THE VERTEX MONOPHONIC NUMBER OF A GRAPH

A.P. SANTHAKUMARAN
Department of Mathematics St.Xavier's College (Autonomous)
Palayamkottai - 627 002, India
e-mail: apskumar1953@yahoo.co.in
AND
P.Titus
Department of Mathematics
Anna University Tirunelveli
Tirunelveli - 627 007, India
e-mail: titusvino@yahoo.com

Abstract

For a connected graph G of order $p \geq 2$ and a vertex x of G, a set $S \subseteq V(G)$ is an x-monophonic set of G if each vertex $v \in V(G)$ lies on an $x-y$ monophonic path for some element y in S. The minimum cardinality of an x-monophonic set of G is defined as the x-monophonic number of G, denoted by $m_{x}(G)$. An x-monophonic set of cardinality $m_{x}(G)$ is called a m_{x}-set of G. We determine bounds for it and characterize graphs which realize these bounds. A connected graph of order p with vertex monophonic numbers either $p-1$ or $p-2$ for every vertex is characterized. It is shown that for positive integers a, b and $n \geq 2$ with $2 \leq a \leq b$, there exists a connected graph G with $\operatorname{rad}_{m} G=a, \operatorname{diam}_{m} G=b$ and $m_{x}(G)=n$ for some vertex x in G. Also, it is shown that for each triple m, n and p of integers with $1 \leq n \leq p-m-1$ and $m \geq 3$, there is a connected graph G of order p, monophonic diameter m and $m_{x}(G)=n$ for some vertex x of G.

Keywords: monophonic path, monophonic number, vertex monophonic number.
2010 Mathematics Subject Classification: 05C12.

1. Introduction

By a graph $G=(V, E)$ we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary [6]. For vertices x and y in a connected graph G, the distance $d(x, y)$ is the length of a shortest $x-y$ path in G. An $x-y$ path of length $d(x, y)$ is called an $x-y$ geodesic. The neighbourhood of a vertex v is the set $N(v)$ consisting of all vertices u which are adjacent with v. The closed neighbourhood of a vertex v is the set $N[v]=N(v) \cup\{v\}$. A vertex v is a simplicial vertex if the subgraph induced by its neighbours is complete. A nonseparable graph is connected, nontrivial, and has no cut vertices. A block of a graph is a maximal nonseparable subgraph. A connected block graph is a connected graph in which each of its blocks is complete. A caterpillar is a tree for which the removal of all the end vertices gives a path. The closed interval $I[x, y]$ consists of all vertices lying on some $x-y$ geodesic of G, while for $S \subseteq V$, $I[S]=\bigcup_{x, y \in S} I[x, y]$. A set S of vertices is a geodetic set if $I[S]=V$, and the minimum cardinality of a geodetic set is the geodetic number $g(G)$. A geodetic set of cardinality $g(G)$ is called a g-set. The geodetic number of a graph was introduced in $[1,7]$ and further studied in $[2,3]$.

The concept of vertex geodomination number was introduced in [8] and further studied in [9]. Let x be a vertex of a connected graph G. A set S of vertices of G is an x-geodominating set of G if each vertex v of G lies on an $x-y$ geodesic in G for some element y in S. The minimum cardinality of an x-geodominating set of G is defined as the x-geodomination number of G and is denoted by $g_{x}(G)$. An x-geodominating set of cardinality $g_{x}(G)$ is called a g_{x}-set.

For vertices x and y in a connected graph G, the detour distance $D(x, y)$ is the length of a longest $x-y$ path in G. The closed interval $I_{D}[x, y]$ consists of all vertices lying on some $x-y$ detour of G, while for $S \subseteq V, I_{D}[S]=\bigcup_{x, y \in S} I_{D}[x, y]$. A set S of vertices is a detour set if $I_{D}[S]=V$, and the minimum cardinality of a detour set is the detour number $d n(G)$. A detour set of cardinality $d n(G)$ is called a minimum detour set. The detour number of a graph was introduced in [4] and further studied in [5]. The concept of vertex detour number was introduced in [10]. Let x be a vertex of a connected graph G. A set S of vertices of G is an x-detour set if each vertex v of G lies on an $x-y$ detour in G for some element y in S. The minimum cardinality of an x-detour set of G is defined as the x-detour number of G and is denoted by $d_{x}(G)$. An x-detour set of cardinality $d_{x}(G)$ is called a d_{x}-set of G.

