CHARACTERIZING CARTESIAN FIXERS AND MULTIPLIERS

Stephen Benecke ${ }^{1}$
AND
Christina M. Mynhardt ${ }^{2}$
Department of Mathematics and Statistics University of Victoria, P.O. Box 3060 STN CSC
Victoria, B.C., Canada V8W 3R4
e-mail: \{stephen, mynhardt\}@math.uvic.ca

Abstract

Let $G \square H$ denote the Cartesian product of the graphs G and H. In 2004, Hartnell and Rall [On dominating the Cartesian product of a graph and K_{2}, Discuss. Math. Graph Theory 24(3) (2004), 389-402] characterized prism fixers, i.e., graphs G for which $\gamma\left(G \square K_{2}\right)=\gamma(G)$, and noted that $\gamma\left(G \square K_{n}\right) \geq \min \{|V(G)|, \gamma(G)+n-2\}$. We call a graph G a consistent fixer if $\gamma\left(G \square K_{n}\right)=\gamma(G)+n-2$ for each n such that $2 \leq n<|V(G)|-\gamma(G)+2$, and characterize this class of graphs.

Also in 2004, Burger, Mynhardt and Weakley [On the domination number of prisms of graphs, Dicuss. Math. Graph Theory 24(2) (2004), 303-318] characterized prism doublers, i.e., graphs G for which $\gamma\left(G \square K_{2}\right)=2 \gamma(G)$. In general $\gamma\left(G \square K_{n}\right) \leq n \gamma(G)$ for any $n \geq 2$. We call a graph attaining equality in this bound a Cartesian n-multiplier and also characterize this class of graphs.

Keywords: Cartesian product, prism fixer, Cartesian fixer, prism doubler, Cartesian multiplier, domination number.

2010 Mathematics Subject Classification: 05C69, 05C99.

[^0]
1. Introduction

We generally follow the notation and terminology of [5]. For two graphs G and H, the Cartesian product $G \square H$ is the graph with vertex set $V(G) \times V(H)$ and vertex $\left(v_{i}, u_{j}\right)$ adjacent to $\left(v_{k}, u_{l}\right)$ if and only if (a) $v_{i} v_{k} \in E(G)$ and $u_{j}=u_{l}$, or (b) $v_{i}=v_{k}$ and $u_{j} u_{l} \in E(H)$. The graph $G \square K_{2}$ is called the prism of G.

As usual $\gamma(G)$ denotes the domination number of G. A set $D \subseteq V(G)$ is called a γ-set if it is a dominating set with $|D|=\gamma(G)$. The domination number $\gamma\left(G \square K_{2}\right)$ of the prism of G lies between $\gamma(G)$ and $2 \gamma(G)$. The edgeless graph $G=\overline{K_{m}}$ attains equality in the lower bound, whereas $\gamma\left(K_{m} \square K_{2}\right)=2 \gamma\left(K_{m}\right)$.

In 2004, Hartnell and Rall [4] characterized graphs G, called prism fixers, for which $\gamma\left(G \square K_{2}\right)=\gamma(G)$. A γ-set D of G is called a symmetric γ-set if D can be partitioned into two nonempty subsets D_{1} and D_{2} such that $V(G)-N\left[D_{1}\right]=D_{2}$ and $V(G)-N\left[D_{2}\right]=D_{1}$. We write $D=D_{1} \cup D_{2}$ for convenience. A symmetric γ-set $D=D_{1} \cup D_{2}$ is called primitive if $\left|D_{i}\right|=1$ for at least one i.

Theorem 1 [4]. A connected graph G is a prism fixer if and only if G has a symmetric γ-set.

Hartnell and Rall generalized the lower bound for $\gamma\left(G \square K_{2}\right)$ to $\gamma\left(G \square K_{n}\right)$ by utilizing one of their results in [3]. They confirmed that the lower bound is sharp by providing a family of graphs attaining equality.

Corollary 2 [4]. For any graph G and $n \geq 2, \gamma\left(G \square K_{n}\right) \geq \min \{|V(G)|, \gamma(G)+$ $n-2\}$.

Note that $\gamma\left(G \square K_{n}\right)=|V(G)|$ for the edgeless graph $G=\overline{K_{m}}$. Also, if $n \geq$ $|V(G)|-\gamma(G)+2$, then $\min \{|V(G)|, \gamma(G)+n-2\}=|V(G)|$. A minimum domination strategy is to take all vertices in a single copy of G as a dominating set, hence $\gamma\left(G \square K_{n}\right)=|V(G)|$.

For $2 \leq n<|V(G)|-\gamma(G)+2$, Corollary 2 gives a nontrivial lower bound, and a graph G is called a Cartesian n-fixer if $\gamma\left(G \square K_{n}\right)=\gamma(G)+n-2$. We henceforth simply refer to a Cartesian n-fixer as an n-fixer. Furthermore, if G is an n-fixer for each n such that $2 \leq n<|V(G)|-\gamma(G)+2$, then G is called a consistent fixer. We characterize these graphs in Section 2. In Section 3 we discuss graphs that are n-fixers for only some values of n in the range $2 \leq n<|V(G)|-\gamma(G)+2$. In 2004, Burger, Mynhardt and Weakley [1] characterized prism doublers, i.e., graphs G for which $\gamma\left(G \square K_{2}\right)=2 \gamma(G)$. In general $\gamma\left(G \square K_{n}\right) \leq n \gamma(G)$ for any $n \geq 2$, and a graph attaining equality in this upper bound is called a Cartesian n-multiplier. Once again, we refer to such a graph simply as an n-multiplier. In Section 4 we follow a similar argument to that in [1] to characterize n-multipliers.

For $A, B \subseteq V(G)$, we abbreviate " A dominates B " to " $A \succ B$ "; if $B=V(G)$ we write $A \succ G$ and if $B=\{b\}$ we write $A \succ b$. Further, $N(v)=\{u \in V(G)$:
$u v \in E(G)\}$ and $N[v]=N(v) \cup\{v\}$ denote the open and closed neighbourhoods, respectively, of a vertex v of G. The closed neighbourhood of $S \subseteq V(G)$ is the set $N[S]=\bigcup_{s \in S} N[s]$, the open neighbourhood of S is $N(S)=\bigcup_{s \in S} N(s)$, while $N\{S\}$ denotes the set $N(S)-S$.

