THE k-RAINBOW DOMATIC NUMBER OF A GRAPH

Seyyed Mahmoud Sheikholeslami
Department of Mathematics
Azarbaijan Univercity of Tarbiat Moallem
Tarbriz, I.R. Iran
e-mail: s.m.sheikholeslami@azaruniv.edu
AND
Lutz Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Abstract

For a positive integer k, a k-rainbow dominating function of a graph G is a function f from the vertex set $V(G)$ to the set of all subsets of the set $\{1,2, \ldots, k\}$ such that for any vertex $v \in V(G)$ with $f(v)=\emptyset$ the condition $\bigcup_{u \in N(v)} f(u)=\{1,2, \ldots, k\}$ is fulfilled, where $N(v)$ is the neighborhood of v. The 1-rainbow domination is the same as the ordinary domination. A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of k-rainbow dominating functions on G with the property that $\sum_{i=1}^{d}\left|f_{i}(v)\right| \leq k$ for each $v \in V(G)$, is called a k-rainbow dominating family (of functions) on G. The maximum number of functions in a k rainbow dominating family on G is the k-rainbow domatic number of G, denoted by $d_{r k}(G)$. Note that $d_{r 1}(G)$ is the classical domatic number $d(G)$. In this paper we initiate the study of the k-rainbow domatic number in graphs and we present some bounds for $d_{r k}(G)$. Many of the known bounds of $d(G)$ are immediate consequences of our results.

Keywords: k-rainbow dominating function, k-rainbow domination number, k-rainbow domatic number.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

In this paper, G is a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ of G is denoted by $n=n(G)$. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V(G) \mid u v \in E(G)\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $d(v)=|N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. The open neighborhood of a set $S \subseteq V$ is the set $N(S)=\bigcup_{v \in S} N(v)$, and the closed neighborhood of S is the set $N[S]=N(S) \cup S$. The complement of a graph G is denoted by \bar{G}. We write K_{n} for the complete graph of order n, C_{n} for a cycle of length n and P_{n} for a path of order n.

A subset S of vertices of G is a dominating set if $N[S]=V$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A domatic partition is a partition of V into dominating sets, and the domatic number $d(G)$ is the largest number of sets in a domatic partition. The domatic number was introduced by Cockayne and Hedetniemi [7]. In their paper, they showed that

$$
\begin{equation*}
\gamma(G) \cdot d(G) \leq n \tag{1}
\end{equation*}
$$

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f from the vertex set $V(G)$ to the set of all subsets of the set $\{1,2, \ldots, k\}$ such that for any vertex $v \in V(G)$ with $f(v)=\emptyset$ the condition $\bigcup_{u \in N(v)} f(u)=\{1,2, \ldots, k\}$ is fulfilled. The weight of a $\operatorname{kRDF} f$ is the value $\omega(f)=\sum_{v \in V}|f(v)|$. The k-rainbow domination number of a graph G, denoted by $\gamma_{r k}(G)$, is the minimum weight of a kRDF of G. A $\gamma_{r k}(G)$-function is a k-rainbow dominating function of G with weight $\gamma_{r k}(G)$. Note that $\gamma_{r 1}(G)$ is the classical domination number $\gamma(G)$. The k-rainbow domination number was introduced by Brešar, Henning, and Rall [2] and has been studied by several authors (see for example $[3,4,5,12]$). Rainbow domination of a graph G coincides with ordinary domination of the Cartesian product of G with the complete graph, in particular, $\gamma_{r k}(G)=\gamma\left(G \square K_{k}\right)$ for any graph G [2]. This implies (cf. [4]) that

$$
\begin{equation*}
\gamma_{r 1}(G) \leq \gamma_{r 2}(G) \leq \cdots \leq \gamma_{r k}(G) \leq n \text { for any graph } G \text { of order } n \tag{2}
\end{equation*}
$$

Furthermore, it was proved in [8] that
$\min \{|V(G)|, \gamma(G)+k-2\} \leq \gamma_{r k}(G) \leq k \gamma(G)$ for any $k \geq 2$ and any graph G.
A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of k-rainbow dominating functions of G with the property that $\sum_{i=1}^{d}\left|f_{i}(v)\right| \leq k$ for each $v \in V(G)$, is called a k-rainbow dominating family (of functions) on G. The maximum number of functions in a k-rainbow dominating family (kRD family) on G is the k-rainbow domatic number of G, denoted by
$d_{r k}(G)$. The k-rainbow domatic number is well-defined and

$$
\begin{equation*}
d_{r k}(G) \geq k, \text { for all graphs } G \tag{3}
\end{equation*}
$$

since the set consisting of the function $f_{i}: V(G) \rightarrow \mathcal{P}(\{1,2, \ldots, k\})$ defined by $f_{i}(v)=\{i\}$ for each $v \in V(G)$ and each $i \in\{1,2, \ldots, k\}$, forms a kRD family on G.

