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Abstract

For a connected graph G of order p ≥ 2 and a vertex x of G, a set
S ⊆ V (G) is an x-monophonic set of G if each vertex v ∈ V (G) lies on an
x− y monophonic path for some element y in S. The minimum cardinality
of an x-monophonic set of G is defined as the x-monophonic number of
G, denoted by mx(G). An x-monophonic set of cardinality mx(G) is called
a mx-set of G. We determine bounds for it and characterize graphs which
realize these bounds. A connected graph of order p with vertex monophonic
numbers either p− 1 or p− 2 for every vertex is characterized. It is shown
that for positive integers a, b and n ≥ 2 with 2 ≤ a ≤ b, there exists a
connected graph G with radmG = a, diammG = b and mx(G) = n for some
vertex x in G. Also, it is shown that for each triple m,n and p of integers
with 1 ≤ n ≤ p −m − 1 and m ≥ 3, there is a connected graph G of order
p, monophonic diameter m and mx(G) = n for some vertex x of G.
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1. Introduction

By a graphG = (V,E) we mean a finite undirected connected graph without loops
or multiple edges. The order and size of G are denoted by p and q respectively.
For basic graph theoretic terminology we refer to Harary [6]. For vertices x and y
in a connected graph G, the distance d(x, y) is the length of a shortest x−y path
inG. An x−y path of length d(x, y) is called an x−y geodesic. The neighbourhood
of a vertex v is the set N(v) consisting of all vertices u which are adjacent with
v. The closed neighbourhood of a vertex v is the set N [v] = N(v)∪{v}. A vertex
v is a simplicial vertex if the subgraph induced by its neighbours is complete.
A nonseparable graph is connected, nontrivial, and has no cut vertices. A block
of a graph is a maximal nonseparable subgraph. A connected block graph is a
connected graph in which each of its blocks is complete. A caterpillar is a tree
for which the removal of all the end vertices gives a path. The closed interval
I[x, y] consists of all vertices lying on some x− y geodesic of G, while for S ⊆ V,
I[S] =

⋃
x,y∈S I[x, y]. A set S of vertices is a geodetic set if I[S] = V, and the

minimum cardinality of a geodetic set is the geodetic number g(G). A geodetic
set of cardinality g(G) is called a g-set. The geodetic number of a graph was
introduced in [1, 7] and further studied in [2, 3].

The concept of vertex geodomination number was introduced in [8] and fur-
ther studied in [9]. Let x be a vertex of a connected graph G. A set S of vertices
of G is an x-geodominating set of G if each vertex v of G lies on an x−y geodesic
in G for some element y in S. The minimum cardinality of an x-geodominating
set of G is defined as the x-geodomination number of G and is denoted by gx(G).
An x-geodominating set of cardinality gx(G) is called a gx-set.

For vertices x and y in a connected graph G, the detour distance D(x, y) is
the length of a longest x−y path in G. The closed interval ID[x, y] consists of all
vertices lying on some x−y detour of G, while for S ⊆ V, ID[S] =

⋃
x,y∈S ID[x, y].

A set S of vertices is a detour set if ID[S] = V, and the minimum cardinality of a
detour set is the detour number dn(G). A detour set of cardinality dn(G) is called
a minimum detour set. The detour number of a graph was introduced in [4] and
further studied in [5]. The concept of vertex detour number was introduced in
[10]. Let x be a vertex of a connected graph G. A set S of vertices of G is an
x-detour set if each vertex v of G lies on an x−y detour in G for some element y
in S. The minimum cardinality of an x-detour set of G is defined as the x-detour
number of G and is denoted by dx(G). An x-detour set of cardinality dx(G) is
called a dx-set of G.