A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called monophonic if it is a chordless path. The closed interval $I_{m}[x, y]$ consists of all vertices lying on some $x-y$ monophonic path of G. For any two vertices u and v in a connected graph G, the monophonic distance $d_{m}(u, v)$ from
u to v is defined as the length of a longest $u-v$ monophonic path in G. The monophonic eccentricity $e_{m}(v)$ of a vertex v in G is $e_{m}(v)=\max \left\{d_{m}(v, u)\right.$: $u \in V(G)\}$. The monophonic radius, $\operatorname{rad}_{m} G$ of G is $\operatorname{rad}_{m} G=\min \left\{e_{m}(v):\right.$ $v \in V(G)\}$ and the monophonic diameter, $\operatorname{diam}_{m} G$ of G is $\operatorname{diam}_{m} G=\max$ $\left\{e_{m}(v): v \in V(G)\right\}$. The monophonic distance was introduced and studied in [11]. The following theorems will be used in the sequel.

Theorem 1 [6]. Let v be a vertex of a connected graph G. The following statements are equivalent:
(i) v is a cut vertex of G.
(ii) There exist vertices u and w distinct from v such that v is on every $u-w$ path.
(iii) There exists a partition of the set of vertices $V-\{v\}$ into subsets U and W such that for any vertices $u \in U$ and $w \in W$, the vertex v is on every $u-w$ path.

Theorem 2 [6]. Every nontrivial connected graph has at least two vertices which are not cut vertices.

Theorem 3 [6]. Let G be a connected graph with at least three vertices. The following statements are equivalent:
(i) G is a block.
(ii) Every two vertices of G lie on a common cycle.

Theorem 4 [9]. Let G be a connected graph of order $p \geq 3$ with exactly one cut vertex. Then the following are equivalent:
(i) $g(G)=p-1$.
(ii) $G=K_{1}+\cup m_{j} K_{j}$, where $\Sigma m_{j} \geq 2$.
(iii) $g_{x}(G)=p-1$ or $p-2$ for any vertex x in G.

Throughout this paper G denotes a connected graph with at least two vertices.

2. Vertex Monophonic Number

Definition. Let x be a vertex of a connected graph G. A set S of vertices of G is an x-monophonic set if each vertex v of G lies on an $x-y$ monophonic path in G for some element y in S. The minimum cardinality of an x-monophonic set of G is defined as the x-monophonic number of G and is denoted by $m_{x}(G)$ or simply m_{x}. An x-monophonic set of cardinality $m_{x}(G)$ is called a m_{x}-set of G.

We observe that for any vertex x in G, x does not belong to any m_{x}-set of G.

Example 5. For the graph G given in Figure 1, the minimum vertex monophonic sets and the vertex monophonic numbers are given in Table 1.1.

Figure 1

Vertex	Minimum vertex monophonic sets	Vertex monophonic number
t	$\{z, w\}$	2
y	$\{z, w\}$	2
z	$\{w\}$	1
u	$\{z, w, y\}$	3
v	$\{z, w\}$	2
w	$\{z\}$	1

Table 1.1

Theorem 6. Let x be a vertex of a connected graph G.
(i) Every simplicial vertex of G other than the vertex x (whether x is simplicial vertex or not) belongs to every m_{x}-set.
(ii) No cut vertex of G belongs to any m_{x}-set.

Proof. (i) Let x be a vertex of G. Then x does not belong to any m_{x}-set of G. Let $u \neq x$ be a simplicial vertex and S_{x} a m_{x}-set of G. Suppose that $u \notin S_{x}$. Then u is an internal vertex of an $x-y$ monophonic path, say P, for some $y \in S_{x}$. Let v and w be the neighbors of u on P. Then v and w are not adjacent and so u is not a simplicial vertex, which is a contradiction.
(ii) Let y be a cut vertex of G. Then by Theorem 1 , there exists a partition of the set of vertices $V-\{y\}$ into subsets U and W such that for any vertex $u \in U$ and $w \in W$, the vertex y is on every $u-w$ path. Hence, if $x \in U$, then for any vertex w in W, y lies on every $x-w$ path so that y is an internal vertex of an $x-w$ monophonic path. Let S_{x} be any m_{x}-set of G. Suppose that $S_{x} \cap W=\emptyset$.

