
Discussiones Mathematicae
Graph Theory 32 (2012) 387–401
doi:10.7151/dmgt.1598

STABLE SETS FOR (P6,K2,3)-FREE GRAPHS

Raffaele Mosca

Dipartimento di Scienze
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Abstract

The Maximum Stable Set (MS) problem is a well known NP-hard prob-
lem. However different graph classes for which MS can be efficiently solved
have been detected and the augmenting graph technique seems to be a fruit-
ful tool to this aim. In this paper we apply a recent characterization of mini-
mal augmenting graphs [22] to prove that MS can be solved for (P6,K2,3)-free
graphs in polynomial time, extending some known results.
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1. Introduction

A stable set in a graph G is a set of pairwise nonadjacent vertices of G. The Max-
imum Stable Set (MS) problem is that of determining a stable set of maximum
cardinality of a graph G. The MS problem is NP-hard, even under strong restric-
tions [13]. The following specific graphs are mentioned later. A Pk has vertices
v1, v2, . . . , vk and edges vjvj+1 for 1 ≤ j < k. A Ck has vertices v1, v2, . . . , vk and
edges vjvj+1 for 1 ≤ j ≤ k− 1 (index arithmetic modulo k). A Kp,q, for p, q ≥ 1,
is a complete bipartite graph with sides of cardinality p and q respectively. A
K1,3 is also called a claw. Given two graphs G1, G2, let G1+G2 denote the graph
obtained as a disjoint union of G1 and G2.

Let us say that a graph G is F -free if no induced subgraph of G is isomorphic
to a given graph F . If G is F1-free and F2-free for given graphs F1 and F2, then
let us say that G is (F1, F2)-free.

Let us say that a graph is of type T if it is a subdivided claw or a path, i.e.
if it is a tree with at most one vertex of degree 3 and the other vertices of degree
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less than 3. Then a graph of type T which is different from a path contains three
paths, each one from the vertex of degree 3 to respectively the three vertices of
degree 1: then it can be denoted as Ti,j,k, where i, j, k stand for the length of
such three paths (e.g. a T1,1,1 is a claw).

Alekseev [1, 4] proved that MS remains NP-hard in the class of F -free graphs
whenever F is a graph of which at least one component is not of type T .

Notice that if MS is polynomial for F -free graphs, for a given graph F , then
MS is polynomial for P1 ∪ F graphs, where P1 ∪ F is the graph formed by the
disjoint union of an isolated vertex and F : in fact, for any graph G = (V,E),
the MS problem can be solved by solving the same problem on each its subgraph
G[V \N(v)], for v ∈ V .

Let us consider the computational complexity of MS for F -free graphs, for
every 5-vertex graph F .

Assume that F is connected. If F is not of type T , then MS remains NP-hard
for F -free graphs by Alekseev’s result. If F is of type T , then F is either a fork
(a fork has vertices a, b, c, d, e and edges ab, bc, cd, ce) or a P5. If F is a fork,
then MS is polynomial for F -free graphs [2, 3], also in its weighted version [21]:
notice that then MS is polynomial for F ′-free graphs, for every induced subgraph
F ′ of a fork. If F is a P5, then the computational complexity of MS is unknown
for F -free graphs.

Assume that F is disconnected. If at least one component of F is not of
type T , then MS remains NP-hard for F -free graphs by Alekseev’s result. Then
assume that every component of F is of type T . If F has an isolated vertex, then
the remaining four vertices of F either form an induced subgraph of a fork, or
form a P2+P2, or form a 4P1 (i.e., a stable set of four vertices): then by the above
remarks and since MS is polynomial for P2 + P2-free graphs [11] and clearly for
5P1-free graphs, MS is polynomial for F -free graphs. If F has no isolated vertices,
i.e., F is a P2 + P3, then MS is polynomial for F -free graphs [23].

Summarizing, if F is a 5-vertex graph, then the computational complexity of
MS is unknown for F -free graphs only in case F = P5. Also the computational
complexity of MS is unknown for F -free graphs, where F is a connected graph of
type T with more than 5 vertices, in particular for Pt-free graphs for t ≥ 6.

In this paper we prove that MS can be solved for (P6,K2,3)-free in polynomial
time. That extends the following analogous results concerning:

(i) (P5,K2,3)-free graphs, see [15] where the result holds even for (P5,Km,m)-free
graphs (see [27] for the weighted case) and

(ii) (P6,C4)-free graphs, see [7, 26] (see [7] for the weighted case). Let us recall
that, since a K2,3 contains a C4, MS remains NP-hard for K2,3-free graphs
[29].

