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Abstract

For a connected graph G of order p > 2 and a vertex x of G, a set
S C V(G) is an x-monophonic set of G if each vertex v € V(G) lies on an
x — y monophonic path for some element y in S. The minimum cardinality
of an z-monophonic set of G is defined as the xz-monophonic number of
G, denoted by m,(G). An az-monophonic set of cardinality m, (G) is called
a mg-set of G. We determine bounds for it and characterize graphs which
realize these bounds. A connected graph of order p with vertex monophonic
numbers either p — 1 or p — 2 for every vertex is characterized. It is shown
that for positive integers a,b and n > 2 with 2 < a < b, there exists a
connected graph G with rad,,G = a,diam;,G = b and m,(G) = n for some
vertex x in G. Also, it is shown that for each triple m,n and p of integers
with 1 <n <p—m —1 and m > 3, there is a connected graph G of order
p, monophonic diameter m and m,(G) = n for some vertex z of G.

Keywords: monophonic path, monophonic number, vertex monophonic
number.
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1. INTRODUCTION

By a graph G = (V, E) we mean a finite undirected connected graph without loops
or multiple edges. The order and size of G are denoted by p and ¢ respectively.
For basic graph theoretic terminology we refer to Harary [6]. For vertices z and y
in a connected graph G, the distance d(x,y) is the length of a shortest x —y path
in G. An x—y path of length d(z, y) is called an x—y geodesic. The neighbourhood
of a vertex v is the set N(v) consisting of all vertices u which are adjacent with
v. The closed neighbourhood of a vertex v is the set N[v] = N(v)U{v}. A vertex
v is a simplicial vertex if the subgraph induced by its neighbours is complete.
A nonseparable graph is connected, nontrivial, and has no cut vertices. A block
of a graph is a maximal nonseparable subgraph. A connected block graph is a
connected graph in which each of its blocks is complete. A caterpillar is a tree
for which the removal of all the end vertices gives a path. The closed interval
I[x,y] consists of all vertices lying on some x — y geodesic of G, while for S C V,
I[S] = U, yes Iz, y]. A set S of vertices is a geodetic set if I[S] =V, and the
minimum cardinality of a geodetic set is the geodetic number g(G). A geodetic
set of cardinality g(G) is called a g-set. The geodetic number of a graph was
introduced in [1, 7] and further studied in [2, 3].

The concept of vertex geodomination number was introduced in [8] and fur-
ther studied in [9]. Let x be a vertex of a connected graph G. A set S of vertices
of GG is an z-geodominating set of G if each vertex v of G lies on an x —y geodesic
in G for some element g in S. The minimum cardinality of an z-geodominating
set of G is defined as the x-geodomination number of G and is denoted by g, (G).
An z-geodominating set of cardinality g,(G) is called a g,-set.

For vertices = and y in a connected graph G, the detour distance D(x,y) is
the length of a longest  —y path in G. The closed interval Ip|x,y] consists of all
vertices lying on some x —y detour of G, while for S C V. Ip[S] = U, ,cs In[2, Y]
A set S of vertices is a detour set if Ip[S] = V, and the minimum cardinality of a
detour set is the detour number dn(G). A detour set of cardinality dn(G) is called
a minimum detour set. The detour number of a graph was introduced in [4] and
further studied in [5]. The concept of vertex detour number was introduced in
[10]. Let = be a vertex of a connected graph G. A set S of vertices of G is an
x-detour set if each vertex v of G lies on an x —y detour in G for some element y
in S. The minimum cardinality of an z-detour set of G is defined as the z-detour
number of G and is denoted by d.(G). An z-detour set of cardinality d.(G) is
called a d -set of G.

A chord of a path P is an edge joining two non-adjacent vertices of P. A path
P is called monophonic if it is a chordless path. The closed interval Ip,[z,y]
consists of all vertices lying on some z — y monophonic path of G. For any two
vertices u and v in a connected graph G, the monophonic distance dy,(u,v) from
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u to v is defined as the length of a longest © — v monophonic path in G. The
monophonic eccentricity em(v) of a vertex v in G is ep(v) = max {dn(v,u) :
u € V(G)}. The monophonic radius, rad,G of G is rad,,G = min {ey,(v) :
v € V(G)} and the monophonic diameter, diam,,G of G is diam,,G = max
{em(v) : v € V(G)}. The monophonic distance was introduced and studied in
[11]. The following theorems will be used in the sequel.