Then for any $w_{1} \in W$, there exists an element z in S_{x} such that w_{1} lies in some $x-z$ monophonic path $P: x=z_{0}, z_{1}, \ldots, w_{1}, \ldots, z_{n}=z$ in G. Now, the $x-w_{1}$ subpath of P and $w_{1}-z$ subpath of P both contain y so that P is not a path in G, which is a contradiction. Hence $S_{x} \cap W \neq \emptyset$. Let $w_{2} \in S_{x} \cap W$. Then y is an internal vertex of an $x-w_{2}$ monophonic path. If $y \in S_{x}$, let $S=S_{x}-\{y\}$. It is clear that every vertex that lies on an $x-y$ monophonic path also lies on an $x-w_{2}$ monophonic path. Hence it follows that S is an x-monophonic set of G, which is a contradiction since S_{x} is a minimum x-monophonic set of G. Thus y does not belong to any m_{x}-set. Similarly, if $x \in W, y$ does not belong to any m_{x}-set. If $x=y$, then obviously y does not belong to any m_{x}-set.

Note 7. In Theorem 6, even if x is a simplicial vertex of G, x does not belong any m_{x}-set.

Corollary 8. Let T be a tree with t end-vertices. Then $m_{x}(T)=t-1$ or t according as x is an end-vertex or not. In fact, if W is the set of all end-vertices of T, then $W-\{x\}$ is the unique m_{x}-set of T.

Proof. Let W be the set of all end-vertices of T. It follows from Note 7 and Theorem 6 that $W-\{x\}$ is the unique m_{x}-set of T for any end-vertex x in T and W is the unique m_{x}-set of T for any cut vertex x in T. Thus $W-\{x\}$ is the unique m_{x}-set of T for any vertex x in T.

Theorem 9. For any vertex x in a graph $G, 1 \leq m_{x}(G) \leq p-1$.
Proof. It is clear from the definition of a m_{x}-set that $m_{x}(G) \geq 1$. Also, since the vertex x does not belong to any m_{x}-set, it follows that $m_{x}(G) \leq p-1$.

Remark 10. The bounds for $m_{x}(G)$ in Theorem 9 are sharp. The cycle $C_{n}(n \geq$ 4) has $m_{x}\left(C_{n}\right)=1$ for every vertex x in C_{n}. Also, the non-trivial path P_{n} has $m_{x}\left(P_{n}\right)=1$ for any end vertex x in P_{n}. The complete graph K_{p} has $m_{x}\left(K_{p}\right)=$ $p-1$ for every vertex x in K_{p}.
Now we proceed to characterize graphs G of order p for which the upper bound in Theorem 9 is attained.

Theorem 11. For any graph $G, m_{x}(G)=p-1$ if and only if deg $x=p-1$.
Proof. Let $m_{x}(G)=p-1$. Suppose that deg $x<p-1$. Then there is a vertex u in G which is not adjacent to x. Since G is connected, there is a monophonic path from x to u, say P, with length greater than or equal to 2 . It is clear that $(V(G)-V(P)) \cup\{u\}$ is an x-monophonic set of G and hence $m_{x}(G) \leq p-2$, which is a contradiction.

Conversely, if deg $x=p-1$, then all other vertices of G are adjacent to x and hence all these vertices form the m_{x}-set. Thus $m_{x}(G)=p-1$.

Corollary 12. A graph G is complete if and only if $m_{x}(G)=p-1$ for every vertex x in G.

Now we proceed to characterize graphs for which the lower bound in Theorem 9 is attained. For this, we introduce the following definition.

Definition. Let x be any vertex in G. A vertex y in G is said to be an x monophonic superior vertex if for any vertex z with $d_{m}(x, y)<d_{m}(x, z), z$ lies on an $x-y$ monophonic path.

Example 13. For any vertex x in the cycle $C_{n}(n \geq 4), V\left(C_{n}\right)-N[x]$ is the set of all x-monophonic superior vertices.