Our purpose in this paper is to initiate the study of the k-rainbow domatic number in graphs. We first study basic properties and bounds for the k-rainbow domatic number of a graph. In addition, we determine the 2 -rainbow domatic number of some classes of graphs.

2. Properties of the k-rainbow Domatic Number

In this section we mainly present basic properties of $d_{r k}(G)$ and bounds on the k-rainbow domatic number of a graph. However, we start with a lower and an upper bound on the k-rainbow domination number.

Observation 1. If G is a graph of order n, then $\gamma_{r k}(G) \leq n-\Delta(G)+k-1$.
Proof. Let v be a vertex of maximum degree $\Delta(G)$. Define $f: V(G) \rightarrow$ $\mathcal{P}(\{1,2, \ldots, k\})$ by $f(v)=\{1,2, \ldots, k\}$ and
$f(x)= \begin{cases}\emptyset & \text { if } x \in N(v), \\ \{1\} & \text { if } x \in V(G)-N[v] .\end{cases}$
It is easy to see that f is a k-rainbow dominating function on G and so $\gamma_{r k}(G) \leq$ $n-\Delta(G)+k-1$.

Let $k \geq 1$ be an integer, and let G be a graph of order $n \geq k$ and maximum degree $\Delta(G)=n-1$. Since $n \geq k$, we observe that $\gamma_{r k}(G) \geq k$. If v is a vertex of maximum degree $\Delta(G)$, then define $f: V(G) \rightarrow \mathcal{P}(\{1,2, \ldots, k\})$ by $f(v)=\{1,2, \ldots, k\}, f(x)=\emptyset$ if $x \in V(G) \backslash\{v\}$. Because of $d(v)=\Delta(G)=n-1$, f is a k-rainbow dominating function on G and thus $\gamma_{r k}(G) \leq k$. It follows that $\gamma_{r k}(G)=k=n-\Delta(G)+k-1$. This example shows that Observation 1 is sharp. The case $k=1$ in Observation 1 is attributed to Berge [1]. In 1979, Walikar, Acharya and Sampathkumar [10] proved $\gamma(G) \geq\lceil n /(\Delta(G)+1)\rceil$ for each graph of order n. Next we will give an analogues lower bound for $\gamma_{r k}(G)$ when $k \geq 2$.

Theorem 2. If G is a graph of order n and maximum degree Δ, then

$$
\gamma_{r 2}(G) \geq\left\lceil\frac{2 n}{\Delta+2}\right\rceil
$$

Proof. Let f be a $\gamma_{r 2}(G)$-function and let $V_{i}=\{v| | f(v) \mid=i\}$ for $i=0,1,2$. Then $\gamma_{r 2}(G)=\left|V_{1}\right|+2\left|V_{2}\right|$ and $n=\left|V_{0}\right|+\left|V_{1}\right|+\left|V_{2}\right|$. Since each vertex of V_{0} is adjacent to at least one vertex of V_{2} or at least two vertices of V_{1}, we deduce that $\left|V_{0}\right| \leq \Delta\left|V_{2}\right|+\frac{1}{2} \Delta\left|V_{1}\right|$.
This implies that

$$
\begin{aligned}
(\Delta+2) \gamma_{r 2}(G) & =2 \gamma_{r 2}(G)+\Delta\left(\left|V_{1}\right|+2\left|V_{2}\right|\right) \geq 2 \gamma_{r 2}(G)+2\left|V_{0}\right| \\
& =2\left|V_{1}\right|+4\left|V_{2}\right|+2\left|V_{0}\right|=2 n+2\left|V_{2}\right| \geq 2 n
\end{aligned}
$$

and this leads to the desired bound.
Using inequality (2) and Theorem 2, we obtain the next result immediately.
Theorem 3. If $k \geq 2$ is an integer, and G is a graph of order n and maximum degree Δ, then

$$
\gamma_{r k}(G) \geq\left\lceil\frac{2 n}{\Delta+2}\right\rceil
$$

Theorem 4. If G is a graph of order n, then $\gamma_{r k}(G) \cdot d_{r k}(G) \leq k n$.
Moreover, if $\gamma_{r k}(G) \cdot d_{r k}(G)=k n$, then for each kRD family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ on G with $d=d_{r k}(G)$, each function f_{i} is a $\gamma_{r k}(G)$-function and $\sum_{i=1}^{d}\left|f_{i}(v)\right|=k$ for all $v \in V$.

