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Abstract

The trivial lower bound for the 2-distance chromatic number χ2(G) of
any graph G with maximum degree ∆ is ∆+1. It is known that χ2 = ∆+1
if the girth g of G is at least 7 and ∆ is large enough. There are graphs
with arbitrarily large ∆ and g ≤ 6 having χ2(G) ≥ ∆ + 2. We prove the
2-distance 4-colorability of planar subcubic graphs with g ≥ 22.
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1. Introduction

By a graph we mean a non-oriented graph without loops and multiple edges. By
V (G), E(G), ∆(G), and g(G) denote the sets of vertices and edges, maximum
degree, and girth of a graph G, respectively. (We will drop the argument when
the graph is clear from context.)
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Definition. A coloring ϕ : V (G) → {1, 2, . . . , k} of G is 2-distance if any two
vertices at distance at most two from each other get different colors. The min-
imum number of colors in 2-distance colorings of G is its 2-distance chromatic

number, denoted by χ2(G).

In 1977, Wegner [21] (see also Jensen and Toft’s monograph [17]) posed the
following

Conjecture 1. Each planar graph has:

χ2(G) ≤







7 if ∆ = 3,
∆+ 5 if 4 ≤ ∆ ≤ 7,

⌊3∆
2
⌋+ 1 otherwise.

The following upper bounds have been established: ⌊9∆
5
⌋ + 2 for ∆ ≥ 749 by

Agnarsson and Halldorsson [1, 2] and ⌈9∆
5
⌉+1 for ∆ ≥ 47 by Borodin, Broersma,

Glebov, and van den Heuvel [3, 4]. The best known upper bounds for large ∆
are due to Molloy and Salavatipour [18, 19]: ⌈5∆

3
⌉+ 78 for all ∆ and ⌈5∆

3
⌉ + 25

for ∆ ≥ 241.
In [5, 9] we give sufficient conditions (in terms of g and ∆) for the 2-distance

chromatic number of a planar graph to equal the trivial lower bound ∆ + 1. In
particular, we determine the least g such that χ2 = ∆ + 1 if ∆ is large enough
(depending on g) to be equal to seven.

Theorem 2. If G is a planar graph, then χ2 = ∆+1 in each of the cases (i–viii):
(i) ∆ = 3, g ≥ 24,

(ii) ∆ = 4, g ≥ 15,

(iii) ∆ = 5, g ≥ 13,

(iv) ∆ = 6, g ≥ 12,

(v) ∆ ≥ 7, g ≥ 11,

(vi) ∆ ≥ 9, g = 10,

(vii) ∆ ≥ 15, g ≥ 8,

(viii) ∆ ≥ 30, g = 7.
There exist planar graphs with g ≤ 6 such that χ2 = ∆ + 2 for arbitrarily

large ∆.

Borodin, Ivanova, and Neustroeva [10, 11] proved that χ2 = ∆ + 1 whenever
∆ ≥ 31 for planar graphs of girth six with the additional assumption that each
edge is incident with a vertex of degree two.

Dvořák, Kràl, Nejedlỳ, and Škrekovski [12] proved that every planar graph
with ∆ ≥ 8821 and g ≥ 6 has χ2 ≤ ∆ + 2, and Borodin and Ivanova [6, 7]
weakened the restriction on ∆ to 18.

Ivanova [15] improved Theorem 2 for ∆ ≥ 5 as follows.
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Theorem 3. If G is a planar graph, then χ2(G) = ∆ + 1 in each of the cases

(i–iv):

(i) ∆ ≥ 16, g = 7,

(ii) ∆ ≥ 10, 8 ≤ g ≤ 9,

(iii) ∆ ≥ 6, 10 ≤ g ≤ 11,

(iv) ∆ = 5, g ≥ 12.

A lot of research is devoted to coloring graphs with ∆ = 3 (called subcubic). For
such planar graphs Dvořák, Škrekovski, and Tancer [13] proved that χ2 = 4 if
g ≥ 24 (i.e., they independently obtained (i) in Theorem 2) and χ2 ≤ 5 if g ≥ 14.
The second of these results was also obtained by Montassier and Raspaud [20],
which was improved by Ivanova and Solov’eva [16] and Havet [14] to g ≥ 13.
Borodin and Ivanova [8] proved that χ2 = 4 if g ≥ 23, and the purpose of the
present paper is

Theorem 4. Every planar subcubic graph with girth at least 22 is 2-distance
4-colorable.