Theorem 14. For a vertex x in a graph $G, m_{x}(G)=1$ if and only if there exists an x-monophonic superior vertex y in G such that every vertex of G is on an $x-y$ monophonic path.
Proof. Let $m_{x}(G)=1$ and let $S_{x}=\{y\}$ be a m_{x}-set of G. If y is not an x monophonic superior vertex, then there is a vertex z in G with $d_{m}(x, y)<d_{m}(x, z)$ and z does not lie on any $x-y$ monophonic path. Thus S_{x} is not a m_{x}-set of G, which is a contradiction. The converse is clear from the definition.

The n-dimensional cube or hypercube Q_{n} is the simple graph whose vertices are the n-tuples with entries in $\{0,1\}$ and whose edges are the pairs of n-tuples that differ in exactly one position.
Example 15. For $n \geq 2, m_{x}\left(Q_{n}\right)=1$ for every vertex x in Q_{n}. Let $x=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be any vertex in Q_{n}, where $a_{i} \in\{0,1\}$. Let $y=\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ be another vertex of Q_{n} such that a_{i}^{\prime} is the complement of a_{i}. Let u be any vertex in Q_{n}. For convenience, let $u=\left(a_{1}, a_{2}^{\prime}, a_{3}, \ldots, a_{n}\right)$. Then u lies on the $x-y$ geodesic $x=\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(a_{1}, a_{2}^{\prime}, a_{3}, \ldots, a_{n}\right),\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}, \ldots, a_{n}\right)$, $\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{n}\right), \ldots,\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n-1}^{\prime}, a_{n}\right),\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots\right.$,
$\left.a_{n}^{\prime}\right)=y$ and so u lies on an $x-y$ monophonic path.
Hence $m_{x}\left(Q_{n}\right)=1$ for every vertex x in Q_{n}.
Theorem 16. (i) For the wheel $W_{n}=K_{1}+C_{n-1}(n \geq 5), m_{x}\left(W_{n}\right)=n-1$ or 1 according as x is K_{1} or x is in C_{n-1}.
(ii) Let $K_{m, n}(m, n \geq 2)$ be a complete bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$ Then $m_{x}\left(K_{m, n}\right)$ is $m-1$ or $n-1$ according as x is in V_{1} or x is in V_{2}.

Proof. (i) Let x be the vertex of K_{1}. Then by Theorem 11, $m_{x}\left(W_{n}\right)=n-1$.
Let $C_{n-1}: u_{1}, u_{2}, u_{3}, \ldots, u_{n-1}, u_{1}$ be the cycle of W_{n}. Let x be any vertex in C_{n-1}, say $x=u_{1}$. It is clear that $u_{i}(i=3,4, \ldots, n-2)$ is an x-monophonic superior vertex and every vertex of G lies on an $x-u_{i}$ monophonic path. Then by Theorem 14, $m_{x}\left(W_{n}\right)=1$
(ii) Let $x \in V_{1}$. Then it is clear that $V_{1}-\{x\}$ is a minimum x-monophonic set of G and so $m_{x}\left(K_{m, n}\right)=m-1$. Similarly, for any vertex $x \in V_{2}, m_{x}\left(K_{m, n}\right)=$ $n-1$.

Now we characterize graphs G of order p having vertex monophonic number $m_{x}(G)$ equaling either $p-1$ or $p-2$ for every vertex x in G. First, we prove the following theorem.

Theorem 17. Let G be a graph with k cut vertices. Then every vertex of G is either a cut vertex or a simplicial vertex if and only if $m_{x}(G)=p-k$ or $p-k-1$ for any vertex x in G.

Proof. Let G be a graph with every vertex of G is either a cut vertex or a simplicial vertex. Since x does not belong to any m_{x}-set of G, it follows from Theorem 6 that $m_{x}(G)=p-k$ or $p-k-1$ according as x is a cut vertex or a simplicial vertex.

Conversely, suppose that $m_{x}(G)=p-k$ or $p-k-1$ for any vertex x in G. Suppose that there is a vertex x in G which is neither a cut vertex nor a simplicial vertex. Since x is not a simplicial vertex, the subgraph induced by $N(x)$ is not complete and hence there exist u and v in $N(x)$ such that $d(u, v)=2$. Also, since x is not a cut vertex of $G, G-\{x\}$ is connected and hence there exists a $u-v$ geodesic say $P: u, u_{1}, \ldots, u_{n}, v$ in $G-\{x\}$. Then $P \cup\{v, x, u\}$ is a shortest cycle, say C, containing both the vertices u and v with length at least 4 in G. Let R be the set of all cut vertices of G. We consider two cases.

