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Abstract

Let G � H denote the Cartesian product of the graphs G and H. In
2004, Hartnell and Rall [On dominating the Cartesian product of a graph
and K2, Discuss. Math. Graph Theory 24(3) (2004), 389–402] characterized
prism fixers, i.e., graphs G for which γ(G � K2) = γ(G), and noted that
γ(G�Kn) ≥ min{|V (G)|, γ(G)+n−2}. We call a graph G a consistent fixer
if γ(G�Kn) = γ(G)+n−2 for each n such that 2 ≤ n < |V (G)|−γ(G)+2,
and characterize this class of graphs.

Also in 2004, Burger, Mynhardt and Weakley [On the domination num-
ber of prisms of graphs, Dicuss. Math. Graph Theory 24(2) (2004), 303–318]
characterized prism doublers, i.e., graphs G for which γ(G � K2) = 2γ(G).
In general γ(G � Kn) ≤ nγ(G) for any n ≥ 2. We call a graph attaining
equality in this bound a Cartesian n-multiplier and also characterize this
class of graphs.
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1. Introduction

We generally follow the notation and terminology of [5]. For two graphs G and
H, the Cartesian product G � H is the graph with vertex set V (G)× V (H) and
vertex (vi, uj) adjacent to (vk, ul) if and only if (a) vivk ∈ E(G) and uj = ul, or
(b) vi = vk and ujul ∈ E(H). The graph G � K2 is called the prism of G.

As usual γ(G) denotes the domination number of G. A set D ⊆ V (G) is
called a γ-set if it is a dominating set with |D| = γ(G). The domination number
γ(G � K2) of the prism of G lies between γ(G) and 2γ(G). The edgeless graph
G = Km attains equality in the lower bound, whereas γ(Km � K2) = 2γ(Km).

In 2004, Hartnell and Rall [4] characterized graphs G, called prism fixers, for
which γ(G �K2) = γ(G). A γ-set D of G is called a symmetric γ-set if D can be
partitioned into two nonempty subsets D1 and D2 such that V (G)−N [D1] = D2

and V (G)−N [D2] = D1. We write D = D1 ∪D2 for convenience. A symmetric
γ-set D = D1 ∪D2 is called primitive if |Di| = 1 for at least one i.

Theorem 1 [4]. A connected graph G is a prism fixer if and only if G has a

symmetric γ-set.

Hartnell and Rall generalized the lower bound for γ(G � K2) to γ(G � Kn) by
utilizing one of their results in [3]. They confirmed that the lower bound is sharp
by providing a family of graphs attaining equality.

Corollary 2 [4]. For any graph G and n ≥ 2, γ(G �Kn) ≥ min{|V (G)|, γ(G) +
n− 2}.

Note that γ(G � Kn) = |V (G)| for the edgeless graph G = Km. Also, if n ≥
|V (G)| − γ(G) + 2, then min{|V (G)|, γ(G) + n − 2} = |V (G)|. A minimum
domination strategy is to take all vertices in a single copy of G as a dominating
set, hence γ(G � Kn) = |V (G)|.

For 2 ≤ n < |V (G)|−γ(G)+2, Corollary 2 gives a nontrivial lower bound, and
a graph G is called a Cartesian n-fixer if γ(G�Kn) = γ(G)+n−2. We henceforth
simply refer to a Cartesian n-fixer as an n-fixer. Furthermore, if G is an n-fixer
for each n such that 2 ≤ n < |V (G)| − γ(G) + 2, then G is called a consistent

fixer. We characterize these graphs in Section 2. In Section 3 we discuss graphs
that are n-fixers for only some values of n in the range 2 ≤ n < |V (G)|−γ(G)+2.

In 2004, Burger, Mynhardt and Weakley [1] characterized prism doublers, i.e.,
graphs G for which γ(G � K2) = 2γ(G). In general γ(G � Kn) ≤ nγ(G) for any
n ≥ 2, and a graph attaining equality in this upper bound is called a Cartesian

n-multiplier. Once again, we refer to such a graph simply as an n-multiplier. In
Section 4 we follow a similar argument to that in [1] to characterize n-multipliers.

For A,B ⊆ V (G), we abbreviate “A dominates B” to “A ≻ B”; if B = V (G)
we write A ≻ G and if B = {b} we write A ≻ b. Further, N(v) = {u ∈ V (G) :
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uv ∈ E(G)} and N [v] = N(v) ∪ {v} denote the open and closed neighbourhoods,
respectively, of a vertex v of G. The closed neighbourhood of S ⊆ V (G) is the
set N [S] =

⋃
s∈S N [s], the open neighbourhood of S is N(S) =

⋃
s∈S N(s), while

N{S} denotes the set N(S)− S.