We would like to attract attention to the following problem.

Problem 5. Find the smallest k such that every planar subcubic graph with
girth at least k is 2-distance 4-colorable.

In the proof of Theorem 4 we use a new trick (see Claim 8) that makes it possible
to produce new reducible configurations from already known ones.

2. Proof of Theorem 4

Let G′ be a counterexample to Theorem 4, i.e., with ∆(G′) = ∆ = 3, g(G′) ≥ 22,
and χ2(G

′) > 4. Now let G be a graph with the fewest edges such that ∆(G) ≤ ∆,
g(G) = g ≥ g(G′), and χ2(G) > 4. The set of graphs with these properties is
non-empty, since at least G′ has all of them. Our proof of Theorem 4 consists in
showing that G does not exist, which contradicts the assumption that G′ exists.

Without loss of generality, we can assume that G is 2-connected and thus
has no pendant edges. Euler’s formula |V | − |E|+ |F | = 2 can be rewritten as

94(20|E| − 22|V |) + (2|E| − 22|F |) = −44 where F is the set of faces of G.

Hence,
∑

v∈V

(

10d(v)− 22
)

+
∑

f∈F

(r(f)− 22) = −44,(1)

where d(v) is the degree of vertex v, and r(f) is the size of face f . The charge

µ(v) of every vertex v of G is defined to be 10d(v)− 22, while the charge µ(f) of
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every face f of G, to be r(f)− 22. Since the charge of every face is nonnegative,
(1) implies that

∑

v∈V

(

10d(v)− 22
)

< 0.(2)

Note that the charge of a 2-vertex is −2, while the charge of a 3-vertex is 8.
We first describe some structural properties of G; then, based on these, we re-
distribute the charges, preserving their sum, so that all new charges µ∗(v) are
non-negative (which will give a contradiction with (2)).

2.1. Coloring and structural properties of G

Definition. By a k-path we mean a path consisting of precisely k vertices of
degree 2. A ≥ t-path is any k-path with k ≥ t. By (k, l,m) denote a vertex of
degree 3 incident with a ≥ k-path, an ≥ l-path, and an ≥ m-path.

Definition. A pair of vertices (k, l,m) and (m,n, p) joined by an m-path will be
denoted by (klm −mnp). By (klm −mnp − prs) we denote a triple of vertices
(k, l,m), (m,n, p), (p, r, s), where the (m,n, p)-vertex is joined by an m-path and
a p-path to the (k, l,m)-vertex and the (p, r, s)-vertex, respectively.

We present the proofs of some already published simplest properties of our G
since our proofs of the main new structural properties of G (see Lemmas 12, 13)
are built on the proofs of these old facts rather than on these facts themselves.

In what follows, by c(v) we denote the color of a vertex v in a partial 2-
distance coloring c of G, and A(v) is the set of colors that are admissible for an
uncolored vertex v, i.e., they do not appear on the already colored 2-distance
neighbors of v.

The next two claims deal with the following problem. Given a small graph H
with a small list L of admissible colors on its vertices, is it possible to 2-distance
color H according to L? In fact, H in Claims 1 and 2 is a path of length three
or four, respectively.

Claim 6 [14]. A path x1x2x3x4 of vertices having 2, 2, 3, and 2 admissible colors,

respectively, is 2-distance colorable with admissible colors.