A chord of a path P is an edge joining two non-adjacent vertices of P. A path
P is called monophonic if it is a chordless path. The closed interval Im[x, y]
consists of all vertices lying on some x − y monophonic path of G. For any two
vertices u and v in a connected graph G, the monophonic distance dm(u, v) from
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u to v is defined as the length of a longest u − v monophonic path in G. The
monophonic eccentricity em(v) of a vertex v in G is em(v) = max {dm(v, u) :
u ∈ V (G)}. The monophonic radius, radmG of G is radmG = min {em(v) :
v ∈ V (G)} and the monophonic diameter, diammG of G is diammG = max
{em(v) : v ∈ V (G)}. The monophonic distance was introduced and studied in
[11]. The following theorems will be used in the sequel.

Theorem 1 [6]. Let v be a vertex of a connected graph G. The following state-
ments are equivalent:

(i) v is a cut vertex of G.

(ii) There exist vertices u and w distinct from v such that v is on every u − w
path.

(iii) There exists a partition of the set of vertices V −{v} into subsets U and W
such that for any vertices u ∈ U and w ∈ W, the vertex v is on every u− w
path.

Theorem 2 [6]. Every nontrivial connected graph has at least two vertices which
are not cut vertices.

Theorem 3 [6]. Let G be a connected graph with at least three vertices. The
following statements are equivalent:

(i) G is a block.

(ii) Every two vertices of G lie on a common cycle.

Theorem 4 [9]. Let G be a connected graph of order p ≥ 3 with exactly one cut
vertex. Then the following are equivalent:

(i) g(G) = p− 1.

(ii) G = K1 + ∪mjKj , where Σmj ≥ 2.

(iii) gx(G) = p− 1 or p− 2 for any vertex x in G.

Throughout this paper G denotes a connected graph with at least two vertices.

2. Vertex Monophonic Number

Definition. Let x be a vertex of a connected graph G. A set S of vertices of G
is an x-monophonic set if each vertex v of G lies on an x − y monophonic path
in G for some element y in S. The minimum cardinality of an x-monophonic set
of G is defined as the x-monophonic number of G and is denoted by mx(G) or
simply mx. An x-monophonic set of cardinality mx(G) is called a mx-set of G.

We observe that for any vertex x in G, x does not belong to any mx-set of G.
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Example 5. For the graph G given in Figure 1, the minimum vertex monophonic
sets and the vertex monophonic numbers are given in Table 1.1.

Figure 1

Table 1.1

Theorem 6. Let x be a vertex of a connected graph G.

(i) Every simplicial vertex of G other than the vertex x (whether x is simplicial
vertex or not) belongs to every mx-set.

(ii) No cut vertex of G belongs to any mx-set.

Proof. (i) Let x be a vertex of G. Then x does not belong to any mx-set of G.
Let u 6= x be a simplicial vertex and Sx a mx-set of G. Suppose that u /∈ Sx.
Then u is an internal vertex of an x−y monophonic path, say P, for some y ∈ Sx.
Let v and w be the neighbors of u on P. Then v and w are not adjacent and so
u is not a simplicial vertex, which is a contradiction.

(ii) Let y be a cut vertex of G. Then by Theorem 1, there exists a partition of
the set of vertices V − {y} into subsets U and W such that for any vertex u ∈ U
and w ∈ W, the vertex y is on every u − w path. Hence, if x ∈ U, then for any
vertex w in W, y lies on every x − w path so that y is an internal vertex of an
x− w monophonic path. Let Sx be any mx-set of G. Suppose that Sx ∩W = ∅.
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Then for any w1 ∈ W, there exists an element z in Sx such that w1 lies in some
x− z monophonic path P : x = z0, z1, . . . , w1, . . . , zn = z in G. Now, the x− w1

subpath of P and w1 − z subpath of P both contain y so that P is not a path
in G, which is a contradiction. Hence Sx ∩W 6= ∅. Let w2 ∈ Sx ∩W . Then y is
an internal vertex of an x − w2 monophonic path. If y ∈ Sx, let S = Sx − {y}.
It is clear that every vertex that lies on an x − y monophonic path also lies on
an x − w2 monophonic path. Hence it follows that S is an x-monophonic set of
G, which is a contradiction since Sx is a minimum x-monophonic set of G. Thus
y does not belong to any mx-set. Similarly, if x ∈ W, y does not belong to any
mx-set. If x = y, then obviously y does not belong to any mx-set.