Two topics are linked to this paper: the first is the study of P6-free graphs
(with particular reference to MS for subclasses of these graphs); the second is
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the augmenting graph technique (see e.g. [17] for a survey on this topic), which
is a fruitful approach to detect graph classes for which MS can be solved in
polynomial time, and which we apply in this paper with particular reference to
a recent characterization of minimal augmenting graphs [22].

Concerning the first topic: the class of P6-free graphs is a natural extension
of that of P5-free graphs. The first characterization of such graphs was maybe
given in [6]. Then further results were introduced also recently, see e.g. [10, 12,
16, 18, 19, 20]. In particular structural properties of P6-free graphs were directly
applied to define polynomial time algorithms to solve the MS problem (also for
its weighted version) for subclasses of these graphs, such as (P6,triangle)-free [9],
(P6,K1,p)-free [24], (P6, C4)-free [7, 26] and (P6,diamond)-free graphs [28]. Let us
observe that results on MS for subclasses of P6-free graphs may keep their own
interest even if the complexity of MS for P5-free graphs should be determined.
In fact: if MS should (be shown to) remain NP-hard for P5-free graphs, then MS
would remain NP-hard for P6-free graphs too; if MS should (be shown to) be
polynomial for P5-free graphs, then according to the aforementioned Alekseev’s
result the class of P6-free graphs would be one of the three minimal classes (the
other ones are that of T1,1,3-free graphs and that of T1,2,2-free graphs), defined by
forbidding a single connected subgraph, for which the computational complexity
of MS would be unknown.

Concerning the second topic: the augmenting graph technique to solve the
MS problem derives directly from the well-known augmenting technique to solve
the Maximum Matching problem, and the first application to MS of such a tech-
nique was maybe introduced in [25, 30] for claw-free graphs. Then further results
were introduced also recently, see e.g. [5, 14, 22]. Let us observe that in [5] the
authors prove that while applying the augmenting graph technique one can treat
banner-free graphs (a banner has vertices a, b, c, d, e and edges ab, bc, be, cd, de)
as C4-free graphs; in particular the mentioned results of [5, 14, 22] deal with
subclasses of banner-free graphs; in this manuscript we consider a subclass of
K2,3-free graphs (i.e., that is an extension of the application of the augmenting
graph technique in a different direction).

2. Preliminaries

For any missing notation or references, let us refer to [8]. Let G = (V,E) be
a finite undirected graph and let |V | = n, |E| = m. For every u ∈ V , let
N(u) = {v ∈ V : uv ∈ E} be the set of neighbors of u. Let N [v] = N(v) ∪ {v}.
Let U,W be two subsets of V . Let N(U) = {v ∈ V \ U : there exists u ∈ U such
that uv ∈ E}. Let N [U ] = N(U)∪U . Let NW (U) = N(U)∩W ; if U = {u}, then
let us simply write NW (u). Let us say that v ∈ V dominates U if v is adjacent
to each vertex of U .
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Let G[U ] denote the subgraph of G induced by U ⊆ V . A component of G is the
vertex-set of a maximal connected subgraph of G. The distance d(v, w) between
v, w ∈ V is the number of edges in a shortest path from v to w.

Let S be a stable set of G. A bipartite graph H = (H1, H2, F ) is called an
augmenting graph for S if H2 ⊆ S, H1 ⊆ V \ S, N(H1) ∩ (S \ H2) = ∅, and
|H1| > |H2|. The following theorem is well known and not difficult to prove (see
e.g. [17]).

Theorem 1. Let S be a stable set S of a graph G. Then S is not maximum if
and only if there exists an augmenting graph for S.

Replacement of the vertices of H2 in S by the vertices of H1 is called the H-
augmentation of S (in particular, |H1| − |H2| is the increment). Then the fol-
lowing algorithm correctly solves the MS problem for any graph G and points
out that the difficulty of the problem can be directly linked to that of detecting
augmenting graphs for stable sets.

Algorithm Alpha

Input: a graph G = (V,E).
Output: a maximum stable set S of G.

Step 1. Compute any stable set S of G.

Step 2. Check if there exists a (minimal) augmenting graph for S, say H.

Step 3. If the answer is no, then return S. STOP.

Step 4. If the answer is yes, then apply H-augmentation to S. Go to Step 2.