Theorem 1 [6]. Let v be a vertex of a connected graph G. The following state-
ments are equivalent:

(i) v is a cut vertex of G.

(ii) There exist vertices u and w distinct from v such that v is on every u — w
path.

(iii) There exists a partition of the set of vertices V. — {v} into subsets U and W
such that for any vertices w € U and w € W, the vertex v is on every u — w
path.

Theorem 2 [6]. Every nontrivial connected graph has at least two vertices which
are not cut vertices.

Theorem 3 [6]. Let G be a connected graph with at least three vertices. The
following statements are equivalent:

(i) G is a block.
(ii) Ewery two vertices of G lie on a common cycle.

Theorem 4 [9]. Let G be a connected graph of order p > 3 with exactly one cut
verter. Then the following are equivalent:

(i) 9(G) =p—1.
(ii) G = K1 +Um;Kj, where ¥m; > 2.
(iii) g2(G) =p—1 orp—2 for any vertex z in G.

Throughout this paper G denotes a connected graph with at least two vertices.

2. VERTEX MONOPHONIC NUMBER

Definition. Let x be a vertex of a connected graph G. A set S of vertices of G
is an x-monophonic set if each vertex v of G lies on an x — y monophonic path
in G for some element y in S. The minimum cardinality of an z-monophonic set
of G is defined as the z-monophonic number of G and is denoted by m.(G) or
simply m,. An z-monophonic set of cardinality m,(G) is called a m,-set of G.

We observe that for any vertex x in GG, x does not belong to any m,-set of G.
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Example 5. For the graph G given in Figure 1, the minimum vertex monophonic
sets and the vertex monophonic numbers are given in Table 1.1.

v W
.
z i
Figure 1
Vertex Minimum vertex Vertex monophonic
monophonic sets number
t {zw} 2
y {zw} 2
z {w} 1
u {zw.y} 3
y {z,w} 2
w {z} 1
Table 1.1

Theorem 6. Let x be a vertex of a connected graph G.

(i) Every simplicial vertex of G other than the vertex x (whether x is simplicial
vertez or not) belongs to every m,-set.

(ii) No cut vertez of G belongs to any m,-set.

Proof. (i) Let = be a vertex of G. Then = does not belong to any mg-set of G.
Let u # = be a simplicial vertex and S, a m,-set of G. Suppose that u ¢ S,.
Then u is an internal vertex of an x —y monophonic path, say P, for some y € S,.
Let v and w be the neighbors of v on P. Then v and w are not adjacent and so
u is not a simplicial vertex, which is a contradiction.

(ii) Let y be a cut vertex of G. Then by Theorem 1, there exists a partition of
the set of vertices V' — {y} into subsets U and W such that for any vertex u € U
and w € W, the vertex y is on every u — w path. Hence, if x € U, then for any
vertex w in W, y lies on every x — w path so that y is an internal vertex of an
x — w monophonic path. Let S, be any mg-set of G. Suppose that S, N W = 0.
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Then for any wy € W, there exists an element z in S, such that w; lies in some
T — z monophonic path P : x = 29, 21,...,w1,...,2, = 2z in G. Now, the x — w;
subpath of P and wi — z subpath of P both contain y so that P is not a path
in G, which is a contradiction. Hence S, N W # (). Let wo € S, N W. Then y is
an internal vertex of an x — we monophonic path. If y € S;, let S =S, — {y}.
It is clear that every vertex that lies on an x — y monophonic path also lies on
an r — wg monophonic path. Hence it follows that S is an z-monophonic set of
(G, which is a contradiction since S, is a minimum z-monophonic set of G. Thus
y does not belong to any mg-set. Similarly, if z € W, y does not belong to any
mg-set. If x =y, then obviously y does not belong to any m,-set. [

Note 7. In Theorem 6, even if x is a simplicial vertex of GG, x does not belong
any meg-set.

Corollary 8. Let T be a tree with t end-vertices. Then my(T) =t —1 ort
according as x is an end-verter or not. In fact, if W is the set of all end-vertices
of T, then W — {z} is the unique my-set of T.

Proof. Let W be the set of all end-vertices of T. It follows from Note 7 and
Theorem 6 that W — {z} is the unique mg,-set of T' for any end-vertex z in T
and W is the unique mg-set of T for any cut vertex = in 7. Thus W — {x} is the
unique mg-set of T for any vertex z in 7. |

Theorem 9. For any vertex x in a graph G, 1 < m,(G) <p—1.