Consider two graphs G and H, with vertex sets labelled $v_{1}, v_{2}, \ldots, v_{m}$ and $u_{1}, u_{2}, \ldots, u_{n}$ respectively. Vertices $\left(v_{i}, u_{j}\right)$ of the Cartesian product $G \square H$ are labelled $v_{i, j}$ for convenience. The subgraph induced by all vertices that differ from a given vertex $v_{i, j}$ only in the first [second] coordinate, is known as the (Cartesian) G-layer [H-layer] through $v_{i, j}$.

We often consider projections $p_{G}: V(G \square H) \rightarrow V(G)$ and $p_{H}: V(G \square$ $H) \rightarrow V(H)$. A general vertex $v_{i, j}$ of $G \square H$ has as first coordinate the vertex $p_{G}\left(v_{i, j}\right)=v_{i} \in V(G)$ and second coordinate $p_{H}\left(v_{i, j}\right)=u_{j} \in V(H)$. The preimage $p_{G}^{-1}\left(v_{i}\right)$ of a vertex v_{i} in G is the set of vertices in $G \square H$ that have v_{i} as first coordinate, that is, the vertex set of the H-layer through $v_{i, j}$ for any j. The preimage of $A \subseteq V(G)$ is the set $p_{G}^{-1}(A)=\bigcup_{v \in A} p_{G}^{-1}(v)$. The projection p_{G} and preimage p_{G}^{-1} are abbreviated to p and p^{-1} respectively.

Figure 1. The Cartesian product $P_{4} \square P_{4}$.
As an example, consider the graph $P_{4} \square P_{4}$ in Figure 1. For this graph we have $p\left(\left\{v_{1,3}, v_{3,2}\right\}\right)=\left\{v_{1}, v_{3}\right\}$, while $p^{-1}\left(\left\{v_{1}, v_{3}\right\}\right)=\left\{v_{i, j}: i=1,3, j=1,2,3,4\right\}$. Lastly, a dominating set W of $G \square H$ can be partitioned into sets $W_{1}, W_{2}, \ldots, W_{n}$, where W_{i} is a subset of vertices in the $i^{\text {th }} G$-layer. We write $W=W_{1} \cup W_{2} \cup$ $\cdots \cup W_{n}$ when this partition is clear from the context.

2. Consistent Fixers

Hartnell and Rall [4] provided examples of graphs that show that the lower bound in Corollary 2 is sharp. Let G_{k} be the graph with vertex set $V\left(G_{k}\right)=\{v\} \cup$ $\left\{x_{i}, y_{i}, z_{i}: i=1,2, \ldots, k\right\}$, and edge set $\left\{v x_{i}, x_{i} y_{i}, y_{i} z_{i}, z_{i} v: i=1,2, \ldots, k\right\}$.
(The 4 -cycles $G_{k}\left[\left\{v, x_{i}, y_{i}, z_{i}\right\}\right]$ share a common vertex $v, i=1,2, \ldots, k$.) Then $\gamma\left(G_{k}\right)=k+1$ and $D=\left\{\left(y_{i}, u_{1}\right): i=1,2, \ldots, k\right\} \cup\left\{\left(v, u_{j}\right): j=2,3, \ldots, n\right\}$ is a dominating set of $G_{k} \square K_{n}$ of cardinality $k+n-1=\gamma\left(G_{k}\right)+n-2$. The graph G_{3} is illustrated in Figure 2. If $k>\frac{n-2}{2}$, then $\left|V\left(G_{k}\right)\right|=3 k+1>k+n-1$ and hence $\gamma\left(G_{k} \square K_{n}\right)=\gamma\left(G_{k}\right)+n-2$.

For the graph G_{3} in Figure 2, let $D_{1}=\left\{y_{1}, y_{2}, y_{3}\right\}$ and $D_{2}=\{v\}$, and note that $D=D_{1} \cup D_{2}$ is a primitive symmetric γ-set of G_{3}. In general, any graph G that has a primitive symmetric γ-set satisfies $\gamma\left(G \square K_{n}\right)=\gamma(G)+n-2$ for any $2 \leq n<|V(G)|-\gamma(G)+2:$

Figure 2. The graph G_{3}.
Let $V\left(K_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $D=D_{1} \cup D_{2}$ be a primitive symmetric γ-set of G with $D_{2}=\{x\}$. Figure 3 illustrates the dominating set $W=\left\{\left(v, u_{1}\right): v \in\right.$ $\left.D_{1}\right\} \cup\left\{\left(x, u_{i}\right): i=2,3, \ldots, n\right\}$ of $G \square K_{n}$ of cardinality $\gamma(G)+n-2$. In the first G-layer, the set $Y=V(G)-D$ is dominated by $\left\{\left(v, u_{1}\right): v \in D_{1}\right\}$, and in the $i^{\text {th }}$ G-layer Y is dominated by $\left(x, u_{i}\right), i \geq 2$.

The question now arises whether graphs with primitive symmetric γ-sets are the only n-fixers. Our characterization will show that this is not the case.

We first state some useful properties of a graph having a symmetric γ-set.

Figure 3. A domination strategy for $G \square K_{n}$ if G has a primitive symmetric γ-set.

Observation 3 [4].

(i) Let G be a connected graph with symmetric γ-set $D=D_{1} \cup D_{2}$ and let $Y=V(G)-D$. Then
(a) $N\left[D_{i}\right]=D_{i} \cup Y, i=1,2$,
(b) D is an independent set,
(c) the sets $\{N(x)\}_{x \in D_{i}}$ are disjoint, and these sets form a partition of Y,
(d) each vertex in D is adjacent to at least two vertices in Y.
(ii) Let G be a graph with at least one symmetric γ-set, but no primitive symmetric γ-set, and let $Y=V(G)-D$. Then $\gamma(G[Y])>1$.
(iii) If G is a 2-fixer and $W=W_{1} \cup W_{2}$ is a γ-set of $G \square K_{2}$, then $p\left(W_{1}\right) \cup p\left(W_{2}\right)$ is a symmetric γ-set of G.

Suppose G is a 2-fixer with no primitive symmetric γ-set and $\gamma\left(G \square K_{3}\right)=\gamma(G)+1$. Then a minimum domination strategy for the Cartesian product $G \square K_{3}$ will never be to take a γ-set of $G \square K_{2}$ and select one vertex in the third G-layer, as we show next.

Lemma 4. Let G be a connected 3 -fixer with symmetric γ-set $D=D_{1} \cup D_{2}$, but no primitive symmetric γ-set. Then no γ-set $W=W_{1} \cup W_{2} \cup W_{3}$ of $G \square K_{3}$ has $p\left(W_{1}\right)=D_{1}, p\left(W_{2}\right)=D_{2}$ and $\left|W_{3}\right|=1$.