A stable system of representatives (shortly ssr) of U ⊆ V is a stable set T ⊆ V \U ,
with |T | = |U |, such that G[T ∪ U ] has a matching of |T | = |U | elements, i.e.,
one can write U = {u1, . . . , um} and T = {t1, . . . , tm} so that (ui, ti) ∈ E for
i = 1, . . . ,m.

A minimal augmenting graph for S is an augmenting graph for S that is not
the induced supergraph of any other augmenting graph for S. Notice that every
minimal augmenting graph is connected. Let us report the following result from
[22].

Lemma 2 [22]. Let G = (V,E) be a graph, S be a maximal stable set of G, and
v ∈ V \ S. If v belongs to a minimal augmenting graph (H1, H2, F ) for S, then
H1 \ {v} admits an ssr in H2.

Theorem 2 of [6] implies that every connected P6-free graph G = (V,E) admits
a vertex v such that d(v, u) ≤ 3 for every u ∈ V . Theorem 2 of [20] implies
that every connected P6-free bipartite graph admits two such special vertices,
belonging respectively to the two sides of the bipartite graph. The following



Stable Sets for (P6,K2,3)-free Graphs 391

observation points out that, in a connected P6-free bipartite graph G, a sufficient
condition for a vertex to enjoy the above property is to have maximum degree in
G among the vertices of its side.

Observation 3. Let H = (H1, H2, E) be a connected bipartite P6-free graph. Let
v ∈ H1 be a vertex such that v has maximum degree in H among the vertices of
H1. Then d(v, h) ≤ 3 for every h ∈ H1 ∪H2.

Proof. By contradiction assume that there exists h ∈ H1∪H2 such that d(v, h) =
4. Since G is connected bipartite, h ∈ H1. Let v, a, u, b, h be the vertices inducing
a shortest path from v to h. By the maximum degree of v (and since u is adjacent
to b), there exists a vertex a′ ∈ H2 such that a′ is adjacent to v and nonadjacent
to u. Notice that a′ is also nonadjacent to h, since d(v, h) = 4. Then a′, v, a, u, b, h

induce a P6 (contradiction).

Let G be a connected P6-free graph. Let S be a maximal but not maximum
stable set of G, and let H = (H1, H2, F ) be a minimal augmenting graph for S.
Let us say that a vertex v ∈ H1 such that v has maximum degree in H among
the vertices of H1 is a nail of H. By Observation 3 and the aforementioned
observation that H is connected, if v is a nail of H, then d(v, h) ≤ 3 for every
h ∈ H1 ∪H2.

3. Stable Sets for (P6,K2,3)-free Graphs

Throughout this section let G = (V,E) be a connected (P6,K2,3)-free graph,
and S be a maximal stable set of G. To solve MS for G we apply Algorithm
Alpha. Then let us prove that Step 2 of Algorithm Alpha, referring to minimal
augmenting graphs, can be efficiently executed. To this end, since every minimal
augmenting graph for S contains at least one nail, let us proceed as follows.

Let us show that if a vertex v of G is a nail of a minimal augmenting graph
H = (H1, H2, F ) for S, then H can be efficiently detected. Then let us fix a
vertex v ∈ V \ S and assume that v is a nail of a minimal augmenting graph
H = (H1, H2, F ) for S (then H is connected). Let us write A = NS(v), B =
N(A) \N [v], and C = (S \ A) ∩N(B). Then by the definition of a nail and by
Observation 3 one can assume that:

(1) H is a subgraph of G[A∪B ∪C ∪ {v}], i.e., H1 ⊆ B ∪ {v} and H2 ⊆ A∪C.

(2) No vertex of B has in A ∪ C more neighbors than v in A: if this does not
happen, then one can delete all the vertices of B which have in A ∪C more
neighbors than v in A (since v is a nail of H).

Furthermore, since G is K2,3-free, the following fact holds:

(3) Each vertex of B has degree 1 or 2 in A.
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Let A = {a1, . . . , ah} and C∗ = C ∩H2 = {c1, . . . , ck}.

To show that H can be efficiently detected, let us distinguish between the
case in which C∗ = ∅ and the case in which C∗ 6= ∅.

3.1. The case in which C∗ = ∅

In this case, the difficulty is to check if A admits an ssr in B.

Lemma 4. Let b̄i ∈ B ∩ N(ai) for i = 1, 2, 3 be pairwise nonadjacent. Assume
that b̄1 and b̄2 are nonadjacent to any vertex of {a4, . . . , ah}. Then one can check
if {a4, . . . , ah} admits an ssr in B \N [{b̄1, b̄2, b̄3}] in O(n+m) time.