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a kRD family on G such that $d=d_{r k}(G)$. Then

$$
\begin{aligned}
d \cdot \gamma_{r k}(G) & =\sum_{i=1}^{d} \gamma_{r k}(G) \leq \sum_{i=1}^{d} \sum_{v \in V}\left|f_{i}(v)\right| \\
& =\sum_{v \in V} \sum_{i=1}^{d}\left|f_{i}(v)\right| \leq \sum_{v \in V} k=k n
\end{aligned}
$$

If $\gamma_{r k}(G) \cdot d_{r k}(G)=k n$, then the two inequalities occurring in the proof become equalities. Hence for the kRD family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ on G and for each $i, \sum_{v \in V}\left|f_{i}(v)\right|=\gamma_{r k}(G)$. Thus each function f_{i} is a $\gamma_{r k}(G)$-function, and $\sum_{i=1}^{d}\left|f_{i}(v)\right|=k$ for all $v \in V$.

The case $k=1$ in Theorem 4 leads to the well-known inequality $\gamma(G) \cdot d(G) \leq n$, given by Cockayne and Hedetniemi [7] in 1977.

Corollary 5. If k is a positive integer, and G is a graph of order $n \geq k$, then

$$
d_{r k}(G) \leq n
$$

Proof. The hypothesis $n \geq k$ leads to $\gamma_{r k}(G) \geq k$. Therefore it follows from Theorem 4 that

$$
d_{r k}(G) \leq \frac{k n}{\gamma_{r k}(G)} \leq \frac{k n}{k}=n
$$

and this is the desired inequality.

Corollary 6. If k is a positive integer, and G is isomorphic to the complete graph K_{n} of order $n \geq k$, then $d_{r k}(G)=n$.

Proof. In view of Corollary 5, we have $d_{r k}(G) \leq n$. If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the vertex set of G, then we define the function $f_{i}: V(G) \rightarrow \mathcal{P}(\{1,2, \ldots, k\})$ by $f_{i}\left(v_{j}\right)=\{1,2, \ldots, k\}$ for $i=j$ and $f_{i}\left(v_{j}\right)=\emptyset$ for $i \neq j$, where $i, j \in\{1,2, \ldots, n\}$. Then $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is a kRD family on G and thus $d_{r k}(G)=n$.

Theorem 7. If G is a graph of order $n \geq k$, then

$$
\gamma_{r k}(G)+d_{r k}(G) \leq n+k .
$$

Proof. Applying Theorem 4, we obtain

$$
\gamma_{r k}(G)+d_{r k}(G) \leq \frac{k n}{d_{r k}(G)}+d_{r k}(G)
$$

Note that $d_{r k}(G) \geq k$, by inequality (3), and that Corollary 5 implies that $d_{r k}(G) \leq n$. Using these inequalities, and the fact that the function $g(x)=$ $x+(k n) / x$ is decreasing for $k \leq x \leq \sqrt{k n}$ and increasing for $\sqrt{k n} \leq x \leq n$, we obtain

$$
\gamma_{r k}(G)+d_{r k}(G) \leq \max \left\{\frac{k n}{k}+k, \frac{k n}{n}+n\right\}=n+k
$$

and this is the desired bound.
If G is isomorphic to the complete graph of order $n \geq k$, then $\gamma_{r k}(G)=k$ and $d_{r k}(G)=n$ by Corollary 6. Thus $\gamma_{r k}\left(K_{n}\right) \cdot d_{r k}\left(K_{n}\right)=n k$ and $\gamma_{r k}\left(K_{n}\right)+d_{r k}\left(K_{n}\right)=$ $n+k$ when $n \geq k$. This example shows that Theorems 4 and 7 are sharp.

