γ2(T

′) + |Lv|+ 2 and β2(T ) = β2(T
′) + |Lv|+ 2. It follows that γ2(T

′) = β2(T
′)

and by induction on T ′, T ′ ∈ O. Assume now that T ′−w admits a γ2(T
′−w)-set

D′′ such that |D′′| = γ2(T
′)− 1 and D′′ contains at least one vertex adjacent to

w in T ′. Then D′′ ∪ Lv ∪ {u′, v} is a 2-dominating set of T ′, and so

γ2(T ) ≤
∣

∣D′′ ∪ Lv ∪ {u′, v}
∣

∣ = γ2(T
′ − w) + |Lv|+ 2

= γ2(T
′)− 1 + |Lv|+ 2 < γ2(T

′) + |Lv|+ 2,

a contradiction. Hence such a case cannot occur and so T can be obtained from
T ′ by using operation O2. Therefore T ∈ O.

Subcase 2.2. degT (v) = 2. Clearly u′ ∈ D. Three possibilities can occur
(u /∈ D and v, w ∈ D), (u,w /∈ D and v ∈ D) and (u,w ∈ D and v /∈ D).
Observe that if the first situation occurs, then {u} ∪D − {v} is both β2(T )-set
and γ2(T )-set too. Hence we have to consider only the last two situations.

Assume that u,w /∈ D and v ∈ D and let T ′ = T −{u, u′}. By Observation 4,
γ2(T

′) = γ2(T )−1. Also it is clear that β2(T ) ≥ β2(T
′)+1. If β2(T ) > β2(T

′)+1,
then γ2(T

′) + 1 = γ2(T ) = β2(T ) > β2(T
′) + 1, implying that γ2(T

′) > β2(T
′), a

contradiction. Hence β2(T ) = β2(T
′) + 1 and so γ2(T

′) = β2(T
′). By induction

on T ′, T ′ ∈ O. Note that v belongs to every β2(T
′)-set, for otherwise if S′ is a

β2(T
′)-set such that v /∈ S′, then S′ ∪ {u, u′} would be a 2-independent set of T

larger than D, a contradiction. On the other hand, by Observation 3, β2(T
′−v) ≤

β2(T
′) ≤ β2(T

′ − v) + 1. Clearly if β2(T
′ − v) = β2(T

′), then every β2(T
′ − v)-set

is also a β2(T
′)-set but does not contain v, a contradiction with the fact that

v belongs to every β2(T
′)-set. Therefore v satisfies β2(T

′) = β2(T
′ − v) + 1. It

follows that T ∈ O because it is obtained from T ′ by using Operation O3.

Finally assume that u,w ∈ D and v /∈ D. Let T ′ = T − {v, u, u′}. Then by
Observation 6, β2(T ) = β2(T

′) + 2 and γ2(T ) = γ2(T
′) + 2. Note that D ∩ V (T ′)

is a γ2(T
′)-set that contains w. Also by Observation 2, γ2(T

′ − w) ≥ γ2(T
′)− 1.
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Assume that γ2(T
′−w) > γ2(T

′). Then using the fact that β2(T ) ≥ β2(T
′−w)+2,

it follows that

β2(T ) ≥ β2(T
′ − w) + 2 ≥ γ2(T

′ − w) + 2 > γ2(T
′) + 2 = γ2(T ),

and so β2(T ) > γ2(T ), a contradiction. Therefore γ2(T
′) ≥ γ2(T

′−w) ≥ γ2(T
′)−

1. Now we note that if γ2(T
′−w) = γ2(T

′)−1, then no neighbor of w in T ′ belongs
to a γ2(T

′ − w)-set, for otherwise such a set can be extended to 2-dominating
set of T by adding u′, v which leads to β2(T ) > γ2(T ). Under these conditions it
is clear that T is obtained from T ′ by using Operation O4 and since T ′ ∈ O it
follows immediately that T ∈ O.
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