Consider two graphs G and H, with vertex sets labelled v1, v2, . . . , vm and
u1, u2, . . . , un respectively. Vertices (vi, uj) of the Cartesian product G � H are
labelled vi,j for convenience. The subgraph induced by all vertices that differ
from a given vertex vi,j only in the first [second] coordinate, is known as the
(Cartesian) G-layer [H-layer ] through vi,j .

We often consider projections pG : V (G � H) → V (G) and pH : V (G �

H) → V (H). A general vertex vi,j of G � H has as first coordinate the vertex
pG(vi,j) = vi ∈ V (G) and second coordinate pH(vi,j) = uj ∈ V (H). The preimage

p−1

G (vi) of a vertex vi in G is the set of vertices in G � H that have vi as first
coordinate, that is, the vertex set of the H-layer through vi,j for any j. The
preimage of A ⊆ V (G) is the set p−1

G (A) =
⋃

v∈A p−1

G (v). The projection pG and
preimage p−1

G are abbreviated to p and p−1 respectively.

v4,2

v3,2

v2,2

v1,2 v1,3

v2,3

v3,3

v4,3 v4,4

v3,4

v2,4

v1,4v1,1

v2,1

v3,1

v4,1

Figure 1. The Cartesian product P4 � P4.

As an example, consider the graph P4 � P4 in Figure 1. For this graph we have
p({v1,3, v3,2}) = {v1, v3}, while p−1({v1, v3}) = {vi,j : i = 1, 3, j = 1, 2, 3, 4}.
Lastly, a dominating set W of G�H can be partitioned into sets W1,W2, . . . ,Wn,
where Wi is a subset of vertices in the ith G-layer. We write W = W1 ∪ W2 ∪
· · · ∪Wn when this partition is clear from the context.

2. Consistent Fixers

Hartnell and Rall [4] provided examples of graphs that show that the lower bound
in Corollary 2 is sharp. Let Gk be the graph with vertex set V (Gk) = {v} ∪
{xi, yi, zi : i = 1, 2, . . . , k}, and edge set {vxi, xiyi, yizi, ziv : i = 1, 2, . . . , k}.
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(The 4-cycles Gk[{v, xi, yi, zi}] share a common vertex v, i = 1, 2, . . . , k.) Then
γ(Gk) = k + 1 and D = {(yi, u1) : i = 1, 2, . . . , k} ∪ {(v, uj) : j = 2, 3, . . . , n} is a
dominating set of Gk � Kn of cardinality k + n− 1 = γ(Gk) + n− 2. The graph
G3 is illustrated in Figure 2. If k > n−2

2
, then |V (Gk)| = 3k + 1 > k + n− 1 and

hence γ(Gk � Kn) = γ(Gk) + n− 2.
For the graph G3 in Figure 2, let D1 = {y1, y2, y3} and D2 = {v}, and note

that D = D1 ∪D2 is a primitive symmetric γ-set of G3. In general, any graph G
that has a primitive symmetric γ-set satisfies γ(G � Kn) = γ(G) + n− 2 for any
2 ≤ n < |V (G)| − γ(G) + 2:

y1

x1

z2

z1

y2

v

y3

z3 x2

x3

Figure 2. The graph G3.

Let V (Kn) = {u1, u2, . . . , un} and D = D1 ∪D2 be a primitive symmetric γ-set
of G with D2 = {x}. Figure 3 illustrates the dominating set W = {(v, u1) : v ∈
D1} ∪ {(x, ui) : i = 2, 3, . . . , n} of G �Kn of cardinality γ(G) + n− 2. In the first
G-layer, the set Y = V (G)−D is dominated by {(v, u1) : v ∈ D1}, and in the ith

G-layer Y is dominated by (x, ui), i ≥ 2.
The question now arises whether graphs with primitive symmetric γ-sets are

the only n-fixers. Our characterization will show that this is not the case.
We first state some useful properties of a graph having a symmetric γ-set.

D2

G2 G3 Gn

· · ·

· · ·

· · ·

D1

G1

D2D2

Y

Figure 3. A domination strategy for G � Kn if G has a primitive symmetric γ-set.
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Observation 3 [4].

(i) Let G be a connected graph with symmetric γ-set D = D1 ∪ D2 and let

Y = V (G)−D. Then

(a) N [Di] = Di ∪ Y , i = 1, 2,

(b) D is an independent set,

(c) the sets {N(x)}x∈Di
are disjoint, and these sets form a partition of Y,

(d) each vertex in D is adjacent to at least two vertices in Y .

(ii) Let G be a graph with at least one symmetric γ-set, but no primitive sym-

metric γ-set, and let Y = V (G)−D. Then γ(G[Y ]) > 1.

(iii) If G is a 2-fixer and W = W1∪W2 is a γ-set of G�K2, then p(W1)∪p(W2)
is a symmetric γ-set of G.

SupposeG is a 2-fixer with no primitive symmetric γ-set and γ(G�K3) = γ(G)+1.
Then a minimum domination strategy for the Cartesian product G�K3 will never
be to take a γ-set of G � K2 and select one vertex in the third G-layer, as we
show next.