Proof. 1t is clear from the definition of a m,-set that m.,(G) > 1. Also, since
the vertex x does not belong to any my-set, it follows that m;(G) < p — 1. ]

Remark 10. The bounds for m;(G) in Theorem 9 are sharp. The cycle Cy,(n >
4) has m,(C,) = 1 for every vertex x in C),. Also, the non-trivial path P, has
mg(Py,) = 1 for any end vertex x in P,. The complete graph K, has m,(K,) =
p — 1 for every vertex x in K,

Now we proceed to characterize graphs G of order p for which the upper bound
in Theorem 9 is attained.

Theorem 11. For any graph G, mz(G) = p — 1 if and only if deg x = p — 1.

Proof. Let m,;(G) = p — 1. Suppose that deg x < p — 1. Then there is a vertex
u in G which is not adjacent to x. Since G is connected, there is a monophonic
path from x to u, say P, with length greater than or equal to 2. It is clear that
(V(G) — V(P)) U{u} is an z-monophonic set of G and hence m,(G) < p — 2,
which is a contradiction.

Conversely, if deg x = p — 1, then all other vertices of G are adjacent to z
and hence all these vertices form the mg-set. Thus m,(G) =p — 1. [ ]
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Corollary 12. A graph G is complete if and only if m,(G) = p — 1 for every
vertex x in G.

Now we proceed to characterize graphs for which the lower bound in Theorem 9
is attained. For this, we introduce the following definition.

Definition. Let z be any vertex in G. A vertex y in G is said to be an z-
monophonic superior vertex if for any vertex z with d,,,(z,y) < dp(z, 2), z lies
on an x — y monophonic path.

Example 13. For any vertex z in the cycle C,, (n > 4), V(C),) — N|x] is the set
of all z-monophonic superior vertices.

Theorem 14. For a vertex x in a graph G, m,(G) = 1 if and only if there exists
an x-monophonic superior vertex y in G such that every verter of G is on an
x — y monophonic path.

Proof. Let m,(G) = 1 and let S, = {y} be a my-set of G. If y is not an z-
monophonic superior vertex, then there is a vertex z in G with d,,(z,y) < dn(z, 2)
and z does not lie on any x — y monophonic path. Thus .S, is not a my-set of G,
which is a contradiction. The converse is clear from the definition. [

The n-dimensional cube or hypercube @), is the simple graph whose vertices are
the n-tuples with entries in {0,1} and whose edges are the pairs of n-tuples that
differ in exactly one position.

Example 15. For n > 2, m,(Q,) = 1 for every vertex z in @Q,. Let x =

(a1,as,...,a,) be any vertex in @, where a; € {0,1}. Let y = (a},al,...,al)
be another vertex of @, such that a, is the complement of a;. Let u be any
vertex in Q. For convenience, let u = (a1,d,as,...,a,). Then u lies on
the x — y geodesic x = (a1, a2,...,ay), (a1,ab,as,...,ay), (a},dy, as, ..., a,),
(ay,ah,a%,....apn),...,(d},ah,....a,_q,a,), (a],d), ...,

al) =y and so u lies on an x — y monophonic path.

Hence m,(Q,) = 1 for every vertex z in Q.

Theorem 16. (i) For the wheel W), = K1+ Cp—1 (n > 5), my(W,) =n—1 or
1 according as = is Ky or x is in Cp_1.

(ii) Let Ky, (m,n > 2) be a complete bipartite graph with bipartition (V1,V2)
Then mg(Kpmy) is m —1 or n — 1 according as x is in Vy or x is in V.

Proof. (i) Let x be the vertex of Kj. Then by Theorem 11, m,(W,) =n — 1.

Let Cp—1 : u1,u2,us,...,un—1,u; be the cycle of W,,. Let = be any vertex
in Cp—1, say = uy. It is clear that u; (i = 3,4,...,n — 2) is an z-monophonic
superior vertex and every vertex of G lies on an  — u; monophonic path. Then
by Theorem 14, m,(W,) =1
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(ii) Let = € V1. Then it is clear that V; — {z} is a minimum z-monophonic
set of G and so my (K, ,) = m—1. Similarly, for any vertex x € Vo, ma (K, n) =
n— 1. [ |

Now we characterize graphs G of order p having vertex monophonic number
mg(G) equaling either p — 1 or p — 2 for every vertex x in G. First, we prove the
following theorem.

Theorem 17. Let G be a graph with k cut vertices. Then every vertex of G is
either a cut vertez or a simplicial vertex if and only if m,(G) =p—k orp—k—1
for any vertex x in G.