Proof. Let $D=D_{1} \cup D_{2}$ be a symmetric γ-set of G with $\left|D_{1}\right|,\left|D_{2}\right| \geq 2$ and let $Y=V(G)-D$. Suppose $W=W_{1} \cup W_{2} \cup W_{3}$ is a γ-set of $G \square K_{3}$, with $p\left(W_{1}\right)=D_{1}, p\left(W_{2}\right)=D_{2}$ and $W_{3}=\left\{\left(x, u_{3}\right)\right\}$. Then $x \succ Y$. If $x \notin D$, then $x \in Y$ and so $\gamma(G[Y])=1$, contradicting Observation 3(ii). So assume $x \in D$, say $x \in D_{2}$, and let $z \in D_{2}-\{x\}$. Then z is adjacent to some vertex in Y, hence x and z have a common neighbour in Y, contradicting Observation 3(i)(c).

We now provide a characterization of consistent fixers. We only consider connected graphs and also require G to have at least three vertices; since $\gamma(G) \leq$ $\frac{1}{2}|V(G)|$ for any connected graph G, this requirement ensures that a value $n \geq 3$ is included in the range $2 \leq n<|V(G)|-\gamma(G)+2$.

Theorem 5. Let G be a connected graph of order at least 3. Then G is a consistent fixer if and only if
(i) G has a primitive symmetric γ-set, or
(ii) G has symmetric γ-sets, none of which are primitive, and G has a dominating set $X=X_{1} \cup X_{2} \cup X_{3}$ with the following properties:
(a) $X_{i} \succ V(G)-X, i=1,2,3$,
(b) for each $i=1,2,3$, the sets $\{N(x)-X\}_{x \in X_{i}}$ are disjoint and form a partition of $V(G)-X$,
(c) the sets X_{i} are disjoint and $|X|=\left|X_{1}\right|+\left|X_{2}\right|+\left|X_{3}\right|=\gamma(G)+1$,
(d) $\left|X_{2}\right|=\left|X_{3}\right|=1$.

Proof. Let G be a consistent fixer. Then by Theorem 1, G has a symmetric γ-set $D=D_{1} \cup D_{2}$. Suppose $\left|D_{1}\right|,\left|D_{2}\right| \geq 2$ for any such set D. We show that (ii) holds.

Since G is also a Cartesian 3-fixer, there exists a minimum dominating set $W=W_{1} \cup W_{2} \cup W_{3}$ of $G \square K_{3}$ of cardinality $\gamma(G)+1$. Let $X_{i}=p\left(W_{i}\right), i=1,2,3$, $X=X_{1} \cup X_{2} \cup X_{3}$ and $Y=V(G)-X$.

Then $X \subseteq V(G)$ is a dominating set of G of cardinality at most $\gamma(G)+1$, i.e., $\gamma(G) \leq|X| \leq \gamma(G)+1$. If $Y=\emptyset$, then $|V(G)|=|X| \leq \gamma(G)+1$, contradicting the statement $3<|V(G)|-\gamma(G)+2$. Therefore $Y \neq \emptyset$, and so to dominate $p^{-1}(Y), W_{i} \neq \emptyset$ for each i. Hence $X_{i} \neq \emptyset$ and, moreover, $X_{i} \succ Y$ for each $i=1,2,3$. Thus (a) holds.
Without loss of generality, assume that $\left|X_{1}\right| \geq\left|X_{2}\right| \geq\left|X_{3}\right|$ and that W has been chosen so that $\left|X_{1}\right|$ is as large as possible. Since $\gamma(G) \leq|X| \leq \gamma(G)+1$, at most one vertex of X occurs in more than one set X_{i}.

Similarly, no vertex occurs in all three X_{i}, i.e.,

$$
\begin{equation*}
X_{1} \cap X_{2} \cap X_{3}=\emptyset \tag{2}
\end{equation*}
$$

We now prove the following statement:
Each vertex in $X_{2} \cup X_{3}$ is adjacent to some vertex in Y.
Suppose there exists $x \in X_{2}$ that is not adjacent to any vertex in Y, and w_{2} is a vertex of W_{2} such that $p\left(w_{2}\right)=x$. (The argument is the same if $x \in X_{3}$.) If $x \in X_{1}$ and w_{1} is a vertex of W_{1} such that $p\left(w_{1}\right)=x$, then $W-\left\{w_{1}\right\}$ is a dominating set of $G \square K_{3}$ of cardinality $\gamma(G)$, which is impossible by Corollary 2. Thus $x \notin X_{1}$. But then $W^{\prime}=\left(W_{1} \cup\left\{w_{1}\right\}\right) \cup\left(W_{2}-\left\{w_{2}\right\}\right) \cup W_{3}$ is a minimum dominating set of $G \square K_{3}$ such that $X_{1}^{\prime}=p\left(W_{1} \cup\left\{w_{1}\right\}\right)=X_{1} \cup\{x\}$ has larger cardinality than X_{1}, contradicting the choice of W. Thus (3) holds.
(b) Suppose two distinct vertices $u, v \in X_{i}$ are both adjacent to some vertex $y \in Y$. By (a), y is adjacent to a vertex in each X_{i}. By (1) and (2), at least one $X_{j}, j \neq i$, contains a neighbour w of y such that $w \notin\{u, v\}$. But $X_{k} \succ Y$, $k \neq i, j$, so $(X-\{u, v, w\}) \cup\{y\}$ is a dominating set of G that has cardinality at most $\gamma(G)-1$, a contradiction. Hence each vertex $y \in Y$ is dominated by exactly one vertex from X_{i}, and (b) follows.
(c) We only prove that $X_{2} \cap X_{3}=\emptyset$; the proofs that $X_{1} \cap X_{2}=\emptyset$ and $X_{1} \cap X_{3}=\emptyset$ are similar. It will follow that $|X|=\left|X_{1}\right|+\left|X_{2}\right|+\left|X_{3}\right|=\gamma(G)+1$. Suppose
there exists a vertex $z \in X_{2} \cap X_{3}$. Then $|X|=\gamma(G)$ and, by (1) and (2), $X_{1} \cap\left(X_{2} \cup X_{3}\right)=\emptyset$, so that $X=X_{1} \cup\left(X_{2} \cup X_{3}\right)$ is a symmetric γ-set of G.