Case $1 u$ or v is not a cut vertex of G. Assume that u is not a cut vertex of G. Clearly, x lies on a $u-v$ monophonic path and hence $V(G)-(R \cup\{u, x\})$ is a u-monophonic set of G. Therefore $m_{u}(G) \leq p-k-2$, which is a contradiction to the assumption.

Case 2. u and v are cut vertices of G. By Theorem 1, there exists a partition of the set of vertices $V-\{v\}$ into subsets U and W such that for vertices $u_{1} \in U$ and $w_{1} \in W$, the vertex v is on every $u_{1}-w_{1}$ path. Assume that $x \in U$. Let y be a vertex in W with maximum monophonic distance from v in W. By choice of y, y is not a cut vertex of G. Since the order of the cycle C is at least 4, $V(G)-(R \cup\{x, y\})$ is a y-monophonic set of G and so $m_{y}(G) \leq p-k-2$, which is a contradiction to the assumption. Hence every vertex of G is either a cut vertex or a simplicial vertex.

Corollary 18. Let G be a connected block graph with number of cut vertices k. Then $m_{x}(G)=p-k$ or $p-k-1$ for any vertex x in G.
Proof. Let G be a connected block graph. Then every vertex of G is either a cut vertex or a simplicial vertex and hence by Theorem 17, $m_{x}(G)=p-k$ or $p-k-1$ for any vertex x in G.

Figure 2
Note 19. The converse of Corollary 18 is not true. For the graph G given in Figure $2, k=4$ and $m_{x}(G)=p-k$ or $p-k-1$ for any vertex x in G. However, it is not a connected block graph.

Theorem 20. Let G be a connected graph. Then $G=K_{1}+\bigcup m_{j} K_{j}$ if and only if $m_{x}(G)=p-1$ or $p-2$ for any vertex x in G.

Proof. Let $G=K_{1}+\cup m_{j} K_{j}$. Then G has at most one cut vertex. If G has no cut vertex, then $G=K_{p}$ and so by Corollary $12, m_{x}(G)=p-1$ for every vertex x in G. Suppose that G has exactly one cut vertex. Then all the remaining vertices are simplicial and hence by Theorem $17, m_{x}(G)=p-1$ or $p-2$ for any vertex x in G.

Conversely, suppose that $m_{x}(G)=p-1$ or $p-2$ for any vertex x in G. If $p=2$, then $G=K_{2}=K_{1}+K_{1}$. If $p \geq 3$, then by Theorem 2, there exists a vertex x, which is not a cut vertex of G. If G has two or more cut vertices, then by Theorem $6, m_{x}(G) \leq p-3$, which is a contradiction. Thus, the number of cut vertices k of G is at most one.

Case 1. $k=0$. Then the graph G is a block. If $p=3$, then $G=K_{3}=K_{1}+K_{2}$. For $p \geq 4$, we claim that G is complete. If G is not complete, then there exist two vertices x and y in G such that $d(x, y) \geq 2$. By Theorem $3, x$ and y lie on a common cycle and hence x and y lie on a smallest cycle $C: x, x_{1}, \ldots, y, \ldots, x_{n}, x$ of length at least 4. Then $V(G)-\left\{x, x_{1}, x_{n}\right\}$ is an x-monophonic set of G and so $m_{x}(G) \leq p-3$, which is a contradiction to the assumption. Hence G is the complete graph K_{p} and so $G=K_{1}+K_{p-1}$.

Case 2. $k=1$. Let x be the cut vertex of G. If $p=3$, then $G=P_{3}=$ $K_{1}+m_{j} K_{1}$, where $\Sigma m_{j}=2$. If $p \geq 4$, we claim that $G=K_{1}+\cup m_{j} K_{j}$, where $\Sigma m_{j} \geq 2$. It is enough to prove that every block of G is complete. Suppose that there exists a block B, which is not complete. Let u and v be two vertices in B such that $d(u, v) \geq 2$. Then by Theorem 3 , both u and v lie on a common cycle so that u and v lie on a smallest cycle of length at least 4. Then as in Case 1, $m_{u}(G) \leq p-3$, which is a contradiction. Thus every block of G is complete so that $G=K_{1}+\cup m_{j} K_{j}$, where K_{1} is the vertex x and $\Sigma m_{j} \geq 2$.