Proof. If x1 and x4 have an admissible color in common, then after putting
c(x1) = c(x4) we can color x2 and x3 in this order. Now let x1 and x4 have no
common color. Putting c(x3) /∈ A(x2) implies that |A(x1)| ≥ 2 or |A(x4)| ≥ 2.
We first color that of vertices x1 and x4 now having just one admissible color.
Then we color x2, and finally color the yet uncolored vertex from {x1, x4}. �

Claim 7 [8]. A path x1 . . . x5 of vertices having 2, 2, 3, 3, and 2 admissible

colors, respectively, is 2-distance colorable with admissible colors.
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Proof. If A(x2) ∩ A(x5) 6= ∅, then after putting c(x2) = c(x5) we can color x1,
x3, and x4 in this order. Now let A(x2) ∩ A(x5) = ∅. Putting c(x3) /∈ A(x1)
implies that |A(x2)| ≥ 2 or |A(x5)| ≥ 2. We first color that of vertices x2 and x5
now having just one admissible color, then we color x4, then the yet uncolored
vertex from {x2, x5}, and finally color x1. �

The forthcoming Claim 8 is the main tool in the proof of Theorem 4. It is used
in Lemmas 12 and 13 for proving that certain relatively small trees are reducible.
Let us explain the idea behind Claim 8. Suppose, for simplicity, that a tree
has a 3-vertex u adjacent to a vertex v and incident with two pendant 3-paths.
After some manipulations with these 3-paths, vertex u starts to behave from the
viewpoint of v exactly the same as if u were a 2-vertex rather than a 3-vertex.
(In fact, u is colored, but precisely two restrictions on the choice of color for v
arrive along the edge uv.) In other words, the k-path that contains v becomes a
“virtual” (k + 1)-path.

Claim 8. Let a vertex u be incident with an m-path uu1u2 . . . um, an n-path
uu′1u

′

2 . . . u
′

n, where m + n ≥ 6, m ≥ n ≥ 1, and with a path uvw, where v /∈
{u1, u

′

1}. If the m + n − 1 vertices um−1, . . . , u1, u, u′1, . . . , u
′

n−1 have 2, 3,
4, . . . , 4, 3, 2 admissible colors, respectively, then we can color them so that v
gets restrictions only from u and u′1, while w gets a restriction only from u.

Proof. As proved in [9, 13] (see Lemma 10(a) below), we have n ≤ 5. If
m+n ≥ 7, then we simply color um−1, . . . , u6−n in this order. So, we can assume
that m + n = 6 and still m ≥ n ≥ 1 due to the symmetry. Thus |A(u)| = 4 if
n = 3, |A(u)| = 3 if n = 2, and |A(u)| = 2 if n = 1. Put c(u) = c(u3). (This can
be done for 1 ≤ n ≤ 2, since any pair of colors from {1, 2, 3, 4} has a common
color with any triple from this set.) Observe that u1 and u2 can be colored in
the last place in this order. So, we first color the yet uncolored vertices from
{u′2, u

′

1, u4} as follows: if n = 3, then we color u′2 and u′1 in this order; if n = 2,
then only u′1 is colored; if n = 1, then we color only u′1. �

Remark 9. One of the referees suggested to emphasize even more that in the
proof of Claim 8 it is important that the vertices u1 and u2 get their colors at the
very end of the coloring process; in particular, after v and w have been colored.

Lemma 10. G has no

(a) ≥ 6-path ([9, 13]),

(b) (1, 4, 5)-vertex ([9, 13]),

(c) (2, 3, 4)-vertex ([13]).

Proof. (a) Suppose we have a ≥ 6-path u0u1 . . ., where u0 is a 3-vertex. Take
a 2-distance 4-coloring of G − u2, which exists by the minimality of G, uncolor
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vertices u3, u4, and u5, and then extend this coloring to u2 and the uncolored
vertices. Note that |A(u2)| = |A(u5)| = 2 and |A(u3)| = |A(u4)| = 3, so we can
use Claim 6.

(b) Let a (1, 4, 5)-vertex u be incident with paths uu1u2u3u4u5, uu
′

1u
′

2u
′

3u
′

4,
and adjacent to a vertex u′′1 /∈ {u1, u

′

1}. Take a 2-distance coloring of G− u and
uncolor u1, u2, u3, u4, u

′

1, u
′

2, and u′3. Note that |A(u4)| = |A(u)| = |A(u′3)| = 2,
|A(u3)| = |A(u1)| = |A(u′1)| = |A(u′2)| = 3, and |A(u2)| = 4. Put c(u3) /∈ A(u4).
Now u2, u4 can be colored in the last place in this order, while vertices u1, u, u

′

1,
u′2, u

′

3 have 2, 2, 3, 3, 2 admissible colors, respectively, and so can be colored by
Claim 7.