Note 7. In Theorem 6, even if x is a simplicial vertex of G, x does not belong
any mx-set.

Corollary 8. Let T be a tree with t end-vertices. Then mx(T ) = t − 1 or t
according as x is an end-vertex or not. In fact, if W is the set of all end-vertices
of T, then W − {x} is the unique mx-set of T.

Proof. Let W be the set of all end-vertices of T. It follows from Note 7 and
Theorem 6 that W − {x} is the unique mx-set of T for any end-vertex x in T
and W is the unique mx-set of T for any cut vertex x in T. Thus W −{x} is the
unique mx-set of T for any vertex x in T.

Theorem 9. For any vertex x in a graph G, 1 ≤ mx(G) ≤ p− 1.

Proof. It is clear from the definition of a mx-set that mx(G) ≥ 1. Also, since
the vertex x does not belong to any mx-set, it follows that mx(G) ≤ p− 1.

Remark 10. The bounds for mx(G) in Theorem 9 are sharp. The cycle Cn(n ≥
4) has mx(Cn) = 1 for every vertex x in Cn. Also, the non-trivial path Pn has
mx(Pn) = 1 for any end vertex x in Pn. The complete graph Kp has mx(Kp) =
p− 1 for every vertex x in Kp.

Now we proceed to characterize graphs G of order p for which the upper bound
in Theorem 9 is attained.

Theorem 11. For any graph G, mx(G) = p− 1 if and only if deg x = p− 1.

Proof. Let mx(G) = p− 1. Suppose that deg x < p− 1. Then there is a vertex
u in G which is not adjacent to x. Since G is connected, there is a monophonic
path from x to u, say P, with length greater than or equal to 2. It is clear that
(V (G) − V (P )) ∪ {u} is an x-monophonic set of G and hence mx(G) ≤ p − 2,
which is a contradiction.

Conversely, if deg x = p − 1, then all other vertices of G are adjacent to x
and hence all these vertices form the mx-set. Thus mx(G) = p− 1.
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Corollary 12. A graph G is complete if and only if mx(G) = p − 1 for every
vertex x in G.

Now we proceed to characterize graphs for which the lower bound in Theorem 9
is attained. For this, we introduce the following definition.

Definition. Let x be any vertex in G. A vertex y in G is said to be an x-
monophonic superior vertex if for any vertex z with dm(x, y) < dm(x, z), z lies
on an x− y monophonic path.

Example 13. For any vertex x in the cycle Cn (n ≥ 4), V (Cn)−N [x] is the set
of all x-monophonic superior vertices.

Theorem 14. For a vertex x in a graph G, mx(G) = 1 if and only if there exists
an x-monophonic superior vertex y in G such that every vertex of G is on an
x− y monophonic path.

Proof. Let mx(G) = 1 and let Sx = {y} be a mx-set of G. If y is not an x-
monophonic superior vertex, then there is a vertex z inG with dm(x, y) < dm(x, z)
and z does not lie on any x− y monophonic path. Thus Sx is not a mx-set of G,
which is a contradiction. The converse is clear from the definition.

The n-dimensional cube or hypercube Qn is the simple graph whose vertices are
the n-tuples with entries in {0, 1} and whose edges are the pairs of n-tuples that
differ in exactly one position.