Proof. First let us prove a claim.

Claim 5. Let p̄, q̄ ∈ B \ N [{b̄1, b̄2, b̄3}]. Let p̄ ∈ N(ap) and q̄ ∈ N(aq) for any
p, q ∈ {4, . . . , h}. If p̄ is nonadjacent to aq, then p̄ is nonadjacent to q̄.

Proof. By contradiction assume that p̄ is adjacent to q̄. By (3), to avoid a
P6 formed by either b̄1, a1, v, aq, q̄, p̄ or b̄2, a2, v, aq, q̄, p̄ one may without loss of
generality that p̄ is adjacent to a1, and q̄ is adjacent to a2. By (3): q̄ is nonadjacent
to ap, and both p̄ and q̄ are nonadjacent to a3. Then, since by (3) b̄3 can not be
adjacent to both ap and aq, either b̄3, a3, v, ap, p̄, q̄ or b̄3, a3, v, aq, q̄, p̄ induce a P6

(contradiction).

Let us write A∗ = {a4, . . . , ah} and B∗ = B \N [{b̄1, b̄2, b̄3}].

For i = 4, . . . , h let Di = {b ∈ B∗ : NA∗(b) = {ai}}. Notice that by Claim
5 all the vertices in Di, for i = 4, . . . , h, have no neighbors in B∗ \ Di. Then,
since one has to check if A∗ admits an ssr in B∗, one can proceed as follows. For
every Di 6= ∅: delete all the vertices of Di except from one. Denote as B∗

one what
remains of B∗.

For i, j = 4, . . . , h let Di,j = {b ∈ B∗

one : NA∗(b) = {ai, aj}}. Notice that the
vertices in Di,j are mutually adjacent (since G is K2,3-free), and that by Claim 1
all the vertices in Di,j , for i, j = 4, . . . , h, have no neighbors in B∗

one \Dij . Then,
since one has to check if A∗ admits an ssr in B∗

one, one can proceed as follows.
For every Di,j 6= ∅: delete all the vertices of Di,j except from one. Denote as
B∗

two what remains of B∗

one.

Now by (3) and by Claim 5 B∗

two is a stable set. Then to check if A∗ admits
an ssr in B∗

two it is enough to check if the bipartite graph G[A∗ ∪B∗

two] admits a
matching of h − 3 elements. Since G is P6-free, that can be done in linear time
as shown in [12]. Then the lemma follows.

Lemma 6. Assume that C∗ = ∅. Then H can be detected in O(n3m) time.
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Proof. Since C∗ = ∅, by Lemma 2 one has to check if A admits an ssr in B. If
|A| ≤ 3, then the assertion can be easily proved. Then assume that |A| ≥ 4. If
A admits an ssr in B, then there exists a vertex b ∈ N(a1) belonging to such an
ssr. For every b̄1 ∈ N(a1) one can check if b̄1 belongs to such an ssr, as follows.

First assume that b̄1 has degree 1 in A. Then for every b̄2 ∈ N(a2) \ N [b̄1]
do:

1. if b̄2 has degree 1 in A, then for every b̄3 ∈ N(a3) \ N [{b̄1, b̄2}] check if
{a4, . . . , am} admits an ssr in B \N [{b̄1, b̄2, b̄3}], according to Lemma 4;

2. if b̄2 has degree 2 in A, then: if b̄2 is adjacent to a1, then one can proceed
similarly to the previous case; if b̄2 is adjacent to ai, with i 6= 1, 2, then one can
assume without loss of generality that i = 3 and proceed similarly to the previous
case.

Then assume b̄1 has degree 2 in A. Then b̄1 is adjacent to some ai with i 6= 1.
Then one can assume without loss of generality that i = 2 and proceed similarly
to the case in which b̄1 has degree 1 in A.
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Figure 1

3.2. The case in which C∗ 6= ∅

In this case, let us show that H can be just of three types each of which can be
efficiently detected. By Lemma 2, let {{b1, . . . , bh}, {d1, . . . , dk}} be a partition
of H1 \ {v}, such that {b1, . . . , bh} is an ssr of A, and {d1, . . . , dk} is an ssr of C∗

(in H1 \ {v}). Referring to Figure 1, let us say that H is of:



394 R. Mosca

• Type 1 if: A = {a1, a2}, C
∗ = {c1}; b1 is nonadjacent to a2; b2 is adjacent

to a1; d1 is adjacent to a2 and nonadjacent to a1; c1 is adjacent to b1 and
nonadjacent to b2;

• Type 2 if: A = {a1, a2}, C
∗ = {c1}; b1 is nonadjacent to a2; b2 is nonadjacent

to a1; d1 is adjacent to a2 and nonadjacent to a1; c1 is adjacent to b1, b2;

• Type 3 if: a1 is adjacent to bi for every i ≥ 2; a1 is adjacent to dj for every
j ≥ 2; ai is nonadjacent to bt for every i ≥ 2 and t 6= i; ai is nonadjacent
to dj for every i ≥ 2 and j ≥ 1; b1 is adjacent to ci for every i ≥ 1; cj is
nonadjacent to bt for every j ≥ 2 and t ≥ 1; cj is nonadjacent to dt for every
j ≥ 2 and t 6= i.

Lemma 7. Assume that C∗ 6= ∅. Then H is of Type 1, or 2, or 3.

Proof. Since C∗ 6= ∅ and H is a minimal augmenting graph for S, there is
a vertex in {b1, . . . , bh} adjacent to a vertex in {c1, . . . , ck}, otherwise {v} ∪
{a1, . . . , ah} ∪ {b1, . . . , bh} is an augmenting graph for S.

Assume without loss of generality that b1 is adjacent to c1. Then by (2) with
respect to b1, one has |A| ≥ 2.

Claim 8. Exactly one of the following cases holds:
(i) d1 dominates A \ {a1}, or

(ii) d1 is adjacent to a1.

Proof. By (2) with respect to d1, statements (i) and (ii) can not hold at the
same time. Then let us assume that d1 is nonadjacent to a1, and prove that
d1 dominates A \ {a1}. By contradiction assume that there exists a vertex in
A \ {a1} nonadjacent to d1, say a2 without loss of generality. To avoid that
d1, c1, b1, a1, v, a2 induce a P6, b1 is adjacent to a2. Then by (2) with respect to
b1, one has A\{a1, a2} 6= ∅. Furthermore by (3), b1 is nonadjacent to any vertex in
A\{a1, a2}. Then to avoid that d1, c, b1, a1, v, a3 induce a P6, d1 is adjacent to a3.
Let us consider b2. Notice that b2 is nonadjacent to a1 (otherwise a1, a2, v, b1, b2
induce a K2,3) and to c1 (otherwise a1, v, a2, b2, c1, d1 induce a P6). Furthermore
b2 is nonadjacent to a3: in fact otherwise to avoid that a1, b1, a2, b2, a3, b3 induce
a P6, one has that either b3 is adjacent to a2 (but then b2, b3, v, a2, a3 induce a
K2,3) or b3 is adjacent to a1 (but then a2, b1, a1, b3, a3, d1 induce a P6). Then
b2, a2, b1, c1, d1, a3 induce a P6 (contradiction).

According to Claim 8 let us consider the following cases.

Case 1. d1 dominates A \ {a1} (and is nonadjacent to a1). Then by (3),
|A \ {a1}| ≤ 2.

Case 1.1. |A \ {a1}| = 1. Then d1 is adjacent to a2. By (2) with respect to
b1, b1 is nonadjacent to a2. To avoid that b2, a2, d1, c1, b1, a1 induce a P6, b2 is
adjacent either to a1 or to c1 (not to both by (2)).
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Assume that b2 is adjacent to a1 (and is nonadjacent to c1). Let us show that
v, a1, a2, b1, b2, c1, d1 induce a minimal augmenting graph of Type 1. To this end,
let us show that no extension of this graph is possible, i.e., that C∗ = {c1} (and
thus D = {d1}). By contradiction assume that C∗ \ {c1} 6= ∅. Then every
vertex of C∗ \ {c1} is nonadjacent to any vertex of {b1, b2, d1}, by (2). But then
v, a1, a2, b1, b2, c1, d1 induce an augmenting graph, i.e., this possible extension
would not be a minimal augmenting graph. Then H is of Type 1.

Assume that b2 is adjacent to c1 (and is nonadjacent to a1). Let us show
that v, a1, a2, b1, b2, c1, d1 induce a minimal augmenting graph of Type 2. To this
end, let us show that no extension of this graph is possible, i.e., that C∗ = {c1}
(and thus D = {d1}). By contradiction assume that C∗ \ {c1} 6= ∅. Then every
vertex of C∗ \ {c1} is nonadjacent to any vertex of {b1, b2, d1}, by (2). But then
v, a1, a2, b1, b2, c1, d1 induce an augmenting graph, i.e., this possible extension
would not be a minimal augmenting graph. Then H is of Type 2.