If $\left|X_{3}\right|=1$, then $X_{3}=\{z\} \subseteq X_{2}$ and $X=X_{1} \cup X_{2}$. By (a), z dominates all of Y. But $z \in X_{2}$, and so (b) implies that $X_{2}=\{z\}$, i.e., $\left|X_{2}\right|=1$. Then X is a primitive symmetric γ-set, which is not the case under consideration. Therefore $\left|X_{3}\right| \geq 2$; say $w, z \in X_{3}$. By (1), $w \notin X_{1} \cup X_{2}$, and by (3), w is adjacent to some vertex in Y. Since $X_{2} \succ Y$, there exists $v \in X_{2}$ such that v and w have a common neighbour in Y. This contradicts Observation 3(i)(c) for the symmetric γ-set $X=X_{1} \cup\left(X_{2} \cup X_{3}\right)$. Therefore $X_{2} \cap X_{3}=\emptyset$.
(d) Suppose that $\left|X_{2}\right| \geq 2$. Then $\left|X_{1}\right| \geq 2$. Let $y_{1} \in Y$ and choose $x_{1} \in X_{1}$, $x_{2} \in X_{2}$ such that x_{1} and x_{2} are both adjacent to y_{1}. Since $X_{3} \succ Y$, the set $X^{\prime}=\left(X-\left\{x_{1}, x_{2}\right\}\right) \cup\left\{y_{1}\right\}$ is a dominating set of G of cardinality $\gamma(G)$, i.e., a γ-set of G. We show that

$$
\begin{equation*}
\left\{x_{1}, x_{2}\right\} \succ Y . \tag{4}
\end{equation*}
$$

Suppose to the contrary that $y \in Y$ is not adjacent to either x_{1} or x_{2}. Then there exist $x_{1}^{\prime} \in X_{1}-\left\{x_{1}\right\}$ and $x_{2}^{\prime} \in X_{2}-\left\{x_{2}\right\}$ adjacent to y, so that $\left(X^{\prime}-\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\}\right) \cup\{y\}$ is a dominating set of G of cardinality $\gamma(G)-1$, which is impossible.

Let $v \in X_{2}-\left\{x_{2}\right\}$. By (3) there exists a vertex $y_{2} \in Y$ adjacent to v. By (b) y_{2} is not adjacent to x_{2} and so, by (4), y_{2} is adjacent to x_{1}. It follows similar to (4) that $\left\{x_{1}, v\right\} \succ Y$. But then any vertex in Y not adjacent to x_{1} is adjacent to both x_{2} and v, which is impossible by (b). Thus $x_{1} \succ Y$, and (b) implies that $\left|X_{1}\right|=1$, a contradiction. Therefore $\left|X_{2}\right|=1$ which, by the choice of the X_{i}, also implies that $\left|X_{3}\right|=1$.

Conversely, let G be a graph that satisfies the conditions of the statement, $2 \leq n<|V(G)|-\gamma(G)+2$ and $V\left(K_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. If G has a symmetric γ set $D=D_{1} \cup D_{2}$ with $D_{2}=\{x\}$, then the set $W=\left\{\left(v, u_{1}\right): v \in D_{1}\right\} \cup\left\{\left(x, u_{i}\right)\right.$: $i=2,3, \ldots, n\}$ is a dominating set of $G \square K_{n}$ of cardinality $\gamma(G)+n-2$, as illustrated in Figure 2.

Suppose that $\left|D_{1}\right|,\left|D_{2}\right| \geq 2$ and that G has a set $X=X_{1} \cup X_{2} \cup X_{3}$ with the stated properties. Let $X_{2}=\left\{x_{2}\right\}$ and $X_{3}=\left\{x_{3}\right\}$. Then the set

$$
W=\left\{\left(v, u_{1}\right): v \in X_{1}\right\} \cup\left\{\left(x_{2}, u_{2}\right)\right\} \cup\left\{\left(x_{3}, u_{i}\right): i=3,4, \ldots, n\right\}
$$

is a dominating set of $G \square K_{n}$ of cardinality $\gamma(G)+n-2$.
The dominating set $X=X_{1} \cup X_{2} \cup X_{3}$ in Theorem 5(ii) has the following additional properties.

Proposition 6. Let G be a connected graph of order at least 3 . If G is a consistent fixer with no primitive symmetric γ-set, then the dominating set $X=X_{1} \cup X_{2} \cup X_{3}$ in Theorem 5(ii) has the following properties:
(i) $X_{1} \cup X_{2}$ and $X_{1} \cup X_{3}$ are independent sets,
(ii) $\gamma(G[N(x)]) \geq 2$ for every $x \in X_{1}$,
(iii) for some $x \in X_{1}, G[N(x)]$ has a γ-set, $\left\{y_{1}, y_{2}\right\}$ say, such that for every $x^{\prime} \in X_{1}-\{x\}$,
(a) $y_{1} \succ N\left(x^{\prime}\right)$ and $N\left(y_{2}\right) \cap N\left(x^{\prime}\right)=\emptyset$, or
(b) $y_{2} \succ N\left(x^{\prime}\right)$ and $N\left(y_{1}\right) \cap N\left(x^{\prime}\right)=\emptyset$.

Proof. Say $X_{2}=\left\{x_{2}\right\}, X_{3}=\left\{x_{3}\right\}, Y=V(G)-X$, and note that

$$
\begin{equation*}
x_{i} \succ Y, i=2,3 . \tag{5}
\end{equation*}
$$

(i) Consider any symmetric γ-set $D=D_{1} \cup D_{2}$ of G and recall that $\left|D_{i}\right| \geq 2$. Define $Y^{\prime}=V(G)-D$. We compare D and X, and show that

$$
\begin{equation*}
\left|D_{i} \cap Y\right|=1 \text { for } i=1,2, \quad\left|D \cap X_{1}\right|=\gamma(G)-2=\left|X_{1}\right|-1, \tag{6}
\end{equation*}
$$ and $\left|X_{1} \cap Y^{\prime}\right|=1$.