Lemma 4. Let G be a connected 3-fixer with symmetric γ-set D = D1 ∪D2, but

no primitive symmetric γ-set. Then no γ-set W = W1 ∪W2 ∪W3 of G �K3 has

p(W1) = D1, p(W2) = D2 and |W3| = 1.

Proof. Let D = D1 ∪ D2 be a symmetric γ-set of G with |D1|, |D2| ≥ 2 and
let Y = V (G) − D. Suppose W = W1 ∪ W2 ∪ W3 is a γ-set of G � K3, with
p(W1) = D1, p(W2) = D2 and W3 = {(x, u3)}. Then x ≻ Y . If x /∈ D, then
x ∈ Y and so γ(G[Y ]) = 1, contradicting Observation 3(ii). So assume x ∈ D,
say x ∈ D2, and let z ∈ D2−{x}. Then z is adjacent to some vertex in Y , hence
x and z have a common neighbour in Y , contradicting Observation 3(i)(c).

We now provide a characterization of consistent fixers. We only consider con-
nected graphs and also require G to have at least three vertices; since γ(G) ≤
1

2
|V (G)| for any connected graph G, this requirement ensures that a value n ≥ 3

is included in the range 2 ≤ n < |V (G)| − γ(G) + 2.

Theorem 5. Let G be a connected graph of order at least 3. Then G is a con-

sistent fixer if and only if

(i) G has a primitive symmetric γ-set, or

(ii) G has symmetric γ-sets, none of which are primitive, and G has a dominat-

ing set X = X1 ∪X2 ∪X3 with the following properties:

(a) Xi ≻ V (G)−X, i = 1, 2, 3,

(b) for each i = 1, 2, 3, the sets {N(x) − X}x∈Xi
are disjoint and form a

partition of V (G)−X,
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(c) the sets Xi are disjoint and |X| = |X1|+ |X2|+ |X3| = γ(G) + 1,

(d) |X2| = |X3| = 1.

Proof. Let G be a consistent fixer. Then by Theorem 1, G has a symmetric
γ-set D = D1 ∪ D2. Suppose |D1|, |D2| ≥ 2 for any such set D. We show that
(ii) holds.

Since G is also a Cartesian 3-fixer, there exists a minimum dominating set
W = W1∪W2∪W3 of G�K3 of cardinality γ(G)+1. Let Xi = p(Wi), i = 1, 2, 3,
X = X1 ∪X2 ∪X3 and Y = V (G)−X.

Then X ⊆ V (G) is a dominating set of G of cardinality at most γ(G)+1, i.e.,
γ(G) ≤ |X| ≤ γ(G) + 1. If Y = ∅, then |V (G)| = |X| ≤ γ(G) + 1, contradicting
the statement 3 < |V (G)| − γ(G) + 2. Therefore Y 6= ∅, and so to dominate
p−1(Y ), Wi 6= ∅ for each i. Hence Xi 6= ∅ and, moreover, Xi ≻ Y for each
i = 1, 2, 3. Thus (a) holds.
Without loss of generality, assume that |X1| ≥ |X2| ≥ |X3| and that W has been
chosen so that |X1| is as large as possible. Since γ(G) ≤ |X| ≤ γ(G) + 1,

(1) at most one vertex of X occurs in more than one set Xi.

Similarly, no vertex occurs in all three Xi, i.e.,

(2) X1 ∩X2 ∩X3 = ∅.

We now prove the following statement:

(3) Each vertex in X2 ∪X3 is adjacent to some vertex in Y.

Suppose there exists x ∈ X2 that is not adjacent to any vertex in Y , and w2 is
a vertex of W2 such that p(w2) = x. (The argument is the same if x ∈ X3.)
If x ∈ X1 and w1 is a vertex of W1 such that p(w1) = x, then W − {w1} is a
dominating set of G � K3 of cardinality γ(G), which is impossible by Corollary
2. Thus x /∈ X1. But then W ′ = (W1 ∪ {w1}) ∪ (W2 − {w2}) ∪W3 is a minimum
dominating set of G � K3 such that X ′

1 = p(W1 ∪ {w1}) = X1 ∪ {x} has larger
cardinality than X1, contradicting the choice of W . Thus (3) holds.

(b) Suppose two distinct vertices u, v ∈ Xi are both adjacent to some vertex
y ∈ Y . By (a), y is adjacent to a vertex in each Xi. By (1) and (2), at least
one Xj , j 6= i, contains a neighbour w of y such that w /∈ {u, v}. But Xk ≻ Y ,
k 6= i, j, so (X − {u, v, w})∪ {y} is a dominating set of G that has cardinality at
most γ(G)−1, a contradiction. Hence each vertex y ∈ Y is dominated by exactly
one vertex from Xi, and (b) follows.