Theorem 21. Let G be a connected graph of order $p \geq 3$ with exactly one cut vertex. Then $G=K_{1}+\cup m_{j} K_{j}$, where $\Sigma m_{j} \geq 2$ if and only if $m_{x}(G)=p-1$ or $p-2$ for any vertex x in G.

Proof. The proof is contained in Theorem 20.
Theorem 22. Let G be a connected graph of order $p \geq 3$ with exactly one cut vertex. Then the following are equivalent:
(i) $g(G)=p-1$.
(ii) $G=K_{1}+\cup m_{j} K_{j}$, where $\Sigma m_{j} \geq 2$.
(iii) $g_{x}(G)=p-1$ or $p-2$ for any vertex x in G.
(iv) $m_{x}(G)=p-1$ or $p-2$ for any vertex x in G.

Proof. This follows from Theorems 4 and 21.
Now, Corollary 12 and Theorem 20 lead to the natural question whether there exists a graph G for which $m_{x}(G)=p-2$ for every vertex x in G. This is answered in the next theorem.

Theorem 23. There is no graph G of order p with $m_{x}(G)=p-2$ for every vertex x in G.

Proof. Suppose that there exists a graph G with $m_{x}(G)=p-2$ for every vertex x in G. Let x be any vertex of G. Let S_{x} be a m_{x}-set of G so that $m_{x}(G)=\left|S_{x}\right|=p-2$. Since $x \notin S_{x}$ and $m_{x}(G)=p-2$, there exists exactly one vertex $y \neq x$ such that $y \notin S_{x}$. Hence y lies on the monophonic path x, y, w for some $w \in S_{x}$ and so y lies on the $x-w$ geodesic in G of length 2 . We consider two cases.

Case 1. y is not a cut vertex of G. Then $G-\{y\}$ is connected and so there is an $x-w$ geodesic, say P, in $G-\{y\}$. Thus $C: P \cup(w, y, x)$ is a smallest cycle of length greater than or equal to 4 . Hence $V(G)-\{x, y, w\}$ is a y-monophonic set of G and hence $m_{y}(G) \leq p-3$, which is a contradiction to the assumption.

Case 2. y is a cut vertex of G. If $\operatorname{deg} y=p-1$, then by Theorem 11, $m_{y}(G)=p-1$, which is a contradiction. If $\operatorname{deg} y \leq p-2$, then there exists a vertex u in G such that $d(u, y) \geq 2$. It is clear that $V(G)-I_{m}[u, y]$ is an u-monophonic set in G and so $m_{u}(G) \leq p-3$, which is a contradiction to the assumption. Thus there is no graph G with $m_{x}(G)=p-2$ for every vertex x in G.

Theorem 24. For every non-trivial tree T with monophonic diameter d_{m}, $m_{x}(T)=p-d_{m}$ or $p-d_{m}+1$ for any vertex x in T if and only if T is a caterpillar.

Proof. Let T be any non-trivial tree. Let P be a monophonic path of length d_{m}. Let k be the number of end vertices of T and l be the number of internal vertices of T other than the internal vertices of P. Then $d_{m}-1+l+k=p$. By Corollary $8, m_{x}(T)=k$ or $k-1$ for any vertex x in G and so $m_{x}(T)=p-d_{m}-l+1$ or $p-d_{m}-l$ for any vertex x in T. Hence $m_{x}(T)=p-d_{m}+1$ or $p-d_{m}$ for any vertex x in T if and only if $l=0$, if and only if all the internal vertices of T lie on the monophonic diametral path P, if and only if T is a caterpillar.

For any connected graph $G, \operatorname{rad}_{m} G \leq \operatorname{diam}_{m} G$. It is shown in [11] that every two positive integers a and b with $a \leq b$ are realizable as the monophonic radius and monophonic diameter, respectively, of some connected graph. This theorem can also be extended so that the vertex monophonic number can be prescribed.

Figure 3

Theorem 25. For positive integers a, b and $n \geq 2$ with $2 \leq a \leq b$, there exists a connected graph G with $\operatorname{rad}_{m} G=a, \operatorname{diam}_{m} G=b$ and $m_{x}(G)=n$ for some vertex x in G.