We begin by showing that $\left\{x_{2}, x_{3}\right\} \cap D=\emptyset$. Suppose $x_{2} \in D$; without loss of generality say $x_{2} \in D_{2}$. Then (5) and Observation 3(i)(b) imply that $Y \cap D=\emptyset$. Now if $x_{3} \in D$, then Observation $3(\mathrm{i})(\mathrm{c})$ implies that $x_{3} \in D_{1}$ and that the only vertices in $X_{1} \cap D$ are vertices that are nonadjacent to all vertices in Y. But $|X|=\gamma(G)+1,\left|X_{1}\right|=\gamma(G)-1$ and $|D|=\gamma(G)$, so that $\gamma(G)-2$ vertices in X_{1} are in D. Therefore exactly one vertex in X_{1}, say x_{1}, is adjacent to vertices in Y. By Theorem 5(ii)(a), $x_{1} \succ Y$. Furthermore, $x_{1} \in Y^{\prime}$ by Observation $3(\mathrm{i})(\mathrm{c})$. If there exists a $v \in X_{1}-\left\{x_{1}\right\}$, then $v \in D$, hence v is adjacent to at least two vertices in Y^{\prime} by Observation 3(i)(d). Since $Y^{\prime}-\left\{x_{1}\right\}=Y$, this is a contradiction. So $X_{1}=\left\{x_{1}\right\}$ and it follows that D is a primitive symmetric γ-set, a contradiction. Therefore $x_{3} \notin D$ and so $D=X_{1} \cup X_{2}$ and $V(G)-D=Y \cup\left\{x_{3}\right\}$.

Let $u \in D_{2}-\left\{x_{2}\right\}$. By Observation 3(i)(d), u is adjacent to at least two vertices in Y^{\prime}, so u is adjacent to some $y \in Y$. But then y is adjacent to the two vertices $x_{2}, u \in D_{2}$, contradicting Observation 3 (i)(c). Hence $x_{2} \notin D$. Similarly, $x_{3} \notin D$, i.e., $\left\{x_{2}, x_{3}\right\} \subseteq Y^{\prime}$.
Since $\left|X_{1}\right|=\gamma(G)-1$, it follows that $Y \cap D \neq \emptyset$. If $\left|D_{i} \cap Y\right| \geq 2$ for some i, then by (5), two vertices in D_{i} have $x_{2} \in Y^{\prime}$ as common neighbour, contrary to Observation 3(i)(c). Thus $\left|D_{i} \cap Y\right| \leq 1$ for each i, so $|Y \cap D| \leq 2$. If $Y \cap D=\{y\}$, then $D=X_{1} \cup\{y\}$. But by Theorem 5(ii)(a), y is adjacent to some vertex in X_{1}, contradicting Observation 3(i)(b). Therefore $|Y \cap D|=2$ and (6) follows.

Let $X_{1} \cap Y^{\prime}=\left\{x_{1}\right\}$ and $D_{i} \cap Y=\left\{y_{i}\right\}, i=1,2$. Then $X_{1}-\left\{x_{1}\right\} \subseteq D$ and so $X_{1}-\left\{x_{1}\right\}$ is independent (Observation 3(i)(b)).

Suppose x_{1} is not adjacent to y_{1}. Since $X_{1} \succ Y, y_{1}$ is adjacent to some $x^{\prime} \in X_{1}-\left\{x_{1}\right\} \subseteq D$. But $y_{1} \in D$ and D is independent, a contradiction. Hence
x_{1} is adjacent to y_{1} and, similarly, to y_{2}. It now follows from Observation 3(i)(c) that x_{1} is not adjacent to any vertex in X_{1} and so X_{1} is independent.

By (5), x_{2} and x_{3} are adjacent to y_{1} and y_{2}, hence as in the case of x_{1}, neither x_{2} nor x_{3} is adjacent to any vertex in $X_{1}-\left\{x_{1}\right\}$. Since G is connected, each vertex in $X_{1}-\left\{x_{1}\right\}$ is therefore adjacent to a vertex in Y; since D is independent this vertex is necessarily in $Y-\left\{y_{1}, y_{2}\right\}$. Since $\left|D_{1}\right| \geq 2$, there exists $x_{4} \in D_{1}-\left\{y_{1}\right\}$; necessarily $x_{4} \subseteq X_{1}-\left\{x_{1}\right\}$. Let $y_{4} \in Y-\left\{y_{1}, y_{2}\right\}$ be adjacent to x_{4} and consider the set $X^{\prime}=\left(X-\left\{x_{1}, x_{3}, x_{4}\right\}\right) \cup\left\{y_{4}\right\}$. Then $x_{2} \succ Y, y_{4} \succ x_{4}$ and $y_{4} \succ x_{3}$ by (5). Therefore $X^{\prime} \succ G-x_{1}$. But $\left|X^{\prime}\right|<\gamma(G)$ and so $X^{\prime} \nsucc G$, i.e., $X^{\prime} \nsucc x_{1}$. In particular, x_{2} is not adjacent to x_{1}. Similarly, x_{3} is not adjacent to x_{1}, and the proof of (i) is complete.
(ii) Since $\gamma(G) \geq 4,\left|X_{1}\right| \geq 3$. Say $X_{1}=\left\{x_{1}, x_{4}, x_{5}, \ldots, x_{k}\right\}$ and define $Y_{i}=$ $N\left(x_{i}\right), i=1,4,5, \ldots, k$. By (i), no vertex in X_{1} is adjacent to any vertex in X, so $Y_{i} \subseteq Y$ for each i, and since G is connected, $Y_{i} \neq \emptyset$. By Theorem 5(ii)(a) and (b), the sets $Y_{1}, Y_{4}, \ldots, Y_{k}$ partition Y. Suppose that for some i there exists a vertex $y \in Y_{i}$ that is adjacent to all other vertices in Y_{i} and consider $X^{\prime}=$ $\left(X-\left\{x_{i}, x_{2}, x_{3}\right\}\right) \cup\{y\}$. Then by (5), $y \succ Y_{i} \cup\left\{x_{i}, x_{2}, x_{3}\right\}$, while $X_{1}-\left\{x_{i}\right\} \succ Y-Y_{i}$, so that $X^{\prime} \succ G$. But $\left|X^{\prime}\right|=\gamma(G)-1$, which is impossible. This proves (ii).
(iii) As shown above, $D=\left\{y_{1}, y_{2}, x_{4}, \ldots, x_{k}\right\}$ and $Y^{\prime}=\left\{x_{1}, x_{2}, x_{3}\right\} \cup(Y-$ $\left\{y_{1}, y_{2}\right\}$). By Observation 3(i)(c), each vertex in Y^{\prime} is adjacent to exactly one vertex in each D_{i}. In particular, since X_{1} is independent, x_{1} is adjacent to y_{1} and y_{2}. Since the Y_{i} partition Y, no vertex in Y is adjacent to two vertices in X_{1}. But for each $i=4, \ldots, k, x_{i}$ is in exactly one of D_{1} or D_{2}, so if $x_{i} \in D_{1}-\left\{y_{1}\right\}$, then each vertex in $Y_{i}=N\left(x_{i}\right)$ is also adjacent to y_{2} but not to y_{1}, and if $x_{i} \in D_{2}-\left\{y_{2}\right\}$, then each vertex in Y_{i} is also adjacent to y_{1} but not to y_{2}. Moreover, $\left\{y_{1}, y_{2}\right\} \succ Y \supseteq Y_{1}=N\left(x_{1}\right)$ and so, by (ii), $\left\{y_{1}, y_{2}\right\}$ is a γ-set of $N\left(x_{1}\right)$. Therefore (iii) holds with $x=x_{1}$.