(c) We only prove that X2∩X3 = ∅; the proofs that X1∩X2 = ∅ and X1∩X3 = ∅
are similar. It will follow that |X| = |X1| + |X2| + |X3| = γ(G) + 1. Suppose
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there exists a vertex z ∈ X2 ∩ X3. Then |X| = γ(G) and, by (1) and (2),
X1 ∩ (X2 ∪X3) = ∅, so that X = X1 ∪ (X2 ∪X3) is a symmetric γ-set of G.

If |X3| = 1, then X3 = {z} ⊆ X2 and X = X1 ∪X2. By (a), z dominates all
of Y . But z ∈ X2, and so (b) implies that X2 = {z}, i.e., |X2| = 1. Then X is a
primitive symmetric γ-set, which is not the case under consideration. Therefore
|X3| ≥ 2; say w, z ∈ X3. By (1), w /∈ X1 ∪ X2, and by (3), w is adjacent to
some vertex in Y . Since X2 ≻ Y , there exists v ∈ X2 such that v and w have a
common neighbour in Y . This contradicts Observation 3(i)(c) for the symmetric
γ-set X = X1 ∪ (X2 ∪X3). Therefore X2 ∩X3 = ∅.

(d) Suppose that |X2| ≥ 2. Then |X1| ≥ 2. Let y1 ∈ Y and choose x1 ∈ X1,
x2 ∈ X2 such that x1 and x2 are both adjacent to y1. Since X3 ≻ Y , the set
X ′ = (X − {x1, x2}) ∪ {y1} is a dominating set of G of cardinality γ(G), i.e., a
γ-set of G. We show that

(4) {x1, x2} ≻ Y.

Suppose to the contrary that y ∈ Y is not adjacent to either x1 or x2. Then there
exist x′1 ∈ X1−{x1} and x′2 ∈ X2−{x2} adjacent to y, so that (X

′−{x′1, x
′

2})∪{y}
is a dominating set of G of cardinality γ(G)− 1, which is impossible.

Let v ∈ X2 − {x2}. By (3) there exists a vertex y2 ∈ Y adjacent to v. By
(b) y2 is not adjacent to x2 and so, by (4), y2 is adjacent to x1. It follows similar
to (4) that {x1, v} ≻ Y . But then any vertex in Y not adjacent to x1 is adjacent
to both x2 and v, which is impossible by (b). Thus x1 ≻ Y , and (b) implies that
|X1| = 1, a contradiction. Therefore |X2| = 1 which, by the choice of the Xi, also
implies that |X3| = 1.

Conversely, let G be a graph that satisfies the conditions of the statement,
2 ≤ n < |V (G)|−γ(G)+2 and V (Kn) = {u1, u2, . . . , un}. If G has a symmetric γ-
set D = D1 ∪D2 with D2 = {x}, then the set W = {(v, u1) : v ∈ D1} ∪ {(x, ui) :
i = 2, 3, . . . , n} is a dominating set of G � Kn of cardinality γ(G) + n − 2, as
illustrated in Figure 2.

Suppose that |D1|, |D2| ≥ 2 and that G has a set X = X1 ∪ X2 ∪ X3 with
the stated properties. Let X2 = {x2} and X3 = {x3}. Then the set

W = {(v, u1) : v ∈ X1} ∪ {(x2, u2)} ∪ {(x3, ui) : i = 3, 4, . . . , n}

is a dominating set of G � Kn of cardinality γ(G) + n− 2.

The dominating set X = X1 ∪X2 ∪X3 in Theorem 5(ii) has the following addi-
tional properties.

Proposition 6. Let G be a connected graph of order at least 3. If G is a consistent

fixer with no primitive symmetric γ-set, then the dominating set X = X1∪X2∪X3

in Theorem 5(ii) has the following properties:
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(i) X1 ∪X2 and X1 ∪X3 are independent sets,

(ii) γ(G[N(x)]) ≥ 2 for every x ∈ X1,

(iii) for some x ∈ X1, G[N(x)] has a γ-set, {y1, y2} say, such that for every

x′ ∈ X1 − {x},

(a) y1 ≻ N(x′) and N(y2) ∩N(x′) = ∅, or

(b) y2 ≻ N(x′) and N(y1) ∩N(x′) = ∅.

Proof. Say X2 = {x2}, X3 = {x3}, Y = V (G)−X, and note that

(5) xi ≻ Y, i = 2, 3.

(i) Consider any symmetric γ-set D = D1 ∪ D2 of G and recall that |Di| ≥ 2.
Define Y ′ = V (G)−D. We compare D and X, and show that

(6)
|Di ∩ Y | = 1 for i = 1, 2, |D ∩X1| = γ(G)− 2 = |X1| − 1,

and |X1 ∩ Y ′| = 1.