Proof. We prove this theorem by considering four cases.
Case 1. $a=b$. Let $C_{a+2}: v_{1}, v_{2}, \ldots, v_{a+2}, v_{1}$ be a cycle of order $a+2$. Let G be the graph obtained from C_{a+2} by adding $n-1$ new vertices $u_{1}, u_{2}, \ldots, u_{n-1}$ and joining each vertex $u_{i}(1 \leq i \leq n-1)$ to both v_{1} and v_{3}. The graph G is shown in Figure 3. It is easily verified that the monophonic eccentricity of each vertex of G is a and so $\operatorname{rad}_{m} G=\operatorname{diam}_{m} G=a$. Also, for the vertex $x=v_{2}$, it is clear that $S=\left\{v_{a+2}, u_{1}, u_{2}, \ldots, u_{n-1}\right\}$ is a minimum x-monophonic set of G and so $m_{x}(G)=n$.

Case 2. $b=a+1$. Let $C_{a+2}: v_{1}, v_{2}, \ldots, v_{a+2}, v_{1}$ be a cycle of order $a+2$. Let G be the graph obtained from C_{a+2} by adding n new vertices $u_{1}, u_{2}, \ldots, u_{n}$ and joining each vertex $u_{i}(1 \leq i \leq n-2)$ to both v_{1} and v_{3}; joining the vertices u_{n-1}, u_{n} to v_{a+2}; and joining the vertices u_{n-1} and u_{n}. The graph G is shown in Figure 4. It is easily verified that $e_{m}\left(v_{i}\right)=a$ for $i=1,3,4, \ldots, a+2$ and $e_{m}\left(v_{2}\right)=a+1 ; e_{m}\left(u_{i}\right)=a+1$ for $i=1,2,3, \ldots, n-2$.

Figure 5

Hence $\operatorname{rad}_{m} G=a$ and $\operatorname{diam}_{m} G=a+1=b$. Also, for the vertex $x=v_{2}$, it is clear that $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a minimum x-monophonic set of G and so $m_{x}(G)=n$.

Case 3. $a+2 \leq b \leq 2 a$. Let $C_{a+2}: v_{1}, v_{2}, \ldots, v_{a+2}, v_{1}$ be a cycle of order $a+2$ and let $C_{b-a+2}: y_{1}, y_{2}, \ldots, y_{b-a+2}, y_{1}$ be a cycle of order $b-a+2$. Let G be the graph obtained by first identifying the vertex v_{a+2} of C_{a+2} and the vertex y_{2} of C_{b-a+2}, and then adding $n-1$ new vertices $u_{1}, u_{2}, \ldots, u_{n-1}$ and joining each vertex $u_{i}(1 \leq i \leq n-1)$ to both v_{1} and v_{3}. The graph G is shown in Figure 5. It is easily verified that $a \leq e_{m}(z) \leq b$ for any vertex z in G. Also, since $e_{m}\left(v_{1}\right)=a$ and $e_{m}\left(v_{2}\right)=b$, we have $\operatorname{rad}_{m} G=a$ and $\operatorname{diam}_{m} G=b$. Also, for the vertex $x=v_{2}$, it is clear that $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a minimum x-monophonic set of G and so $m_{x}(G)=n$.

Case 4. $b>2 a$. Let $P_{2 a-1}: v_{1}, v_{2}, \ldots, v_{2 a-1}$ be a path of order $2 a-1$. Let G be the graph obtained from the wheel $W_{n}=K_{1}+C_{b+2}$ and the complete