Figure 4. A consistent fixer with no primitive symmetric γ-set.
The properties of the dominating set $X=X_{1} \cup X_{2} \cup X_{3}$ given in Theorem 5 and Proposition 6 allow us to easily construct consistent fixers without primitive
symmetric γ-sets. Figure 4 shows a consistent fixer G that has a symmetric γ-set $D=D_{1} \cup D_{2}$ with $\left|D_{1}\right|=\left|D_{2}\right|=2$. In this example, $D_{1}=\left\{y_{1}, x_{4}\right\}$, $D_{2}=\left\{y_{2}, x_{5}\right\}, X_{1}=\left\{x_{1}, x_{4}, x_{5}\right\}, X_{2}=\left\{x_{2}\right\}$ and $X_{3}=\left\{x_{3}\right\}$. Since $\Delta(G)=6, G$ has no primitive symmetric γ-set.

If G is a consistent fixer, then $G \square K_{n}, n \geq 3$, has a minimum dominating set that contains exactly one vertex in all but one of the G-layers of $G \square K_{n}$, as stated in the following corollary.

Corollary 7. If G is a consistent fixer and $3 \leq n<|V(G)|-\gamma(G)+2$, then $G \square K_{n}$ has a γ-set $X=X_{1} \cup \cdots \cup X_{n}$ with $\left|X_{i}\right|=1$ for $i=2, \ldots, n$, where X_{i} lies in the $i^{\text {th }} G$-layer of $G \square K_{n}, i=1, \ldots, n$.

3. Other Fixers

For any integer $t \geq 4$ there exist graphs that are 2-fixers and n-fixers for $t \leq n<$ $|V(G)|-\gamma(G)+2$, but not for $2<n<t$. Figure 5 shows a graph G that is a 2 -fixer and a 4 -fixer, but not a 3 -fixer. Each vertex x_{2}, x_{3} and x_{6} is adjacent only to the vertices y_{1}, y_{2}, a, b, c and d, but these edges are omitted in the figure for the sake of clarity. The graph has a symmetric γ-set $D=D_{1} \cup D_{2}$ with $D_{1}=\left\{x_{4}, y_{1}\right\}$ and $D_{2}=\left\{x_{5}, y_{2}\right\}$. Since $\Delta(G)=6, G$ does not have a primitive symmetric γ-set. Furthermore, it is easy to verify that G does not have a set $X=X_{1} \cup X_{2} \cup X_{3}$ with the properties stated in Theorem 5, and therefore is not a 3 -fixer. However, for $n \geq 4$, the set

$$
W=\left\{\left(x_{1}, u_{1}\right),\left(x_{4}, u_{1}\right),\left(x_{5}, u_{1}\right),\left(x_{2}, u_{2}\right),\left(x_{3}, u_{3}\right)\right\} \cup\left\{\left(x_{6}, u_{i}\right): i \geq 4\right\}
$$

is a dominating set of $G \square K_{n}$ of cardinality $\gamma(G)+n-2$, so that G is an n-fixer.
The characterization of these n-fixers is similar to that of Theorem 5 and the proof is therefore omitted.

Figure 5. A graph that is a 2 -fixer and a 4 -fixer, but not a 3 -fixer.

Theorem 8. Let G be a connected graph and $t \geq 4$. Then G is a 2 -fixer and an n-fixer for $n \geq t$, but not for $2<n<t$, if and only if
(i) G has symmetric γ-sets, none of which are primitive, and
(ii) t is the smallest integer such that G has a dominating set $X=X_{1} \cup \cdots \cup X_{t}$ with the following properties:
(a) $X_{i} \succ V(G)-X, i=1,2, \ldots, t$,
(b) for each $i=1,2, \ldots, t$, the sets $\{N(x)-X\}_{x \in X_{i}}$ are disjoint and form a partition of $V(G)-X$,
(c) the sets X_{i} are disjoint and $|X|=\sum_{i=1}^{t}\left|X_{i}\right|=\gamma(G)+t-2$,
(d) $\left|X_{i}\right|=1$ for $i \geq 2$.

Similar to Proposition 6, the set $X=X_{1} \cup \cdots \cup X_{t}$ has the following additional properties.

Proposition 9. Let G be a connected graph of order at least 3 , and $t \geq 3$. If G is a 2 -fixer and an n-fixer, $n \geq t$, that has no primitive symmetric γ-set, then the dominating set $X=X_{1} \cup \cdots \cup X_{t}$ in Theorem 8(ii) has the following properties:
(i) $X_{1} \cup X_{i}$ is an independent set, $i=2, \ldots, t$,
(ii) $\gamma(G[N(x)]) \geq 2$ for every $x \in X_{1}$,
(iii) for some $x \in X_{1}, G[N(x)]$ has a γ-set, $\left\{y_{1}, y_{2}\right\}$ say, such that for every $x^{\prime} \in X_{1}-\{x\}$,
(a) $y_{1} \succ N\left(x^{\prime}\right)$ and $N\left(x^{\prime}\right) \cap N\left(y_{2}\right)=\emptyset$, or
(b) $y_{2} \succ N\left(x^{\prime}\right)$ and $N\left(x^{\prime}\right) \cap N\left(y_{1}\right)=\emptyset$.

Figure 6. An n-fixer only for $n \geq 4$.
Lastly, we consider graphs that are n-fixers for $n \geq t \geq 3$, but not for $n<t$. As an example, Figure 6 shows a graph G that is an n-fixer for $n \geq 4$ only. In this
graph, each vertex x_{1}, x_{2} and x_{3} is adjacent only to the neighbours of v_{1}, v_{2} and v_{3}. It is easy to verify that $\gamma(G)=4$, the graph does not have a symmetric γ-set, and that it is not a 3 -fixer.

The following characterization describes such fixers. The proof is also similar to that of Theorem 5 and is omitted.