Proof. Let G be a graph with every vertex of G is either a cut vertex or a
simplicial vertex. Since x does not belong to any mg-set of GG, it follows from
Theorem 6 that m;(G) = p — k or p — k — 1 according as z is a cut vertex or a
simplicial vertex.

Conversely, suppose that m,(G) =p —k or p — k — 1 for any vertex x in G.
Suppose that there is a vertex x in G which is neither a cut vertex nor a simplicial
vertex. Since z is not a simplicial vertex, the subgraph induced by N(z) is not
complete and hence there exist v and v in N (z) such that d(u,v) = 2. Also, since
x is not a cut vertex of G, G — {x} is connected and hence there exists a u — v
geodesic say P : u,uy,...,up,v in G—{z}. Then PU{v,z,u} is a shortest cycle,
say C, containing both the vertices v and v with length at least 4 in G. Let R be
the set of all cut vertices of G. We consider two cases.

Case 1 u or v is not a cut vertex of G. Assume that u is not a cut vertex of
G. Clearly, x lies on a u — v monophonic path and hence V(G) — (RU {u,x}) is
a u-monophonic set of G. Therefore m,(G) < p — k — 2, which is a contradiction
to the assumption.

Case 2. u and v are cut vertices of G. By Theorem 1, there exists a partition
of the set of vertices V' — {v} into subsets U and W such that for vertices u; € U
and wy € W, the vertex v is on every u; — w; path. Assume that z € U. Let y
be a vertex in W with maximum monophonic distance from v in W. By choice
of y, y is not a cut vertex of G. Since the order of the cycle C' is at least 4,
V(G) — (RU{z,y}) is a y-monophonic set of G and so my(G) < p —k — 2, which
is a contradiction to the assumption. Hence every vertex of GG is either a cut
vertex or a simplicial vertex. [

Corollary 18. Let G be a connected block graph with number of cut vertices k.
Then myx(G) =p—k or p—k — 1 for any vertez x in G.

Proof. Let G be a connected block graph. Then every vertex of G is either a
cut vertex or a simplicial vertex and hence by Theorem 17, m;(G) = p — k or
p —k — 1 for any vertex = in G. |
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Figure 2

Note 19. The converse of Corollary 18 is not true. For the graph G given in
Figure 2, k =4 and m,(G) =p — k or p— k — 1 for any vertex = in G. However,
it is not a connected block graph.

Theorem 20. Let G be a connected graph. Then G = Ki +|Jm;K; if and only
if my(G) =p—1 or p—2 for any vertex x in G.

Proof. Let G = K1 +Um;K;. Then G has at most one cut vertex. If G has
no cut vertex, then G = K, and so by Corollary 12, m,(G) = p — 1 for every
vertex x in G. Suppose that G has exactly one cut vertex. Then all the remaining
vertices are simplicial and hence by Theorem 17, m,(G) = p— 1 or p — 2 for any
vertex z in G.

Conversely, suppose that m,(G) = p — 1 or p — 2 for any vertex z in G. If
p =2, then G = Ky = K1 + K;. If p > 3, then by Theorem 2, there exists a
vertex x, which is not a cut vertex of G. If G has two or more cut vertices, then
by Theorem 6, m,(G) < p— 3, which is a contradiction. Thus, the number of cut
vertices k of G is at most one.

Casel. k = 0. Then the graph G is a block. If p = 3, then G = K3 = K1+ K.
For p > 4, we claim that G is complete. If G is not complete, then there exist
two vertices x and y in G such that d(x,y) > 2. By Theorem 3, x and y lie on a
common cycle and hence z and y lie on a smallest cycle C' : z,x1,...,Y,...,Tn, T
of length at least 4. Then V(G) — {z,z1,2,} is an z-monophonic set of G and
so my(G) < p — 3, which is a contradiction to the assumption. Hence G is the
complete graph K, and so G = K71 + K,_1.

Case 2. k = 1. Let « be the cut vertex of G. If p = 3, then G = P; =
K1 +mjKq, where ¥m; = 2. If p > 4, we claim that G = K7 + Um; K, where
Ym; > 2. It is enough to prove that every block of G is complete. Suppose that
there exists a block B, which is not complete. Let u and v be two vertices in B
such that d(u,v) > 2. Then by Theorem 3, both w and v lie on a common cycle
so that v and v lie on a smallest cycle of length at least 4. Then as in Case 1,
my(G) < p — 3, which is a contradiction. Thus every block of G is complete so
that G = K1 + Um; K;, where K is the vertex x and Y¥m; > 2. [ |
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Theorem 21. Let G be a connected graph of order p > 3 with exactly one cut
vertex. Then G = Ki +Um; K, where ¥m; > 2 if and only if m,(G) =p—1 or
p — 2 for any vertex x in G.