Figure 6
graph K_{n} by identifying the vertex v_{1} of $P_{2 a-1}$ with the central vertex of W_{n}, and the vertex $v_{2 a-1}$ of $P_{2 a-1}$ with a vertex of K_{n}. The graph G is shown in Figure 6. Since $b>2 a$, we have $e_{m}(x)=b$ for any vertex $x \in V\left(C_{b+2}\right)$. Also, $e_{m}(x)=2 a$ for any vertex $x \in V\left(K_{n}\right)-\left\{v_{2 a-1}\right\} ; a \leq e_{m}(x) \leq 2 a-1$ for any vertex $x \in V\left(P_{2 a-1}\right)$; and $e_{m}(x)=a$ for the central vertex x of $P_{2 a-1}$. Thus $\operatorname{rad}_{m} G=a$ and $\operatorname{diam}_{m} G=b$. Let $S=V\left(K_{n}\right)-\left\{v_{2 a-1}\right\}$ be the set of all simplicial vertices of G. Then by Theorem 6(i), every m_{x}-set of G contains S for the vertex $x=u_{2}$. It is clear that S is not an x-monophonic set of G and so $m_{x}(G)>|S|=n-1$. Then $S^{\prime}=S \cup\left\{u_{b+2}\right\}$ is an x-monophonic set of G and so $m_{x}(G)=n$.

In the following, we construct a graph of prescribed order, monophonic diameter and vertex monophonic number under suitable conditions.

Theorem 26. For each triple m, n and p of integers with $1 \leq n \leq p-m-1$ and $m \geq 3$, there is a connected graph G of order p, monophonic diameter m and $m_{x}(G)=n$ for some vertex x of G.

Proof. Case 1. $n=1$. Let G be a graph obtained from the cycle C_{m+2} : $u_{1}, u_{2}, \ldots, u_{m+2}, u_{1}$ of order $m+2$ by adding $p-m-2$ new vertices $w_{1}, w_{2}, \ldots, w_{p-m-2}$ and joining each vertex $w_{i}(1 \leq i \leq p-m-2)$ to both u_{1} and u_{3}. The graph G has order p and monophonic diameter m and is shown in Figure 7. It is clear that $\left\{u_{m+1}\right\}$ is an x-monophonic set of G for the vertex $x=u_{1}$ and so $m_{x}(G)=1$.

Case 2. $2 \leq n \leq p-m-1$. Let G be a graph obtained from the cycle $C_{m+1}: u_{1}, u_{2}, \ldots, u_{m+1}, u_{1}$ of order $m+1$ by
(i) adding $n-1$ new vertices $v_{1}, v_{2}, \ldots, v_{n-1}$ and joining each vertex $v_{i}(1 \leq i \leq$ $n-1$) to u_{1}; and
(ii) adding $p-m-n$ new vertices $w_{1}, w_{2}, \ldots, w_{p-m-n}$ and joining each vertex $w_{i}(1 \leq i \leq p-m-n)$ to both u_{1} and u_{3}. The graph G has order p and monophonic diameter m and is shown in Figure 8. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ be the set of all simplicial vertices of G.

Figure 7

Figure 8

Then by Theorem $6(\mathrm{i})$, every x-monophonic set of G contains S for the vertex $x=u_{1}$. It is clear that S is not an x-monophonic set of G and so $m_{x}(G)>n-1$. Then $S^{\prime}=S \cup\left\{u_{m}\right\}$ is an x-monophonic set of G and so $m_{x}(G)=n$.

References

[1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990).
[2] F. Buckley, F. Harary and L.U. Quintas, Extremal results on the geodetic number of a graph, Scientia A2 (1988) 17-26.
[3] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1-6.
doi:10.1002/net. 10007
[4] G. Chartrand, G.L. Johns and P. Zhang, The detour number of a graph, Utilitas Mathematica 64 (2003) 97-113.
[5] G. Chartrand, G.L. Johns and P. Zhang, On the detour number and geodetic number of a graph, Ars Combinatoria 72 (2004) 3-15.
[6] F. Harary, Graph Theory (Addison-Wesley, 1969).
[7] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modeling 17(11) (1993) 87-95. doi:10.1016/0895-7177(93)90259-2
[8] A.P. Santhakumaran and P. Titus, Vertex geodomination in graphs, Bulletin of Kerala Mathematics Association, 2(2) (2005) 45-57.
[9] A.P. Santhakumaran and P. Titus, On the vertex geodomination number of a graph, Ars Combinatoria, to appear.
[10] A.P. Santhakumaran, P. Titus, The vertex detour number of a graph, AKCE International J. Graphs. Combin. 4(1) (2007) 99-112.
[11] A.P. Santhakumaran and P. Titus, Monophonic distance in graphs, Discrete Mathematics, Algorithms and Applications, to appear.

Received 10 June 2010
Revised 11 February 2011
Accepted 14 February 2011