Example 15. For n ≥ 2, mx(Qn) = 1 for every vertex x in Qn. Let x =
(a1, a2, . . . , an) be any vertex in Qn, where ai ∈ {0, 1}. Let y = (a′1, a

′

2, . . . , a
′

n)
be another vertex of Qn such that a′i is the complement of ai. Let u be any
vertex in Qn. For convenience, let u = (a1, a

′

2, a3, . . . , an). Then u lies on
the x − y geodesic x = (a1, a2, . . . , an), (a1, a

′

2, a3, . . . , an), (a′1, a
′

2, a3, . . . , an),
(a′1, a

′

2, a
′

3, . . . , an), . . . , (a
′

1, a
′

2, . . . , a
′

n−1, an), (a
′

1, a
′

2, . . . ,
a′n) = y and so u lies on an x− y monophonic path.
Hence mx(Qn) = 1 for every vertex x in Qn.

Theorem 16. (i) For the wheel Wn = K1 +Cn−1 (n ≥ 5), mx(Wn) = n− 1 or
1 according as x is K1 or x is in Cn−1.

(ii) Let Km,n (m,n ≥ 2) be a complete bipartite graph with bipartition (V1, V2)
Then mx(Km,n) is m− 1 or n− 1 according as x is in V1 or x is in V2.

Proof. (i) Let x be the vertex of K1. Then by Theorem 11, mx(Wn) = n− 1.
Let Cn−1 : u1, u2, u3, . . . , un−1, u1 be the cycle of Wn. Let x be any vertex

in Cn−1, say x = u1. It is clear that ui (i = 3, 4, . . . , n − 2) is an x-monophonic
superior vertex and every vertex of G lies on an x− ui monophonic path. Then
by Theorem 14, mx(Wn) = 1
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(ii) Let x ∈ V1. Then it is clear that V1 − {x} is a minimum x-monophonic
set of G and so mx(Km,n) = m−1. Similarly, for any vertex x ∈ V2, mx(Km,n) =
n− 1.

Now we characterize graphs G of order p having vertex monophonic number
mx(G) equaling either p− 1 or p− 2 for every vertex x in G. First, we prove the
following theorem.

Theorem 17. Let G be a graph with k cut vertices. Then every vertex of G is
either a cut vertex or a simplicial vertex if and only if mx(G) = p−k or p−k−1
for any vertex x in G.

Proof. Let G be a graph with every vertex of G is either a cut vertex or a
simplicial vertex. Since x does not belong to any mx-set of G, it follows from
Theorem 6 that mx(G) = p − k or p − k − 1 according as x is a cut vertex or a
simplicial vertex.

Conversely, suppose that mx(G) = p− k or p− k − 1 for any vertex x in G.
Suppose that there is a vertex x in G which is neither a cut vertex nor a simplicial
vertex. Since x is not a simplicial vertex, the subgraph induced by N(x) is not
complete and hence there exist u and v in N(x) such that d(u, v) = 2. Also, since
x is not a cut vertex of G, G − {x} is connected and hence there exists a u − v
geodesic say P : u, u1, . . . , un, v in G−{x}. Then P ∪{v, x, u} is a shortest cycle,
say C, containing both the vertices u and v with length at least 4 in G. Let R be
the set of all cut vertices of G. We consider two cases.

Case 1 u or v is not a cut vertex of G. Assume that u is not a cut vertex of
G. Clearly, x lies on a u− v monophonic path and hence V (G)− (R ∪ {u, x}) is
a u-monophonic set of G. Therefore mu(G) ≤ p− k− 2, which is a contradiction
to the assumption.

Case 2. u and v are cut vertices of G. By Theorem 1, there exists a partition
of the set of vertices V −{v} into subsets U and W such that for vertices u1 ∈ U
and w1 ∈ W, the vertex v is on every u1 − w1 path. Assume that x ∈ U. Let y
be a vertex in W with maximum monophonic distance from v in W. By choice
of y, y is not a cut vertex of G. Since the order of the cycle C is at least 4,
V (G)− (R∪{x, y}) is a y-monophonic set of G and so my(G) ≤ p− k− 2, which
is a contradiction to the assumption. Hence every vertex of G is either a cut
vertex or a simplicial vertex.

Corollary 18. Let G be a connected block graph with number of cut vertices k.
Then mx(G) = p− k or p− k − 1 for any vertex x in G.