We begin by showing that {x2, x3} ∩ D = ∅. Suppose x2 ∈ D; without loss of
generality say x2 ∈ D2. Then (5) and Observation 3(i)(b) imply that Y ∩D = ∅.
Now if x3 ∈ D, then Observation 3(i)(c) implies that x3 ∈ D1 and that the only
vertices in X1 ∩ D are vertices that are nonadjacent to all vertices in Y . But
|X| = γ(G) + 1, |X1| = γ(G) − 1 and |D| = γ(G), so that γ(G) − 2 vertices in
X1 are in D. Therefore exactly one vertex in X1, say x1, is adjacent to vertices
in Y . By Theorem 5(ii)(a), x1 ≻ Y . Furthermore, x1 ∈ Y ′ by Observation
3(i)(c). If there exists a v ∈ X1 − {x1}, then v ∈ D, hence v is adjacent to at
least two vertices in Y ′ by Observation 3(i)(d). Since Y ′ − {x1} = Y , this is a
contradiction. So X1 = {x1} and it follows that D is a primitive symmetric γ-set,
a contradiction. Therefore x3 /∈ D and so D = X1∪X2 and V (G)−D = Y ∪{x3}.

Let u ∈ D2 − {x2}. By Observation 3(i)(d), u is adjacent to at least two
vertices in Y ′, so u is adjacent to some y ∈ Y . But then y is adjacent to the two
vertices x2, u ∈ D2, contradicting Observation 3(i)(c). Hence x2 /∈ D. Similarly,
x3 /∈ D, i.e., {x2, x3} ⊆ Y ′.

Since |X1| = γ(G) − 1, it follows that Y ∩ D 6= ∅. If |Di ∩ Y | ≥ 2 for some i,
then by (5), two vertices in Di have x2 ∈ Y ′ as common neighbour, contrary to
Observation 3(i)(c). Thus |Di∩Y | ≤ 1 for each i, so |Y ∩D| ≤ 2. If Y ∩D = {y},
then D = X1∪{y}. But by Theorem 5(ii)(a), y is adjacent to some vertex in X1,
contradicting Observation 3(i)(b). Therefore |Y ∩D| = 2 and (6) follows.

Let X1 ∩ Y ′ = {x1} and Di ∩ Y = {yi}, i = 1, 2. Then X1 − {x1} ⊆ D and
so X1 − {x1} is independent (Observation 3(i)(b)).

Suppose x1 is not adjacent to y1. Since X1 ≻ Y , y1 is adjacent to some
x′ ∈ X1 − {x1} ⊆ D. But y1 ∈ D and D is independent, a contradiction. Hence
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x1 is adjacent to y1 and, similarly, to y2. It now follows from Observation 3(i)(c)
that x1 is not adjacent to any vertex in X1 and so X1 is independent.

By (5), x2 and x3 are adjacent to y1 and y2, hence as in the case of x1, neither
x2 nor x3 is adjacent to any vertex in X1−{x1}. Since G is connected, each vertex
in X1 − {x1} is therefore adjacent to a vertex in Y ; since D is independent this
vertex is necessarily in Y − {y1, y2}. Since |D1| ≥ 2, there exists x4 ∈ D1 −{y1};
necessarily x4 ⊆ X1−{x1}. Let y4 ∈ Y −{y1, y2} be adjacent to x4 and consider
the set X ′ = (X − {x1, x3, x4}) ∪ {y4}. Then x2 ≻ Y , y4 ≻ x4 and y4 ≻ x3 by
(5). Therefore X ′ ≻ G − x1. But |X ′| < γ(G) and so X ′ ⊁ G, i.e., X ′ ⊁ x1. In
particular, x2 is not adjacent to x1. Similarly, x3 is not adjacent to x1, and the
proof of (i) is complete.

(ii) Since γ(G) ≥ 4, |X1| ≥ 3. Say X1 = {x1, x4, x5, . . . , xk} and define Yi =
N(xi), i = 1, 4, 5, . . . , k. By (i), no vertex in X1 is adjacent to any vertex in X,
so Yi ⊆ Y for each i, and since G is connected, Yi 6= ∅. By Theorem 5(ii)(a)
and (b), the sets Y1, Y4, . . . , Yk partition Y . Suppose that for some i there exists
a vertex y ∈ Yi that is adjacent to all other vertices in Yi and consider X ′ =
(X−{xi, x2, x3})∪{y}. Then by (5), y ≻ Yi∪{xi, x2, x3}, whileX1−{xi} ≻ Y −Yi,
so that X ′ ≻ G. But |X ′| = γ(G)− 1, which is impossible. This proves (ii).