Corollary 8 (Cockayne and Hedetniemi, [7], 1977). If G is a graph of order $n \geq 1$, then $\gamma(G)+d(G) \leq n+1$

Theorem 9. For every graph G,

$$
d_{r k}(G) \leq \delta(G)+k
$$

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a kRD family on G such that $d=d_{r k}(G)$, and let v be a vertex of minimum degree $\delta(G)$. Since $\sum_{u \in N[v]}\left|f_{i}(u)\right| \geq 1$ for all $i \in\{1,2, \ldots, d\}$ and $\sum_{u \in N[v]}\left|f_{i}(u)\right|<k$ for at most k indices $i \in\{1,2, \ldots, d\}$, we obtain

$$
\begin{aligned}
k d-k(k-1) & \leq \sum_{i=1}^{d} \sum_{u \in N[v]}\left|f_{i}(u)\right|=\sum_{u \in N[v]} \sum_{i=1}^{d}\left|f_{i}(u)\right| \\
& \leq \sum_{u \in N[v]} k=k(\delta(G)+1),
\end{aligned}
$$

and this leads to the desired bound.

To prove sharpness of Theorem 9 , let $p \geq 2$ be an integer, and let G_{i} be a copy of K_{p+k+1} with vertex set $V\left(G_{i}\right)=\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{p+k+1}^{i}\right\}$ for $1 \leq i \leq p$. Now let G be the graph obtained from $\bigcup_{i=1}^{p} G_{i}$ by adding a new vertex v and joining v to each v_{1}^{i}. Define the k-rainbow dominating functions $f_{1}, f_{2}, \ldots, f_{p+k}$ as follows: for $1 \leq i \leq p$ and $1 \leq s \leq k$
$f_{i}\left(v_{1}^{i}\right)=\{1,2, \ldots, k\}, f_{i}\left(v_{i+1}^{j}\right)=\{1,2, \ldots, k\}$ if $j \in\{1,2, \ldots, p\}-\{i\}$ and $f(x)=\emptyset$ otherwise,
$f_{p+s}(v)=\{1\}, f_{p+s}\left(v_{p+s+1}^{j}\right)=\{1,2, \ldots, k\}$ if $j \in\{1,2, \ldots, p\}$ and $f(x)=\emptyset$ otherwise.
It is straightforward to verify that f_{i} is a k-rainbow dominating function on G for each i and $\left\{f_{1}, f_{2}, \ldots, f_{p+k}\right\}$ is a k-rainbow dominating family on G. Since $\delta(G)=p$, we have $d_{r k}(G)=\delta(G)+k$.

The special case $k=1$ in Theorem 9 was done by Cockayme and Hedetniemi [7]. As an application of Theorem 9, we will prove the following NordhausGaddum type result.

Theorem 10. For every graph G of order n,

$$
d_{r k}(G)+d_{r k}(\bar{G}) \leq n+2 k-1 .
$$

If $d_{r k}(G)+d_{r k}(\bar{G})=n+2 k-1$, then G is regular.
Proof. It follows from Theorem 9 that

$$
\begin{aligned}
d_{r k}(G)+d_{r k}(\bar{G}) & \leq(\delta(G)+k)+(\delta(\bar{G})+k) \\
& =(\delta(G)+k)+(n-\Delta(G)-1+k) \leq n+2 k-1
\end{aligned}
$$

If G is not regular, then $\Delta(G)-\delta(G) \geq 1$, and this inequality chain leads to the better bound $d_{r k}(G)+d_{r k}(\bar{G}) \leq n+2 k-2$, and the proof is complete.

Corollary 11 (Cockayne and Hedetniemi [7] 1977). If G is a graph of order $n \geq 1$, then $d(G)+d(\bar{G}) \leq n+1$.

3. Properties of the 2-Rainbow Domatic Number

Let $A_{1} \cup A_{2} \cup \cdots \cup A_{d}$ be a domatic partition of $V(G)$ into dominating sets such that $d=d(G)$. Then the set of functions $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ with $f_{i}(v)=\{1,2\}$ if $v \in A_{i}$ and $f_{i}(v)=\emptyset$, otherwise for $1 \leq i \leq d$ is a 2RD family on G. This shows that $d(G) \leq d_{r 2}(G)$ for every graph G.

Observation 12. Let G be a graph of order $n \geq 2$. Then $\gamma_{r 2}(G)=n$ and $d_{r 2}(G)=2$ if and only if $\Delta(G) \leq 1$.