Case 1.2. |A \ {a1}| = 2. Then d1 is adjacent to a2 and a3. Then to avoid a
K2,3: b2 is nonadjacent to a3, and b3 is nonadjacent to a2. Furthermore, by (2)
let us assume without loss of generality that b1 is nonadjacent to a3.

To avoid that b3, a3, v, a1, b1, c1 induce a P6, b3 is adjacent either to c1 or to
a1. If b3 is adjacent to a1, then b2 is adjacent to a1. Otherwise a1, b3, a3, d1, a2, b2
induce a P6, then b1 is nonadjacent to a2. Otherwise a1, a2, v, b1, b2 induce a
K2,3 but then b1, a1, b2, a2, d1, a3 induce a P6. If b3 is adjacent to c1, then b2 is
adjacent to c1. Otherwise b2, a2, v, a3, b3, c1 induce a P6, then b1 is nonadjacent
to a2. Otherwise a2, c1, b1, b2, d1 induce a K2,3 but then a2, v, a3, b3, c1, b1 induce
a P6.

Case 2. d1 is adjacent to a1 (and does not dominate A \ {a1}). By (2) with
respect to b1, b1 is nonadjacent to at least one vertex of A \ {a1}, say ah. To
avoid that bh, ah, v, a1, b1, c1 induce a P6, bh is adjacent either to c1 or to a1 (not
to both, otherwise a1, c1, d1, b1, bh induce a K2,3).

Case 2.1. bh is adjacent to c1 (and is nonadjacent to a1). Then to avoid that
ai, v, ah, bh, c1, b1 induce a P6, for all i = 2, . . . , h − 1, ai is adjacent either to b1
or to bh. By (3) this implies that |A| ≤ 4.

Assume that |A| = 2, i.e., h = 2. Then b1 and d1 are nonadjacent to a2, by
(2). Let us show that v, a1, a2, b1, b2, c1, d1 induce a minimal augmenting graph
of Type 2, up to symmetry. By symmetry the proof is similar to that given in
Case 1.1. Then H is of Type 2.

Assume that |A| = 3, i.e., h = 3. To avoid that a2, v, a3, b3, c1, b1 induce a
P6, a2 is adjacent either to b1 or to b3. If a2 is adjacent to b1 and nonadjacent
to b3, then: to avoid that b2, a2, b1, c1, b3, a3 induce a P6, b2 is adjacent either
to a3 or to c1; if b2 is adjacent to a3 (and then is nonadjacent to a1 by (3)),
then a1, b1, a2, b2, a3, b3 induce a P6; if b2 is adjacent to c1, then a1, v, a2, b2, c1, b3
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induce a P6. If a2 is adjacent to b3 and nonadjacent to b1, then by symmetry
one obtains a contradiction as well. If a2 is adjacent to both b1 and b3, then: d1
is nonadjacent to a2 (otherwise a1, a2, d1, b1, v induce a K2,3), b2 is nonadjacent
to a1 (otherwise a1, a2, b2, b1, v induce a K2,3), b2 is nonadjacent to c1 (otherwise
a2, c1, b1, b2, b3 induce a K2,3); then b2, a2, v, a1, d1, c1 induce a P6.

Assume that |A| = 4, i.e., h = 4. Then one can apply an argument similar to
that of the previous paragraph, with b4 instead of b3, to obtain a contradiction.

Case 2.2. bh is adjacent to a1 (and is nonadjacent to c1). By (3), bh is
nonadjacent to any vertex of {a2, . . . , ah−1}.

Claim 9. c1 is nonadjacent to any vertex of {b2, . . . , bh−1}
(and then of {b2, . . . , bh}).

Proof. By contradiction, assume that c1 is adjacent to a vertex of {b2, . . . , bh−1},
say bi, for some i ∈ {2, . . . , h− 1}; by (2) bi can not be adjacent to both a1 and
ah; then either c1, bi, ai, v, a1, bh (if bi is nonadjacent to a1) or c1, bi, ai, v, ah, bh
(if bi is nonadjacent to ah) induce a P6 (contradiction).

Claim 10. a1 is adjacent to every vertex of {b2, . . . , bh−1}
(and then of {b2, . . . , bh}).