(c) Let a (2, 3, 4)-vertex u be incident with paths uu1u2u3u4, uu
′

1u
′

2u
′

3, and
uu′′1u

′′

2. Take a 2-distance coloring of G − u and uncolor u1, u2, u3, u
′

1, u
′

2, u
′′

1.
Note that |A(u3)| = |A(u′2)| = |A(u′′1)| = 2, |A(u)| = |A(u2)| = |A(u′1)| = 3, and
|A(u1)| = 4. If A(u′′1) ∩ A(u′2) 6= ∅, then put c(u′2) = c(u′′1). Now u′1, u, u1, u2,
u3 have 2, 2, 3, 3, 2 admissible colors, respectively, and so can be colored by
Claim 7. If A(u′′1) ∩ A(u′2) = ∅, then put c(u) = c(u3) (this can be done, since
any pair and triple of colors from {1, 2, 3, 4} have a common color). Now u1 and
u2 can be colored in the last place in this order. Note that |A(u′1)| ≥ 2 and either
c(u) /∈ A(u′′1) or c(u) /∈ A(u′1). In the first case we color vertices u′2, u

′

1, and u′′1
in this order, in the second case the order is u′′1, u

′

1, u
′

2.

Lemma 11 [8]. G has no (3, 3, 3)-vertex.

Proof. Let a (3, 3, 3)-vertex u be incident with paths uu1u2u3, uu′1u
′

2u
′

3, and
uu′′1u

′′

2u
′′

3. Take a 2-distance coloring of G− u and uncolor u1, u2, u
′

1, u
′

2, u
′′

1, and
u′′2. Suppose that c(u′3) = 1, and let the set of admissible colors for z ∈ U =
{u2, u1, u

′′

1, u
′′

2} be A(z). Put c(u) = 1. Now u′1 and u′2 can be colored in the last
place in this order. There is only one case when we cannot extend this coloring
to the remaining vertices: A(u2) = {1, x}, A(u1) = {1, x, y}, A(u′′1) = {1, y, z},
and A(u′′2) = {1, z}.

Indeed, if there is a v ∈ U such that 1 /∈ A(z), then v can be colored in the
last place, so that it suffices to color U − v, which is easy. Therefore, we are done
unless u2 remains with just one admissible color, say x, after coloring u with 1.
Similarly, u′′2 should be forcedly colored, say with y. Now u1 and u′′1 cannot be
colored only if they are left with just one (and the same) color, say z, as desired.

Thus, we see that the color 1 is not suitable for u with this list on U . Now
we have two options.

(A) x = z = 2, y = 3. Put c(u) = 4, then color u′2 and u′1, and finally color
u1, u

′′

1, u2, u
′′

2 in this order.
(B) x = 2, z = 4, y = 3. Put c(u) = 3. We can color u2 and u′′2 in the last

place, since each has just one restriction (from u1 and u′′1, respectively). We first
color u′2 and u′1. Vertices u1 and u′′1 can be colored whatever color on u′1, since
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after coloring u they have different pairs of admissible colors: {1, 2} and {1, 4},
respectively.

In the proof of Lemma 12, we use the following notation for the vertex pairs
defined at the beginning of Section 2.1. Let an (i, j, k)-vertex u and a (k, n, s)-
vertex w be joined by a path uv′1 . . . v

′

kw, where 0 ≤ k ≤ 2, and incident with
paths uu1 . . . ui, uu

′

1 . . . u
′

j , ww1 . . . wn, and ww′

1 . . . w
′

s, where i ≥ j, n ≥ s. By
internal vertices of this configuration we mean all those listed above, except for
ui, u

′

j , wn, and w′

s (see Figure 1).

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉

✉

✉

✉

✉

✉

✉

q q q q q q q q q

u′

j u′

2 u′

1
u v′1 v′k w w′

1 w′

2 w′

s

u1

u2

ui

w1

w2

wn

q
q
q

q
q
q

Figure 1. Notation in Lemma 12.