Proof. If $\gamma_{r 2}(G)=n$, then, by Theorem $1, \Delta(G) \leq 1$.
Conversely, let $\Delta(G) \leq 1$. If $\Delta(G)=0$, then obviously $\gamma_{r 2}(G)=n$ and $d_{r 2}(G)=2$. Let $\Delta(G)=1$. Then $G=r K_{1} \cup \frac{n-r}{2} K_{2}$ with $n-r \geq 2$ even, and we have

$$
\gamma_{r 2}(G)=r \gamma_{r 2}\left(K_{1}\right)+\frac{n-r}{2} \gamma_{r 2}\left(K_{2}\right)=r+(n-r)=n
$$

By (3) and Theorem 4, we obtain $d_{r 2}(G)=2$. This completes the proof.
Using Theorem 9 and the following proposition, we determine the 2-rainbow domatic number of paths.

Proposition A [3]. For $n \geq 2$,

$$
\gamma_{r 2}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor+1
$$

Proposition 13. For $n \geq 3$,

$$
d_{r 2}\left(P_{n}\right)=\left\{\begin{array}{cc}
2 & \text { if } n=4 \\
3 & \text { otherwise }
\end{array}\right.
$$

Proof. Let $G=P_{n}$. If $n=4$, then Proposition 3 implies $\gamma_{r 2}(G)=3$, and the result follows from Theorem 4 and (3). Assume now that $n \neq 4$. By Theorem 4 and Proposition 3, we have $d_{r 2}(G) \leq 3$. Consider four cases.

Case 1. $n \equiv 3(\bmod 4)$. Define the 2-rainbow dominating functions f_{1}, f_{2}, f_{3} as follows:
$f_{1}\left(v_{4 i+1}\right)=\{1\}, f_{1}\left(v_{4 i+3}\right)=\{2\}$ for $0 \leq i \leq(n-3) / 4$, and $f_{1}(x)=\emptyset$ otherwise, $f_{2}\left(v_{4 i+1}\right)=\{2\}, f_{2}\left(v_{4 i+3}\right)=\{1\}$ for $0 \leq i \leq(n-3) / 4$, and $f_{2}(x)=\emptyset$ otherwise, $f_{3}\left(v_{2 i+2}\right)=\{1,2\}$ for $0 \leq i \leq(n-3) / 2$, and $f_{3}(x)=\emptyset$ otherwise.
It is easy to see that f_{i} is a 2-rainbow dominating function on G for each i and $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a 2 -rainbow dominating family on G.

Case $2 . n \equiv 1(\bmod 4)$. Define the 2 -rainbow dominating functions f_{1}, f_{2}, f_{3} as follows:
$f_{1}\left(v_{n}\right)=\{1\}, f_{1}\left(v_{4 i+1}\right)=\{1\}, f_{1}\left(v_{4 i+3}\right)=\{2\}$ for $0 \leq i \leq(n-1) / 4-1$ and $f_{1}(x)=\emptyset$ otherwise, $f_{2}\left(v_{n}\right)=\{2\}, f_{2}\left(v_{4 i+1}\right)=\{2\}, f_{2}\left(v_{4 i+3}\right)=\{1\}$ for $0 \leq i \leq(n-1) / 4-1$ and $f_{2}(x)=\emptyset$ otherwise,
$f_{3}\left(v_{2 i}\right)=\{1,2\}$ for $1 \leq i \leq(n-1) / 2$, and $f_{3}(x)=\emptyset$ otherwise.
Clearly, f_{i} is a 2-rainbow dominating function on G for each i and $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a 2 -rainbow dominating family on G.

Case $3 . n \equiv 0(\bmod 4)$. Define the 2-rainbow dominating functions f_{1}, f_{2}, f_{3} as follows:
$f_{1}\left(v_{1}\right)=f_{1}\left(v_{4 i+6}\right)=\{1\}, f_{1}\left(v_{3}\right)=f_{1}\left(v_{4}\right)=f_{1}\left(v_{4 i+8}\right)=\{2\}$ for $0 \leq i \leq n / 4-2$, and $f_{1}(x)=\emptyset$ otherwise,
$f_{2}\left(v_{1}\right)=f_{2}\left(v_{4 i+6}\right)=\{2\}, f_{2}\left(v_{3}\right)=f_{2}\left(v_{4}\right)=f_{2}\left(v_{4 i+8}\right)=\{1\}$ for $0 \leq i \leq n / 4-2$, and $f_{2}(x)=\emptyset$ otherwise,
$f_{3}\left(v_{2}\right)=f_{3}\left(v_{2 i+1}\right)=\{1,2\}$ for $2 \leq i \leq n / 2-1$, and $f_{3}(x)=\emptyset$ otherwise.
It is easy to see that f_{i} is a 2-rainbow dominating function on G for each i and $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a 2 -rainbow dominating family on G.