Proof. Let G be a connected block graph. Then every vertex of G is either a
cut vertex or a simplicial vertex and hence by Theorem 17, mx(G) = p − k or
p− k − 1 for any vertex x in G.
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Figure 2

Note 19. The converse of Corollary 18 is not true. For the graph G given in
Figure 2, k = 4 and mx(G) = p− k or p− k − 1 for any vertex x in G. However,
it is not a connected block graph.

Theorem 20. Let G be a connected graph. Then G = K1 +
⋃
mjKj if and only

if mx(G) = p− 1 or p− 2 for any vertex x in G.

Proof. Let G = K1 + ∪mjKj . Then G has at most one cut vertex. If G has
no cut vertex, then G = Kp and so by Corollary 12, mx(G) = p − 1 for every
vertex x in G. Suppose that G has exactly one cut vertex. Then all the remaining
vertices are simplicial and hence by Theorem 17, mx(G) = p− 1 or p− 2 for any
vertex x in G.

Conversely, suppose that mx(G) = p − 1 or p − 2 for any vertex x in G. If
p = 2, then G = K2 = K1 + K1. If p ≥ 3, then by Theorem 2, there exists a
vertex x, which is not a cut vertex of G. If G has two or more cut vertices, then
by Theorem 6, mx(G) ≤ p−3, which is a contradiction. Thus, the number of cut
vertices k of G is at most one.

Case 1. k = 0. Then the graphG is a block. If p = 3, thenG = K3 = K1+K2.
For p ≥ 4, we claim that G is complete. If G is not complete, then there exist
two vertices x and y in G such that d(x, y) ≥ 2. By Theorem 3, x and y lie on a
common cycle and hence x and y lie on a smallest cycle C : x, x1, . . . , y, . . . , xn, x
of length at least 4. Then V (G) − {x, x1, xn} is an x-monophonic set of G and
so mx(G) ≤ p − 3, which is a contradiction to the assumption. Hence G is the
complete graph Kp and so G = K1 +Kp−1.

Case 2. k = 1. Let x be the cut vertex of G. If p = 3, then G = P3 =
K1 +mjK1, where Σmj = 2. If p ≥ 4, we claim that G = K1 + ∪mjKj , where
Σmj ≥ 2. It is enough to prove that every block of G is complete. Suppose that
there exists a block B, which is not complete. Let u and v be two vertices in B
such that d(u, v) ≥ 2. Then by Theorem 3, both u and v lie on a common cycle
so that u and v lie on a smallest cycle of length at least 4. Then as in Case 1,
mu(G) ≤ p − 3, which is a contradiction. Thus every block of G is complete so
that G = K1 + ∪mjKj , where K1 is the vertex x and Σmj ≥ 2.
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Theorem 21. Let G be a connected graph of order p ≥ 3 with exactly one cut
vertex. Then G = K1 +∪mjKj , where Σmj ≥ 2 if and only if mx(G) = p− 1 or
p− 2 for any vertex x in G.

Proof. The proof is contained in Theorem 20.

Theorem 22. Let G be a connected graph of order p ≥ 3 with exactly one cut
vertex. Then the following are equivalent:

(i) g(G) = p− 1.

(ii) G = K1 + ∪mjKj , where Σmj ≥ 2.

(iii) gx(G) = p− 1 or p− 2 for any vertex x in G.

(iv) mx(G) = p− 1 or p− 2 for any vertex x in G.

Proof. This follows from Theorems 4 and 21.

Now, Corollary 12 and Theorem 20 lead to the natural question whether there
exists a graph G for whichmx(G) = p−2 for every vertex x in G. This is answered
in the next theorem.

Theorem 23. There is no graph G of order p with mx(G) = p − 2 for every
vertex x in G.