(iii) As shown above, D = {y1, y2, x4, . . . , xk} and Y ′ = {x1, x2, x3} ∪ (Y −
{y1, y2}). By Observation 3(i)(c), each vertex in Y ′ is adjacent to exactly one
vertex in each Di. In particular, since X1 is independent, x1 is adjacent to y1
and y2. Since the Yi partition Y , no vertex in Y is adjacent to two vertices in X1.
But for each i = 4, . . . , k, xi is in exactly one of D1 or D2, so if xi ∈ D1 − {y1},
then each vertex in Yi = N(xi) is also adjacent to y2 but not to y1, and if
xi ∈ D2 − {y2}, then each vertex in Yi is also adjacent to y1 but not to y2.
Moreover, {y1, y2} ≻ Y ⊇ Y1 = N(x1) and so, by (ii), {y1, y2} is a γ-set of N(x1).
Therefore (iii) holds with x = x1.

x3

y1y2

x2

x1

x5x4

Figure 4. A consistent fixer with no primitive symmetric γ-set.

The properties of the dominating set X = X1 ∪ X2 ∪ X3 given in Theorem 5
and Proposition 6 allow us to easily construct consistent fixers without primitive
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symmetric γ-sets. Figure 4 shows a consistent fixer G that has a symmetric
γ-set D = D1 ∪ D2 with |D1| = |D2| = 2. In this example, D1 = {y1, x4},
D2 = {y2, x5}, X1 = {x1, x4, x5}, X2 = {x2} and X3 = {x3}. Since ∆(G) = 6, G
has no primitive symmetric γ-set.

If G is a consistent fixer, then G � Kn, n ≥ 3, has a minimum dominating
set that contains exactly one vertex in all but one of the G-layers of G � Kn, as
stated in the following corollary.

Corollary 7. If G is a consistent fixer and 3 ≤ n < |V (G)| − γ(G) + 2, then
G � Kn has a γ-set X = X1 ∪ · · · ∪Xn with |Xi| = 1 for i = 2, . . . , n, where Xi

lies in the ith G-layer of G � Kn, i = 1, . . . , n.

3. Other Fixers

For any integer t ≥ 4 there exist graphs that are 2-fixers and n-fixers for t ≤ n <
|V (G)| − γ(G) + 2, but not for 2 < n < t. Figure 5 shows a graph G that is
a 2-fixer and a 4-fixer, but not a 3-fixer. Each vertex x2, x3 and x6 is adjacent
only to the vertices y1, y2, a, b, c and d, but these edges are omitted in the figure
for the sake of clarity. The graph has a symmetric γ-set D = D1 ∪ D2 with
D1 = {x4, y1} and D2 = {x5, y2}. Since ∆(G) = 6, G does not have a primitive
symmetric γ-set. Furthermore, it is easy to verify that G does not have a set
X = X1 ∪X2 ∪X3 with the properties stated in Theorem 5, and therefore is not
a 3-fixer. However, for n ≥ 4, the set

W = {(x1, u1), (x4, u1), (x5, u1), (x2, u2), (x3, u3)} ∪ {(x6, ui) : i ≥ 4}

is a dominating set of G�Kn of cardinality γ(G)+n− 2, so that G is an n-fixer.
The characterization of these n-fixers is similar to that of Theorem 5 and the

proof is therefore omitted.

y1y2

x1

x5x4

c

x2 x3

x6

a db

Figure 5. A graph that is a 2-fixer and a 4-fixer, but not a 3-fixer.
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Theorem 8. Let G be a connected graph and t ≥ 4. Then G is a 2-fixer and an

n-fixer for n ≥ t, but not for 2 < n < t, if and only if

(i) G has symmetric γ-sets, none of which are primitive, and

(ii) t is the smallest integer such that G has a dominating set X = X1 ∪ · · · ∪Xt

with the following properties:

(a) Xi ≻ V (G)−X, i = 1, 2, . . . , t,

(b) for each i = 1, 2, . . . , t, the sets {N(x) −X}x∈Xi
are disjoint and form

a partition of V (G)−X,

(c) the sets Xi are disjoint and |X| =
∑t

i=1
|Xi| = γ(G) + t− 2,

(d) |Xi| = 1 for i ≥ 2.

Similar to Proposition 6, the set X = X1 ∪ · · · ∪Xt has the following additional
properties.

Proposition 9. Let G be a connected graph of order at least 3, and t ≥ 3. If G
is a 2-fixer and an n-fixer, n ≥ t, that has no primitive symmetric γ-set, then the

dominating set X = X1 ∪ · · · ∪Xt in Theorem 8(ii) has the following properties:

(i) X1 ∪Xi is an independent set, i = 2, . . . , t,

(ii) γ(G[N(x)]) ≥ 2 for every x ∈ X1,

(iii) for some x ∈ X1, G[N(x)] has a γ-set, {y1, y2} say, such that for every

x′ ∈ X1 − {x},

(a) y1 ≻ N(x′) and N(x′) ∩N(y2) = ∅, or

(b) y2 ≻ N(x′) and N(x′) ∩N(y1) = ∅.

v1

v2v3

x3

x1 x2

Figure 6. An n-fixer only for n ≥ 4.