Proof. The proof is contained in Theorem 20. [

Theorem 22. Let G be a connected graph of order p > 3 with exactly one cut
vertexr. Then the following are equivalent:

(i) 9(G) =p—1.
(ii) G = K1 +Um; K, where ¥mj > 2.
(iii) g2(G) =p—1 orp—2 for any vertex z in G.
(iv) mz(G) =p—1 orp—2 for any vertex x in G.
Proof. This follows from Theorems 4 and 21. [

Now, Corollary 12 and Theorem 20 lead to the natural question whether there
exists a graph G for which m,(G) = p—2 for every vertex x in G. This is answered
in the next theorem.

Theorem 23. There is no graph G of order p with m;(G) = p — 2 for every
verter x in G.

Proof. Suppose that there exists a graph G with m,(G) = p — 2 for every
vertex x in GG. Let = be any vertex of G. Let S, be a mg-set of G so that
mg(G) = |Sz| = p — 2. Since z ¢ S, and m,(G) = p — 2, there exists exactly one
vertex y # x such that y ¢ S,. Hence y lies on the monophonic path x,y, w for
some w € S, and so y lies on the x — w geodesic in G of length 2. We consider
two cases.

Case 1. y is not a cut vertex of G. Then G — {y} is connected and so there
is an x — w geodesic, say P, in G — {y}. Thus C : PU (w,y,x) is a smallest cycle
of length greater than or equal to 4. Hence V(G) — {z,y,w} is a y-monophonic
set of G and hence my(G) < p — 3, which is a contradiction to the assumption.

Case 2. y is a cut vertex of G. If deg y = p — 1, then by Theorem 11,
my(G) = p — 1, which is a contradiction. If deg y < p — 2, then there exists
a vertex u in G such that d(u,y) > 2. It is clear that V(G) — L,[u,y] is an
u-monophonic set in G and so m,(G) < p — 3, which is a contradiction to the
assumption. Thus there is no graph G with m,(G) = p — 2 for every vertex z in
G. .

Theorem 24. For every non-trivial tree T with monophonic diameter d,,,
my(T) = p—dm or p—dpy + 1 for any vertex x in T if and only if T is a
caterpillar.



200 A.P. SANTHAKUMARAN AND P.TITUS

Proof. Let T be any non-trivial tree. Let P be a monophonic path of length d,,.
Let k£ be the number of end vertices of T and [ be the number of internal vertices
of T other than the internal vertices of P. Then d,, —1+1+ k = p. By Corollary
8, mgy(T) =k or k — 1 for any vertex x in G and so mg(T) =p—dy — 1+ 1 or
p — dp, — [ for any vertex x in T. Hence m,(T) = p — dy, + 1 or p — d,,, for any
vertex x in T if and only if [ = 0, if and only if all the internal vertices of T lie
on the monophonic diametral path P, if and only if T is a caterpillar. [

For any connected graph G, rad,,G < diam,,G. It is shown in [11] that every
two positive integers a and b with a < b are realizable as the monophonic radius
and monophonic diameter, respectively, of some connected graph. This theorem
can also be extended so that the vertex monophonic number can be prescribed.

U1

Figure 3

Theorem 25. For positive integers a,b and n > 2 with 2 < a < b, there exists
a connected graph G with rad,G = a,diam,G = b and m,(G) = n for some
vertex x in G.

Proof. We prove this theorem by considering four cases.

Case1l. a =0b. Let Cyyo :v1,v2,...,0442,v1 be a cycle of order a+ 2. Let G
be the graph obtained from C, o by adding n — 1 new vertices uy, ug, ..., Up—1
and joining each vertex u; (1 < i < n — 1) to both v; and v3. The graph G is
shown in Figure 3. It is easily verified that the monophonic eccentricity of each
vertex of G is a and so rad,,G = diam,,G = a. Also, for the vertex x = vo, it is
clear that S = {v,y2,u1,ug,...,uy—1} is @ minimum x-monophonic set of G and
so my;(G) = n.