Theorem 10. Let G be a connected graph and $t \geq 3$. Then G is an n-fixer for $n \geq t$, but not for $2<n<t$, if and only if G does not have a symmetric γ-set, and t is the smallest integer such that G has a dominating set $X=X_{1} \cup \cdots \cup X_{t}$ with the following properties:
(a) $X_{i} \succ V(G)-X, i=1,2, \ldots, t$,
(b) for each $i=1,2, \ldots, t$, the sets $\{N(x)-X\}_{x \in X_{i}}$ are disjoint and form a partition of $V(G)-X$
(c) the sets X_{i} are disjoint and $|X|=\sum_{i=1}^{t}\left|X_{i}\right|=\gamma(G)+t-2$,
(d) $\left|X_{i}\right|=1$ for $i \geq 2$.

4. CARTESIAN n-MULTIPLIERS

Consider n such that $\gamma(G)+n-2<|V(G)|$ and recall that $\gamma(G)+n-2 \leq$ $\gamma\left(G \square K_{n}\right) \leq n \gamma(G)$. We observe that, for any positive integer m and for any $0 \leq i \leq(m-1)(n-1)+1$, there exists a graph G such that $\gamma(G)=m$ and $\gamma\left(G \square K_{n}\right)=m+n-2+i$. (The upper bound on i ensures that $\gamma(G)+n-2+i \leq$ $n \gamma(G)$.) Consider the complete bipartite graph $G=K_{l, k}$ with $l \leq k$ and let $x_{1}, x_{2}, \ldots, x_{l}$ be the vertices in the smaller partite set. With notation as in Theorem 8, let $X_{i}=\left\{x_{i}\right\}$ and $X=\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$. If $l=2$, then X is a primitive symmetric γ-set of G, which is a consistent fixer by Theorem 5. If $l=n \geq 3$, then X satisfies the conditions in Theorem 10 , so G is an n-fixer. If $l=n+i$, then $\gamma\left(G \square K_{n}\right)=\gamma(G)+n-2+i$, up to values of i for which $\gamma\left(G \square K_{n}\right)=n \gamma(G)$, in which case G is an n-multiplier (or a prism doubler if $n=2$).

Burger, Mynhardt and Weakley [1] characterized prism doublers as follows.
Proposition 11 [1]. A graph G is a prism doubler if and only if for each set $X \subseteq V(G)$ with $0<|X|<\gamma(G)$, and $Y=V(G)-N[X]$, either
(i) $|Y| \geq 2 \gamma(G)-|X|$, or
(ii) $|Y|=2 \gamma(G)-|X|-d$ for some $1 \leq d \leq|X|$, and at least d vertices (necessarily in $N[X]$) are required to dominate $N\{X\}-N[Y]$.

Following a similar argument to that used in [1], we provide a characterization of n-multipliers. In $G \square K_{n}$ we denote the $i^{\text {th }} G$-layer of G by G_{i} and $V\left(G_{i}\right)$
by V_{i}. For $S \subseteq V(G)$, let $\langle S\rangle_{i}$ denote the counterpart of S in G_{i}. Note that if $|V(G)|<n \gamma(G)$, then G is not an n-multiplier since V_{1} is a dominating set of $G \square K_{n}$. Thus we only consider graphs G of order at least $n \gamma(G)$.

Proposition 12. A graph G is an n-multiplier if and only if for each set $X \subseteq$ $V(G)$ with $0<|X|<\gamma(G)$, and $Y=V(G)-N[X]$, either
(i) $|Y| \geq n \gamma(G)-|X|$, or
(ii) $|Y|=n \gamma(G)-|X|-d$ for some $1 \leq d \leq(n-1)|X|$, and for any partition $Y_{2}, Y_{3}, \ldots, Y_{n}$ of Y, the subgraph of $G \square K_{n}$ induced by $\bigcup_{i=2}^{n}\left\langle N\{X\}-N\left[Y_{i}\right]\right\rangle_{i}$ has domination number at least d.

Proof. Suppose G is an n-multiplier and consider any set $X \subseteq V(G)$, where $0<|X|<\gamma(G)$, and $Y=V(G)-N[X]$.

If $|Y| \geq n \gamma(G)-|X|$, then (i) holds. If $|Y|<n \gamma(G)-n|X|$, then $\left(\bigcup_{i=1}^{n}\langle X\rangle_{i}\right) \cup$ $\langle Y\rangle_{1}$ is a dominating set of $G \square K_{n}$ of cardinality $n|X|+|Y|<n \gamma(G)$ - a contradiction.
Hence we assume that $|Y|=n \gamma(G)-|X|-d$ for some $1 \leq d \leq(n-1)|X|$. Suppose there exists a partition $Y_{2}, Y_{3}, \ldots, Y_{n}$ of Y such that the subgraph of $G \square K_{n}$ induced by $\bigcup_{i=2}^{n}\left\langle N\{X\}-N\left[Y_{i}\right]\right\rangle_{i}$ is dominated by some set D of cardinality less than d. Then $\langle X\rangle_{1} \cup\left(\bigcup_{i=2}^{n}\left\langle Y_{i}\right\rangle_{i}\right) \cup D$ is a dominating set of $G \square K_{n}$ of cardinality less than $|X|+|Y|+d=n \gamma(G)$ - a contradiction.

Conversely, suppose that $\gamma\left(G \square K_{n}\right)<n \gamma(G)$, and consider any minimum dominating set $D=D_{1} \cup \cdots \cup D_{n}$ of $G \square K_{n}$. Let $B_{i}=p\left(D_{i}\right), i=1, \ldots, n$. Then $\left|B_{i}\right|<\gamma(G)$ for some i; without loss of generality assume $\left|B_{1}\right|<\gamma(G)$. Then $\left|B_{1}\right|>0$, otherwise at least $|V(G)|$ vertices are needed to dominate G_{1} in $G \square K_{n}$. But then $|V(G)| \leq|D|<n \gamma(G)$ and these graphs are not considered. Thus $0<\left|B_{1}\right|<\gamma(G)$. We show that neither (i) nor (ii) holds for the set $X=B_{1}$.

Let $B=B_{1} \cup B_{2} \cup \cdots \cup B_{n}$ and $Y=V(G)-N\left[B_{1}\right]$. In the layer G_{1}, $V_{1}-N\left[D_{1}\right]$ is dominated by $D_{2} \cup \cdots \cup D_{n}$. Therefore in $G, Y \subseteq \bigcup_{i=2}^{n} B_{i}$ and so $|Y| \leq|B|-\left|B_{1}\right|<n \gamma(G)-\left|B_{1}\right|$. Thus (i) does not hold. If $|Y|<n \gamma(G)-n\left|B_{1}\right|$, then (ii) does not hold either and we are done. Hence we assume that $|Y|=$ $n \gamma(G)-\left|B_{1}\right|-d$ for some $1 \leq d \leq(n-1)\left|B_{1}\right|$.