Lastly, we consider graphs that are n-fixers for n ≥ t ≥ 3, but not for n < t. As
an example, Figure 6 shows a graph G that is an n-fixer for n ≥ 4 only. In this
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graph, each vertex x1, x2 and x3 is adjacent only to the neighbours of v1, v2 and
v3. It is easy to verify that γ(G) = 4, the graph does not have a symmetric γ-set,
and that it is not a 3-fixer.

The following characterization describes such fixers. The proof is also similar
to that of Theorem 5 and is omitted.

Theorem 10. Let G be a connected graph and t ≥ 3. Then G is an n-fixer for

n ≥ t, but not for 2 < n < t, if and only if G does not have a symmetric γ-set,
and t is the smallest integer such that G has a dominating set X = X1 ∪ · · · ∪Xt

with the following properties:

(a) Xi ≻ V (G)−X, i = 1, 2, . . . , t,

(b) for each i = 1, 2, . . . , t, the sets {N(x) − X}x∈Xi
are disjoint and form a

partition of V (G)−X,

(c) the sets Xi are disjoint and |X| =
∑t

i=1
|Xi| = γ(G) + t− 2,

(d) |Xi| = 1 for i ≥ 2.

4. Cartesian n-multipliers

Consider n such that γ(G) + n − 2 < |V (G)| and recall that γ(G) + n − 2 ≤
γ(G � Kn) ≤ nγ(G). We observe that, for any positive integer m and for any
0 ≤ i ≤ (m − 1)(n − 1) + 1, there exists a graph G such that γ(G) = m and
γ(G�Kn) = m+n−2+ i. (The upper bound on i ensures that γ(G)+n−2+ i ≤
nγ(G).) Consider the complete bipartite graph G = Kl,k with l ≤ k and let
x1, x2, . . . , xl be the vertices in the smaller partite set. With notation as in
Theorem 8, let Xi = {xi} and X = {x1, x2, . . . , xl}. If l = 2, then X is a
primitive symmetric γ-set of G, which is a consistent fixer by Theorem 5. If
l = n ≥ 3, then X satisfies the conditions in Theorem 10, so G is an n-fixer.
If l = n + i, then γ(G � Kn) = γ(G) + n − 2 + i, up to values of i for which
γ(G � Kn) = nγ(G), in which case G is an n-multiplier (or a prism doubler if
n = 2).

Burger, Mynhardt and Weakley [1] characterized prism doublers as follows.

Proposition 11 [1]. A graph G is a prism doubler if and only if for each set

X ⊆ V (G) with 0 < |X| < γ(G), and Y = V (G)−N [X], either

(i) |Y | ≥ 2γ(G)− |X|, or

(ii) |Y | = 2γ(G) − |X| − d for some 1 ≤ d ≤ |X|, and at least d vertices

(necessarily in N [X] ) are required to dominate N{X} −N [Y ].

Following a similar argument to that used in [1], we provide a characterization
of n-multipliers. In G � Kn we denote the ith G-layer of G by Gi and V (Gi)
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by Vi. For S ⊆ V (G), let 〈S〉i denote the counterpart of S in Gi. Note that if
|V (G)| < nγ(G), then G is not an n-multiplier since V1 is a dominating set of
G � Kn. Thus we only consider graphs G of order at least nγ(G).

Proposition 12. A graph G is an n-multiplier if and only if for each set X ⊆
V (G) with 0 < |X| < γ(G), and Y = V (G)−N [X], either

(i) |Y | ≥ nγ(G)− |X|, or

(ii) |Y | = nγ(G) − |X| − d for some 1 ≤ d ≤ (n − 1)|X|, and for any partition

Y2, Y3, . . . , Yn of Y , the subgraph of G�Kn induced by
⋃n

i=2
〈N{X}−N [Yi]〉i

has domination number at least d.

Proof. Suppose G is an n-multiplier and consider any set X ⊆ V (G), where
0 < |X| < γ(G), and Y = V (G)−N [X].

If |Y | ≥ nγ(G)−|X|, then (i) holds. If |Y | < nγ(G)−n|X|, then (
⋃n

i=1
〈X〉i)∪

〈Y 〉1 is a dominating set of G � Kn of cardinality n|X| + |Y | < nγ(G) — a
contradiction.
Hence we assume that |Y | = nγ(G)−|X|−d for some 1 ≤ d ≤ (n−1)|X|. Suppose
there exists a partition Y2, Y3, . . . , Yn of Y such that the subgraph of G � Kn

induced by
⋃n

i=2
〈N{X}−N [Yi]〉i is dominated by some set D of cardinality less

than d. Then 〈X〉1 ∪ (
⋃n

i=2
〈Yi〉i)∪D is a dominating set of G�Kn of cardinality

less than |X|+ |Y |+ d = nγ(G) — a contradiction.
Conversely, suppose that γ(G � Kn) < nγ(G), and consider any minimum

dominating set D = D1 ∪ · · · ∪Dn of G�Kn. Let Bi = p(Di), i = 1, . . . , n. Then
|Bi| < γ(G) for some i; without loss of generality assume |B1| < γ(G). Then
|B1| > 0, otherwise at least |V (G)| vertices are needed to dominate G1 in G�Kn.
But then |V (G)| ≤ |D| < nγ(G) and these graphs are not considered. Thus
0 < |B1| < γ(G). We show that neither (i) nor (ii) holds for the set X = B1.