Proof. By contradiction assume that a1 is nonadjacent to a vertex of
{b2, . . . , bh−1}, say bi for some i ∈ {2, . . . , h − 1}: then ai is adjacent to b1,
otherwise c1, b1, a1, v, ai, bi induce a P6. It follows, by (3) with respect to b1, that
at most one vertex of {b2, . . . , bh−1} is nonadjacent to a1, namely bi. Without
loss of generality let us say that bi = b2: then a2 is adjacent to b1. Then by (2)
with respect to b1, one has |A| ≥ 3. Notice that for all t = 3, . . . , h, at is adjacent
to b2, otherwise at, bt, a1, b1, a2, b2 induce a P6. Then by (3) with respect to b2,
one has |A| = 3. Then b2, a3, b3, a1, b1, c1 induce a P6 (contradiction).

Let us write B1 = {b2, . . . , bh}. By Claim 10, a1 dominates B1. Then by (3)
every vertex bi ∈ B1 is adjacent in A only to vertices a1, ai. Then b1 and d1 are
nonadjacent to any vertex of {a2, . . . , ah}, otherwise a K2,3 arises. Let us show
that the possible extensions of this graph lead to the conclusion that H is of Type
3.

Then let us assume that C∗ \ {c1} 6= ∅. Since C∗ \ {c1} 6= ∅ and H is a
minimal augmenting graph for S, there is a vertex in C∗ \ {c1} adjacent to a
vertex in B1 ∪ {b1, d1}, otherwise {v} ∪ {a1, . . . , ah} ∪ {b1, . . . , bh} ∪ {c1, d1} is an
augmenting graph for S.

Claim 11. Every vertex of C∗ \ {c1} is nonadjacent to any vertex of B1.
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Proof. By contradiction assume without loss of generality by symmetry that ck
is adjacent to bh. Then ck is adjacent to each vertex of B1 \ {bh}, otherwise
a P6 arises (namely, ck, bh, ah, v, ai, bi for every bi ∈ B1 \ {bh}). Then |B1| ≤
2 otherwise a K2,3 arises involving a1 and ck. If |B1| = 1, then one has a
contradiction to (2) with respect to bh. If |B1| = 2, then: b1 is nonadjacent
to ck, otherwise c1, b1, ck, bh, ah, v induce a P6; then dk is nonadjacent to a1,
otherwise a1, ck, b2, bh, dk induce a K2,3; then dk is adjacent to c1, otherwise
dk, ck, bh, a1, b1, c1 induce a P6; then v, a1, b1, c1, dk, ck induce a P6 (contradiction).

By the above and by Claim 11, at least one vertex of C∗ \ {c1} is adjacent
to b1 or to d1: without loss of generality by symmetry, let us say to b1. Let
C∗

1 = {c ∈ C∗ \ {c1} : c is adjacent to b1}. Then C∗

1 6= ∅.

Claim 12. For every pair (cj , dj) with cj ∈ C∗

1 one has that: dj is adjacent to
a1, dj is nonadjacent to any vertex of A \ {a1}, dj is nonadjacent to c1, cj is
nonadjacent to d1.

Proof. First let us show that dj is adjacent to a1. By contradiction assume
that dj is nonadjacent to a1. To avoid that dj , cj , b1, a1, v, ai for i = 2, . . . , h
induce a P6, dj dominates A \ {a1}. Then by (2) dj is nonadjacent to c1. Then
c1, b1, cj , dj , ai, bi, for i > 1, induce a P6 (contradiction). Then dj is adjacent to
a1. Since G is K2,3-free one obtains: dj is nonadjacent to any vertex of A \ {a1};
dj is nonadjacent to c1; cj is nonadjacent to d1.

Finally let us prove that C∗

1 = C∗ \ {c1}, i.e., that (C∗ \ {c1}) \ C∗

1 = ∅. By
contradiction assume that (C∗ \{c1})\C

∗

1 6= ∅. Since H is a minimal augmenting
graph, there exists a vertex cq ∈ (C∗ \ {c1}) \ C∗

1 adjacent to some vertex dp
such that cp ∈ C∗

1 ∪ {c1} (also by Claim 10). In particular cq is adjacent to d1,
otherwise cp ∈ C∗ \ {c1} and then cq, dp, cp, b1, c1, d1 induce a P6 (also by Claim
11). Then dq is adjacent to a1: in fact otherwise to avoid that dq, cq, d1, a1, v, a2
induce a P6, dq is adjacent to a2; then to avoid that b2, a2, dq, cq, d1, c1 induce a
P6, dq is adjacent to c1; then cq, dq, c1, b1, a1, v induce a P6. Furthermore dq is
nonadjacent to c1, otherwise a1, c1, dq, d1, b1 induce a K2,3. Now, recalling that
C∗

1 6= ∅, let us consider a vertex cj ∈ C∗

1 . Then dq is adjacent to cj , otherwise
dq, cq, d1, c1, b1, cj induce a P6 (also by Claim 12). Then a1, cj , dq, dj , b1 induce a
K2,3 (contradiction).