Let $Y_{2}, Y_{3}, \ldots, Y_{n}$ be a partition of Y such that $Y_{i} \subseteq B_{i}, i=2,3, \ldots, n$, and let $Z_{i}=B_{i}-Y_{i}$. Then the set $D^{\prime}=\bigcup_{i=2}^{n}\left\langle Z_{i}\right\rangle_{i}$ dominates the subgraph of $G \square K_{n}$ induced by $\bigcup_{i=2}^{n}\left\langle N\left\{B_{1}\right\}-N\left[Y_{i}\right]\right\rangle_{i}$. But

$$
\left|D^{\prime}\right| \leq \sum_{i=2}^{n}\left|B_{i}\right|-\sum_{i=2}^{n}\left|Y_{i}\right|<n \gamma(G)-\left|B_{1}\right|-|Y|=d .
$$

Therefore (ii) does not hold.
We construct a family of multipliers with domination number 2 . Let $n \geq 2$ and consider disjoint complete graphs K_{n+1} and $K_{2 n}$, with vertex sets $A=$
$\left\{v_{1}, v_{2}, \ldots, v_{n+1}\right\}$ and $B=\left\{w_{1}, w_{2}, \ldots, w_{2 n}\right\}$ ，respectively．Let G_{n} be the graph obtained by adding the edges $v_{i} w_{i}, i=1, \ldots, n+1$ ．We use Proposition 12 to show that G_{n} is an n－multiplier．Since $\gamma(G)=2$ ，we only consider sets X of cardinality 1 ．There are three possibilities for X ．
－If $X=\left\{v_{i}\right\}$ ，then $Y=B-\left\{w_{i}\right\}$ and $|Y|=2 n-1=n \gamma\left(G_{n}\right)-|X|$ ．
－If $X=\left\{w_{i}\right\}$ with $i \leq n+1$ ，then $Y=A-\left\{v_{i}\right\}$ and $|Y|=n=n \gamma\left(G_{n}\right)-$ $|X|-d$ with $d=n-1$ ．For any $Y^{\prime} \subseteq Y, N\left(w_{i}\right)-N\left[Y^{\prime}\right]$ contains the vertices $w_{n+2}, \ldots, w_{2 n}$ ．Thus，for any partition $Y_{2}, Y_{3}, \ldots, Y_{n}$ of Y ，the subgraph of $G_{n} \square K_{n}$ induced by $\bigcup_{j=2}^{n}\left\langle N\left(w_{i}\right)-N\left[Y_{j}\right]\right\rangle_{j}$ has a subgraph isomorphic to $K_{n-1} \square$ K_{n-1} ，which has domination number $d=n-1$ ．Hence Proposition 12（ii）holds．
－If $X=\left\{w_{i}\right\}, i>n+1$ ，a similar argument shows that Proposition 12（ii）also holds．

It follows that G is an n－multiplier．

5．Conclusion

We conclude with open problems for future research．Let G and H be graphs of order m and n respectively．The Cartesian product $G \square H$ possesses a so－ called layer－partition property，in that its vertex set allows two partitions $\mathcal{P}=$ $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ and $\mathcal{Q}=\left\{Q_{1}, Q_{2}, \ldots, Q_{m}\right\}$ such that（a）each $P_{i} \in \mathcal{P}$ induces a copy of G ，called a G－layer，（b）each $Q_{j} \in \mathcal{Q}$ induces a copy of H ，called an H－layer，（c）any P_{i} and Q_{j} intersect in exactly one vertex，and（d）any edge in the product is in either exactly one G－layer or exactly one H－layer．

In 1967，Chartrand and Harary［2］defined the generalized prism πG of G as the graph consisting of two copies of G ，with edges between the copies determined by a permutation π acting on $V(G)$ ．For any permutation $\pi, \gamma(G) \leq(\pi G) \leq$ $2 \gamma(G)$ ．

We now define a generalized Cartesian product G 四 H that corresponds to $G \square H$ when π is the identity，πG when H is the graph K_{2} ，and that retains a layer－partition property．For two labelled graphs G and H and permutation π acting on $V(G)$ ，the product G 四 H is the graph with vertex set $V(G) \times V(H)$ ， and vertex $\left(v_{i}, u_{j}\right)$ is adjacent to $\left(v_{k}, u_{l}\right), j \leq l$ ，if and only if（a）$v_{i} v_{k} \in E(G)$ and $u_{j}=u_{l}$ ，or（b）$v_{k}=\pi^{l-j}\left(v_{i}\right)$ and $u_{j} u_{l} \in E(H)$ ．

Note that $\gamma(G) \leq \gamma(G$ 四 $H) \leq \gamma(G)|V(H)|$ for any G, H and permutation π ． Burger，Mynhardt and Weakley［1］investigated graphs G for which $\gamma(\pi G)=$ $2 \gamma(G)$ for any π ．

Question 1．For some graph H of order n，is it possible to characterize graphs G for which $\gamma(G$ 四 $H)=n \gamma(G)$ for every π ？

In 2006, Mynhardt and Xu [6] investigated graphs G for which $\gamma(\pi G)=\gamma(G)$ for any π, and conjectured that only the edgeless graphs have this property.

Question 2. For some graph H of order n, does there exist a nontrivial graph G such that $\gamma(G$ ® $H)=\gamma(G)+n-2$ for every π ?

Acknowledgements

This paper is based upon part of the first author's Ph.D. dissertation and he gratefully acknowledges financial assistance from the South African NRF prestige awards programme and the Skye Foundation. Work towards this paper was also supported financially by NSERC.

References

[1] A.P. Burger, C.M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Dicuss. Math. Graph Theory 24 (2004) 303-318.
[2] G. Chartrand and F. Harary, Planar permutation graphs, Ann. Inst. H. Poincaré Sect. B (N.S.) 3 (1967) 433-438.
[3] B.L. Hartnell and D.F. Rall, Lower bounds for dominating Cartesian products, J. Combin. Math. Combin. Comput. 31 (1999) 219-226.
[4] B.L. Hartnell and D.F. Rall, On dominating the Cartesian product of a graph and K_{2}, Discuss. Math. Graph Theory 24 (2004) 389-402.
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[6] C.M. Mynhardt and Z. Xu, Domination in prisms of graphs: Universal fixers, Utilitas Math. 78 (2009) 185-201.

[^0]: ${ }^{1}$ Supported by the Skye Foundation and the National Research Foundation of South Africa.
 ${ }^{2}$ Supported by the Natural Sciences and Engineering Research Council of Canada.