Case 2. b=a+ 1. Let Cyq2 : v1,v2,...,V442,v1 be a cycle of order a + 2.
Let G be the graph obtained from C,19 by adding n new vertices uy, us, ..., Uy
and joining each vertex u; (1 <i < n — 2) to both v; and vs; joining the vertices
Up—1, Un tO Vg1o; and joining the vertices u,—_1 and u,. The graph G is shown
in Figure 4. It is easily verified that e, (v;) = a for i = 1,3,4,...,a + 2 and
em(v2) =a+1;epn(u)) =a+1fori=1,2,3,...,n—2.
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Figure 4

Figure 5

Hence rad,,G = a and diam,,G = a + 1 = b. Also, for the vertex z = wo, it

is clear that S = {uj,ug,...,u,} is a minimum z-monophonic set of G and so
my(G) = n.
Case 3. a+2 < b < 2a. Let Cuyo : v1,v2,...,0442,v1 be a cycle of order

a+2and let Cy_qio: y1,Y2,- .., Yp—a+2, Y1 be a cycle of order b —a + 2. Let G be
the graph obtained by first identifying the vertex v,1o of Cyio and the vertex yo
of Cy_q+19, and then adding n — 1 new vertices uj, ug,...,uy—1 and joining each
vertex u; (1 < i < n—1) to both v; and vs3. The graph G is shown in Figure
5. It is easily verified that a < e,,(z) < b for any vertex z in G. Also, since
em(v1) = a and e, (v2) = b, we have rad,,G = a and diam,,G = b. Also, for the
vertex x = vy, it is clear that S = {uy,us,...,uy} is a minimum z-monophonic
set of G and so m,(G) = n.

Case 4. b > 2a. Let Poy_1 : v1,v2,...,v2,—1 be a path of order 2a — 1. Let
G be the graph obtained from the wheel W,, = K; + Cpio and the complete
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Uz
Uy K,
Vv 3 Vog -2 V2g-1
Vi cee O— @
Up 42
Figure 6

graph K, by identifying the vertex v of P», 1 with the central vertex of W,
and the vertex vo,_1 of Ps,—1 with a vertex of K. The graph G is shown in
Figure 6. Since b > 2a, we have ey, (z) = b for any vertex = € V(Cpy2). Also,
em(z) = 2a for any vertex x € V(K,,) —{v2.-1}; a < ep () < 2a—1 for any vertex
x € V(Pye—1); and e,,(z) = a for the central vertex = of Pa,—1. Thus rad,,G = a
and diam,,G = b. Let S = V(K,,) — {v2,—1} be the set of all simplicial vertices
of G. Then by Theorem 6(i), every mg-set of G contains S for the vertex x = us.
It is clear that S is not an z-monophonic set of G and so m,(G) > |S| =n — 1.
Then S" = S U {up;2} is an z-monophonic set of G and so m,(G) = n. |

In the following, we construct a graph of prescribed order, monophonic diameter
and vertex monophonic number under suitable conditions.

Theorem 26. For each triple m,n and p of integers with 1 < n < p—m —1
and m > 3, there is a connected graph G of order p, monophonic diameter m and
mg(G) = n for some vertex x of G.

Proof. Case 1. n = 1. Let G be a graph obtained from the cycle Cp42 :
UL, U2y - - -y U2, 1 Of order m+2 by adding p—m —2 new vertices
w1, Wa, . .., Wp—m—2 and joining each vertex w; (1 < i < p—m—2) to both u; and
ug. The graph G has order p and monophonic diameter m and is shown in Figure
7. It is clear that {u;,+1} is an z-monophonic set of G for the vertex x = u; and
so my(G) = 1.

Case 2. 2 < n < p—m —1. Let G be a graph obtained from the cycle

Crt1 : U1, U2, . .., Umt1,up of order m + 1 by

(i) adding n — 1 new vertices vy, vs,...,v,—1 and joining each vertex v; (1 <1i <
n—1) to ug; and

(ii) adding p — m — n new vertices wy,ws, ..., Wp—m—pn and joining each vertex
w; (1 <i < p—m—n) to both u; and ug. The graph G has order p and
monophonic diameter m and is shown in Figure 8. Let S = {vy,va,...,v,-1} be

the set of all simplicial vertices of G.
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Figure 8

Then by Theorem 6(i), every z-monophonic set of G contains S for the vertex
x = uy. It is clear that S is not an z-monophonic set of G and so m,(G) > n— 1.
Then S = S U {up} is an z-monophonic set of G and so m4;(G) = n. |
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