Lemma 12. G has none of the following pairs of vertices:

(a) (332− 224),

(b) (422− 224),

(c) (331− 134),

(d) (421− 134),

(e) (512− 224),

(f) (420− 045),

(g) (330− 045).

Proof. Let a (i, j, k)-vertex u and a (k, n, s)-vertex w form one of the pairs
(a)–(g). Take a 2-distance coloring of G − w and uncolor the internal vertices.
Put c(u) = c(u3) and apply Claim 8 to u and the 2-vertices of its incident i-
and j-paths. Now the numbers of admissible colors on vertices w, v′1, . . . , v

′

k,
w1, . . . , wn−1, w

′

1, . . . , w
′

s−1 correspond to those on a (2, 3, 4)-vertex and 2-vertices
of its incident paths in Cases (a)–(e), while Cases (f), (g) correspond to a (1, 4, 5)-
vertex and its incident paths. Thus, our (k, n, s)-vertex w in a sense “trans-
forms” into a (k+1, n, s)-vertex. Hence, we can color w, v′1, . . . , v

′

k, w1, . . . , wn−1,
w′

1, . . . , w
′

s−1 due to Lemma 10(b, c).

Finally, we color u1 and u2.
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In the proof of Lemma 13, we use the following notation for the vertex triples
defined at the beginning of Section 2.1. Let an (i, j, k)-vertex u and a (k, l,m)-
vertex v be joined by a path uv′1 . . . v

′

kv, where 0 ≤ k ≤ 2, and incident with
paths uu1 . . . ui, uu

′

1 . . . u
′

j , vv1 . . . vl, and vv′k+1
. . . v′k+m, where i ≥ j, l ≥ m.

Furthermore, let v and an (m,n, s)-vertex w be joined by a path vv′k+1
. . . v′k+mw,

and let w be incident with paths ww1 . . . wn, ww
′

1 . . . w
′

s, where n ≥ s. By internal
vertices of this configuration we mean all those listed above, except for ui, u

′

j , vl,
wn, w

′

s (see Figure 2).

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉

✉

✉

✉

✉

✉

✉

q q q q q q q q q

u′

j u′

2 u′

1
u v′1 v′k+m w w′

1 w′

2 w′

s

u1

u2

ui

w1

w2

wn

q
q
q

q
q
q

✉ ✉ ✉

✉

✉

✉

q q q

v′k v v′k+1

v1

v2
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q
q
q

Figure 2. Notation in Lemma 13.

Lemma 13. G has none of the following triples of vertices:

(a) (550− 041− 133),

(b) (431− 141− 133),

(c) (422− 241− 133),

(d) (550− 050− 055).

Proof. (a)–(c) Let vertices u, v, and w form one of the triples (a)–(c). Take a
2-distance coloring of G−w and uncolor the internal vertices. Put c(w) = c(w3)
and apply Claim 8 to vertex w and the 2-vertices of its 3-paths. Now the numbers
of admissible colors on vertices u, u1, . . . , ui−1, u

′

1, . . . , u
′

j−1, v, v1, . . . , vl−1, and
v′k+1

, . . . , v′k+m correspond to those on the following pairs of vertices: (550−042)
in (a), (431− 142) in (b), and (422− 242) in (c). The first of these pairs can be
colored by Lemma 12(f), the second pair by Lemma 12(d), and the third pair by
Lemma 12(b). Finally, we color w1 and w2 in this order.

(d) Let u, v, and w form a triple (550 − 050 − 055). Put c(u′3) /∈ A(u′4),
c(u3) /∈ A(u4), c(v3) /∈ A(v4), c(w3) /∈ A(w4), and c(w′

3) /∈ A(w′

4). Note that
vertices u′2, u

′

4, u2, u4, v2, v4, w2, w4, w
′

2, and w′

4 can be colored in the last place.
Since |A(u1)| = |A(v1)| = |A(w1)| = 3, we can put c(u1) = c(v1) = c(w1). Now
|A(u′1)| = |A(w′

1)| = 2 and |A(u)| = |A(v)| = |A(w)| = 3, so vertices u′1, w
′

1, u, v,
and w can be colored by Claim 7.
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2.2. Completing the proof of Theorem 4

We use the following rules of discharging:

• R1. Each 2-vertex gets charge 1 from both ends of its incident k-path.