Proof. Suppose that there exists a graph G with mx(G) = p − 2 for every
vertex x in G. Let x be any vertex of G. Let Sx be a mx-set of G so that
mx(G) = |Sx| = p− 2. Since x /∈ Sx and mx(G) = p− 2, there exists exactly one
vertex y 6= x such that y /∈ Sx. Hence y lies on the monophonic path x, y, w for
some w ∈ Sx and so y lies on the x − w geodesic in G of length 2. We consider
two cases.

Case 1. y is not a cut vertex of G. Then G− {y} is connected and so there
is an x−w geodesic, say P, in G−{y}. Thus C : P ∪ (w, y, x) is a smallest cycle
of length greater than or equal to 4. Hence V (G) − {x, y, w} is a y-monophonic
set of G and hence my(G) ≤ p− 3, which is a contradiction to the assumption.

Case 2. y is a cut vertex of G. If deg y = p − 1, then by Theorem 11,
my(G) = p − 1, which is a contradiction. If deg y ≤ p − 2, then there exists
a vertex u in G such that d(u, y) ≥ 2. It is clear that V (G) − Im[u, y] is an
u-monophonic set in G and so mu(G) ≤ p − 3, which is a contradiction to the
assumption. Thus there is no graph G with mx(G) = p− 2 for every vertex x in
G.

Theorem 24. For every non-trivial tree T with monophonic diameter dm,
mx(T ) = p − dm or p − dm + 1 for any vertex x in T if and only if T is a
caterpillar.
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Proof. Let T be any non-trivial tree. Let P be a monophonic path of length dm.
Let k be the number of end vertices of T and l be the number of internal vertices
of T other than the internal vertices of P . Then dm− 1+ l+ k = p. By Corollary
8, mx(T ) = k or k − 1 for any vertex x in G and so mx(T ) = p − dm − l + 1 or
p − dm − l for any vertex x in T. Hence mx(T ) = p − dm + 1 or p − dm for any
vertex x in T if and only if l = 0, if and only if all the internal vertices of T lie
on the monophonic diametral path P, if and only if T is a caterpillar.

For any connected graph G, radmG ≤ diammG. It is shown in [11] that every
two positive integers a and b with a ≤ b are realizable as the monophonic radius
and monophonic diameter, respectively, of some connected graph. This theorem
can also be extended so that the vertex monophonic number can be prescribed.

Figure 3

Theorem 25. For positive integers a, b and n ≥ 2 with 2 ≤ a ≤ b, there exists
a connected graph G with radmG = a, diammG = b and mx(G) = n for some
vertex x in G.

Proof. We prove this theorem by considering four cases.

Case 1. a = b. Let Ca+2 : v1, v2, . . . , va+2, v1 be a cycle of order a+2. Let G
be the graph obtained from Ca+2 by adding n − 1 new vertices u1, u2, . . . , un−1

and joining each vertex ui (1 ≤ i ≤ n − 1) to both v1 and v3. The graph G is
shown in Figure 3. It is easily verified that the monophonic eccentricity of each
vertex of G is a and so radmG = diammG = a. Also, for the vertex x = v2, it is
clear that S = {va+2, u1, u2, . . . , un−1} is a minimum x-monophonic set of G and
so mx(G) = n.

Case 2. b = a + 1. Let Ca+2 : v1, v2, . . . , va+2, v1 be a cycle of order a + 2.
Let G be the graph obtained from Ca+2 by adding n new vertices u1, u2, . . . , un
and joining each vertex ui (1 ≤ i ≤ n− 2) to both v1 and v3; joining the vertices
un−1, un to va+2; and joining the vertices un−1 and un. The graph G is shown
in Figure 4. It is easily verified that em(vi) = a for i = 1, 3, 4, . . . , a + 2 and
em(v2) = a+ 1; em(ui) = a+ 1 for i = 1, 2, 3, . . . , n− 2.
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Figure 4

Figure 5

Hence radmG = a and diammG = a + 1 = b. Also, for the vertex x = v2, it
is clear that S = {u1, u2, . . . , un} is a minimum x-monophonic set of G and so
mx(G) = n.