Let B = B1 ∪ B2 ∪ · · · ∪ Bn and Y = V (G) − N [B1]. In the layer G1,
V1 −N [D1] is dominated by D2 ∪ · · · ∪Dn. Therefore in G, Y ⊆

⋃n
i=2

Bi and so
|Y | ≤ |B| − |B1| < nγ(G)− |B1|. Thus (i) does not hold. If |Y | < nγ(G)−n|B1|,
then (ii) does not hold either and we are done. Hence we assume that |Y | =
nγ(G)− |B1| − d for some 1 ≤ d ≤ (n− 1)|B1|.

Let Y2, Y3, . . . , Yn be a partition of Y such that Yi ⊆ Bi, i = 2, 3, . . . , n, and
let Zi = Bi−Yi. Then the set D′ =

⋃n
i=2

〈Zi〉i dominates the subgraph of G�Kn

induced by
⋃n

i=2
〈N{B1} −N [Yi]〉i. But

|D′| ≤
n∑

i=2

|Bi| −
n∑

i=2

|Yi| < nγ(G)− |B1| − |Y | = d.

Therefore (ii) does not hold.

We construct a family of multipliers with domination number 2. Let n ≥ 2
and consider disjoint complete graphs Kn+1 and K2n, with vertex sets A =
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{v1, v2, . . . , vn+1} and B = {w1, w2, . . . , w2n}, respectively. Let Gn be the graph
obtained by adding the edges viwi, i = 1, . . . , n + 1. We use Proposition 12 to
show that Gn is an n-multiplier. Since γ(G) = 2, we only consider sets X of
cardinality 1. There are three possibilities for X.

• If X = {vi}, then Y = B − {wi} and |Y | = 2n− 1 = nγ(Gn)− |X|.

• If X = {wi} with i ≤ n + 1, then Y = A − {vi} and |Y | = n = nγ(Gn) −
|X| − d with d = n− 1. For any Y ′ ⊆ Y , N(wi)−N [Y ′] contains the vertices
wn+2, . . . , w2n. Thus, for any partition Y2, Y3, . . . , Yn of Y , the subgraph of
Gn�Kn induced by

⋃n
j=2

〈N(wi)−N [Yj ]〉j has a subgraph isomorphic toKn−1�

Kn−1, which has domination number d = n−1. Hence Proposition 12(ii) holds.

• If X = {wi}, i > n+ 1, a similar argument shows that Proposition 12(ii) also
holds.

It follows that G is an n-multiplier.

5. Conclusion

We conclude with open problems for future research. Let G and H be graphs
of order m and n respectively. The Cartesian product G � H possesses a so-
called layer-partition property, in that its vertex set allows two partitions P =
{P1, P2, . . . , Pn} and Q = {Q1, Q2, . . . , Qm} such that (a) each Pi ∈ P induces
a copy of G, called a G-layer, (b) each Qj ∈ Q induces a copy of H, called an
H-layer, (c) any Pi and Qj intersect in exactly one vertex, and (d) any edge in
the product is in either exactly one G-layer or exactly one H-layer.

In 1967, Chartrand and Harary [2] defined the generalized prism πG of G as
the graph consisting of two copies of G, with edges between the copies determined
by a permutation π acting on V (G). For any permutation π, γ(G) ≤ (πG) ≤
2γ(G).

We now define a generalized Cartesian product G �π H that corresponds to
G � H when π is the identity, πG when H is the graph K2, and that retains a
layer-partition property. For two labelled graphs G and H and permutation π
acting on V (G), the product G �π H is the graph with vertex set V (G) × V (H),
and vertex (vi, uj) is adjacent to (vk, ul), j ≤ l, if and only if (a) vivk ∈ E(G)
and uj = ul, or (b) vk = πl−j(vi) and ujul ∈ E(H).

Note that γ(G) ≤ γ(G �πH) ≤ γ(G)|V (H)| for any G, H and permutation π.
Burger, Mynhardt and Weakley [1] investigated graphs G for which γ(πG) =
2γ(G) for any π.

Question 1. For some graph H of order n, is it possible to characterize graphs

G for which γ(G �π H) = nγ(G) for every π?
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In 2006, Mynhardt and Xu [6] investigated graphs G for which γ(πG) = γ(G) for
any π, and conjectured that only the edgeless graphs have this property.

Question 2. For some graph H of order n, does there exist a nontrivial graph

G such that γ(G �π H) = γ(G) + n− 2 for every π?
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