• R2. Each (5, 5, 0)-vertex gets charge 2 from the adjacent 3-vertex.

• R3. Each (5, 4, 0)-vertex gets charge 1 from the adjacent 3-vertex.

• R4. Each (4, 4, 1)-vertex and (5, 3, 1)-vertex gets charge 1 from the other end
vertex of the incident 1-path.

• R5. Each (5, 2, 2)-vertex gets charge 1
2
from the other end vertex of each

incident 2-path.

Note that a 3-vertex gives charge k along each incident k-path by R1, and
Rules R2–R5 are well defined, since no two receivers of charge are adjacent in G
due to Lemmas 12(b, c, g).

We now check that µ∗(v) ≥ 0 for each v ∈ V (G), which contradicts (2) and
completes our proof.

If d(v) = 2, then µ∗(v) = −2 + 2 = 0 by R1.

Let d(v) = 3. Recall that µ(v) = 8. Note that after applying R1 the charge
of each (5, 5, 0)-vertex becomes −2, each of the vertices (5, 4, 0), (5, 3, 1), (4, 4, 1),
and (5, 2, 2) has −1, while the charges of all other vertices are nonnegative due
to Lemmas 10 and 11.

Clearly, all above mentioned vertices have µ∗(v) = 0 after applying R2–R5.
It remains to check that the charges of all other vertices are still nonnegative.

If v is incident with two 0-paths, then µ∗(v) ≥ 8−2×2−4 = 8−2−1−5 = 0
by R1–R3 and Lemma 13(d).

Suppose v is incident with one 0-path and a 1-path. Now v can give charge
at most 2 to an adjacent 3-vertex by R2–R3. If v participates in R2, then µ∗(v) ≥
8 − 2 − 6 = 0 due to Lemma 13(a) and R1, R4. But if v gives charge at most 1
along its 0-path, then the other two incident paths take away from v at most 7,
whence µ∗(v) ≥ 8− 1− 7 = 0.

Let v be incident with a 0-path, a 2-path, and not incident with a 1-path; then
µ∗(v) ≥ 8− 71

2
> 0 by Lemma 12(f) and R1, R2, R3, and R5.

Now suppose that v is incident with two 1-paths, but not incident with a
0-path; then v either twice gives charge 1 by R4 and is incident with a ≤ 4-path,
or it is incident with a 5-path and then participates in R4 at most once due to
Lemma 13(b). This implies that µ∗(v) ≥ 0.

Let v be incident with a 1-path, a 2-path and not incident with a 0-path.
Now v either participates both in R4 and in R5 and is incident with a ≤ 3-path,
or it is incident with a 4-path and participates in at most one of R4 and R5 due
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to Lemma 13(c), or else it is incident with a 5-path and does not participate in
R4, R5 by Lemma 12(d, e). Hence, µ∗(v) ≥ 0.

Suppose that v is incident with two 2-paths and not incident with a 0- or
1-path. Now if v is incident with a 4-path, then it does not participate in R5
due to 12(b), whence µ∗(v) ≥ 8 − 2 − 2 − 4 = 0 by R1. Otherwise, µ∗(v) ≥
8− 2− 2− 3− 2× 1

2
= 0 by R1 and R5.

It remains to assume that v is incident with a 3-path. Now the other two
paths take away from v at most 5 in total. Indeed, v can neither simultaneously
participate in R2 and be incident with a ≥ 4-path, nor participate in R3 or in R2
and be incident with a 5-path due to Lemma 12(g). Similarly, v cannot give 1 by
R4 and be incident with a 4- or 5-path due to Lemma 12(c). Finally, v cannot
participate in R5 and be incident with another ≥ 3-path due to Lemma 12(a).

So, µ∗(v) ≥ 0 for each v ∈ V , which contradicts (2) and completes the proof
of Theorem 4.
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