Case 3. a + 2 ≤ b ≤ 2a. Let Ca+2 : v1, v2, . . . , va+2, v1 be a cycle of order
a+2 and let Cb−a+2 : y1, y2, . . . , yb−a+2, y1 be a cycle of order b−a+2. Let G be
the graph obtained by first identifying the vertex va+2 of Ca+2 and the vertex y2
of Cb−a+2, and then adding n− 1 new vertices u1, u2, . . . , un−1 and joining each
vertex ui (1 ≤ i ≤ n − 1) to both v1 and v3. The graph G is shown in Figure
5. It is easily verified that a ≤ em(z) ≤ b for any vertex z in G. Also, since
em(v1) = a and em(v2) = b, we have radmG = a and diammG = b. Also, for the
vertex x = v2, it is clear that S = {u1, u2, . . . , un} is a minimum x-monophonic
set of G and so mx(G) = n.

Case 4. b > 2a. Let P2a−1 : v1, v2, . . . , v2a−1 be a path of order 2a − 1. Let
G be the graph obtained from the wheel Wn = K1 + Cb+2 and the complete
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Figure 6

graph Kn by identifying the vertex v1 of P2a−1 with the central vertex of Wn,
and the vertex v2a−1 of P2a−1 with a vertex of Kn. The graph G is shown in
Figure 6. Since b > 2a, we have em(x) = b for any vertex x ∈ V (Cb+2). Also,
em(x) = 2a for any vertex x ∈ V (Kn)−{v2a−1}; a ≤ em(x) ≤ 2a−1 for any vertex
x ∈ V (P2a−1); and em(x) = a for the central vertex x of P2a−1. Thus radmG = a
and diammG = b. Let S = V (Kn) − {v2a−1} be the set of all simplicial vertices
of G. Then by Theorem 6(i), every mx-set of G contains S for the vertex x = u2.
It is clear that S is not an x-monophonic set of G and so mx(G) > |S| = n− 1.
Then S′ = S ∪ {ub+2} is an x-monophonic set of G and so mx(G) = n.

In the following, we construct a graph of prescribed order, monophonic diameter
and vertex monophonic number under suitable conditions.

Theorem 26. For each triple m,n and p of integers with 1 ≤ n ≤ p − m − 1
and m ≥ 3, there is a connected graph G of order p, monophonic diameter m and
mx(G) = n for some vertex x of G.

Proof. Case 1. n = 1. Let G be a graph obtained from the cycle Cm+2 :
u1, u2, . . . , um+2, u1 of order m+ 2 by adding p−m− 2 new vertices
w1, w2, . . . , wp−m−2 and joining each vertex wi (1 ≤ i ≤ p−m−2) to both u1 and
u3. The graph G has order p and monophonic diameter m and is shown in Figure
7. It is clear that {um+1} is an x-monophonic set of G for the vertex x = u1 and
so mx(G) = 1.

Case 2. 2 ≤ n ≤ p − m − 1. Let G be a graph obtained from the cycle
Cm+1 : u1, u2, . . . , um+1, u1 of order m+ 1 by
(i) adding n− 1 new vertices v1, v2, . . . , vn−1 and joining each vertex vi (1 ≤ i ≤
n− 1) to u1; and
(ii) adding p − m − n new vertices w1, w2, . . . , wp−m−n and joining each vertex
wi (1 ≤ i ≤ p − m − n) to both u1 and u3. The graph G has order p and
monophonic diameter m and is shown in Figure 8. Let S = {v1, v2, . . . , vn−1} be
the set of all simplicial vertices of G.
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Figure 7

Figure 8

Then by Theorem 6(i), every x-monophonic set of G contains S for the vertex
x = u1. It is clear that S is not an x-monophonic set of G and so mx(G) > n− 1.
Then S′ = S ∪ {um} is an x-monophonic set of G and so mx(G) = n.
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