Then C∗

1 = C∗ \ {c1}. Then by the above claims, H is of Type 3. This
completes the proof of the lemma.

Lemma 13. Assume that C∗ 6= ∅. Then H can be detected in O(n3m) time.
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Proof. By Lemma 7, H is of Type 1, or 2, or 3. Let us observe that one can
easily determine the sets A, B, and C.

If H is of Type 1, see Figure 1, then let us proceed as follows. Clearly it is
necessary that |A| = 2. Then for each vertex b ∈ B\N(a2) (where b represents b1)
such that b has exactly one neighbor in C, say c1, one has to check if there exists
a stable set of B \N(b), say x, y (where x and y represent b2 and d1 respectively)
with x adjacent to a1, a2 and nonadjacent to c1, and with y adjacent to a2, c1 and
nonadjacent to a1 (then one should proceed similarly by interchanging a1 with
a2, for a symmetry check).

If H is of Type 2, see Figure 1, then one can proceed in a similar way. Then
assume that H is of Type 3. Then let us proceed as follows. Let us describe the
procedure in case |C∗| ≥ 2. The case in which |C∗| = 1 can be similarly treated.
Let us say that a vertex of H1 \ {v} is critical for H if it has more than two
neighbors in H. Then H contains one critical vertex, namely vertex b1.

Let us say that a vertex b ∈ B is green if it is a candidate to be critical for
H, i.e., if |N(b)∩A| = 1 and |N(b)∩C| ≥ 2. Thus there exists at least one green
vertex which is critical for H. Let b ∈ B be a green vertex. Let N(b)∩A = {a1}
(without loss of generality), and N(b) ∩ C = {c̃1, . . . , c̃m}. For every vertex
s ∈ A ∪ C with s 6= a1 let M(s) = {b′ ∈ B : N(b′) ∩ (A ∪ C) = {s, a1}}.

Let d̃j ∈ M(c̃j) for some j ∈ {1, . . . ,m}. Then every vertex d̃r ∈ M(c̃r) \
(N(b)∪N(d̃j)) in nonadjacent to any vertex d̃t ∈ M(c̃t)\(N(b)∪N(d̃j)) for every
r, t 6= j, otherwise d̃r, d̃t, c̃t, b, c̃j , d̃j induce a P6.

Let b̃i ∈ M(ai) for some i ∈ {2, . . . , h}. Then every vertex b̃r ∈ M(ar)\N(b̃i)
is nonadjacent to any vertex b̃t ∈ M(at) \ N(b̃i) for every r, t 6= i, otherwise
b̃r, b̃t, at, v, ai, b̃i induce a P6.

Furthermore, if |A| ≥ 3, then every vertex d̃j ∈ M(c̃j) for j = 1, . . . ,m is
nonadjacent to any vertex b̃i ∈ M(ai) for i = 2, . . . , h.

Otherwise c̃j , d̃j , b̃i, ai,v, ai+i (or ai−i) induce a P6. Then by the above a green
vertex b is critical for H if and only if there exists a pair of nonadjacent vertices,
namely b̃2 and d̃1, with b̃2 ∈ M(a2) and d̃1 ∈ M(c̃1), such that [M(ai) \ (N(b) ∪
N(b̃2)∪N(d̃1)) 6= ∅, for all i = 3, . . . , h] AND [M(c̃j)\(N(b)∪N(b̃2)∪N(d̃1)) 6= ∅,
for all j = 2, . . . , k]. Since that can be checked in O(n2m) for every green vertex
b, the lemma follows.

3.3. Summarizing

Then to solve MS for (P6,K2,3)-free graphs one can apply Algorithm Alpha,
referring to minimal augmenting graphs, whose Step 2 can be handled by Lemmas
6, 7 and 13.

Theorem 14. The MS problem can be solved for (P6,K2,3)-free graphs in O(n4m)
time.
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