Case $4 . n \equiv 2(\bmod 4)$. Define the 2-rainbow dominating functions f_{1}, f_{2}, f_{3} as follows:
$f_{1}\left(v_{1}\right)=f_{1}\left(v_{n}\right)=f_{1}\left(v_{4 i+6}\right)=\{1\}, f_{1}\left(v_{3}\right)=f_{1}\left(v_{4}\right)=f_{1}\left(v_{4 i+8}\right)=\{2\}$ for $0 \leq i \leq(n-2) / 4-2$, and $f_{1}(x)=\emptyset$ otherwise,
$f_{2}\left(v_{1}\right)=f_{2}\left(v_{n}\right)=f_{2}\left(v_{4 i+6}\right)=\{2\}, f_{2}\left(v_{3}\right)=f_{2}\left(v_{4}\right)=f_{2}\left(v_{4 i+8}\right)=\{1\}$ for $0 \leq i \leq(n-2) / 4-2$, and $f_{2}(x)=\emptyset$ otherwise,
$f_{3}\left(v_{2}\right)=f_{3}\left(v_{2 i+1}\right)=\{1,2\}$ for $2 \leq i \leq n / 2-1$, and $f_{3}(x)=\emptyset$ otherwise.
Clearly f_{i} is a 2 -rainbow dominating function on G for each i and $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a 2-rainbow dominating family on G. This completes the proof.

Using Theorem 4 and the following proposition, we determine the 2-rainbow domatic number of cycles.

Proposition B [3]. For $n \geq 3$,

$$
\gamma_{r 2}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor+\left\lceil\frac{n}{4}\right\rceil-\left\lfloor\frac{n}{4}\right\rfloor .
$$

Proposition 14. If C_{n} is the cycle on $n \geq 4$ vertices, then

$$
d_{r 2}\left(C_{n}\right)=\left\{\begin{array}{cc}
4 & n \equiv 0(\bmod 4) \\
3 & \text { otherwise }
\end{array}\right.
$$

Proof. Let $C_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Consider four cases.
Case 1. $n \equiv 0(\bmod 4)$. Define the 2-rainbow dominating functions f_{1}, f_{2}, f_{3}, f_{4} as follows:
$f_{1}\left(v_{4(i-1)+1}\right)=\{1\}, f_{1}\left(v_{4(i-1)+3}\right)=\{2\}$ for $0 \leq i \leq n / 4-1$, and $f_{1}(x)=\emptyset$ otherwise,
$f_{2}\left(v_{4(i-1)+1}\right)=\{2\}, f_{2}\left(v_{4(i-1)+3}\right)=\{1\}$ for $0 \leq i \leq n / 4-1$, and $f_{2}(x)=\emptyset$ otherwise,
$f_{3}\left(v_{4(i-1)+2}\right)=\{1\}, f_{3}\left(v_{4(i-1)+4}\right)=\{2\}$ for $0 \leq i \leq n / 4-1$, and $f_{3}(x)=\emptyset$ otherwise,
$f_{4}\left(v_{4(i-1)+2}\right)=\{2\}, f_{4}\left(v_{4(i-1)+4}\right)=\{1\}$ for $0 \leq i \leq n / 4-1$, and $f_{4}(x)=\emptyset$ otherwise.
It is easy to see that f_{i} is a 2 -rainbow dominating function on G for each i and $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ is a 2-rainbow dominating family on G. Thus $d_{r 2}\left(C_{n}\right)=4$.

Case $2 . n \equiv 1(\bmod 4)$. Then by Theorem 4 and Proposition $3, d_{r 2}\left(C_{n}\right) \leq 3$. Define the 2 -rainbow dominating functions f_{1}, f_{2}, f_{3} as follows:
$f_{1}\left(v_{4(i-1)+1}\right)=\{1\}, f_{1}\left(v_{4(i-1)+3}\right)=\{2\}$, for $0 \leq i \leq(n-1) / 4-1$,
$f_{1}\left(v_{n}\right)=\{1\}$ and $f_{1}(x)=\emptyset$ otherwise,
$f_{2}\left(v_{4(i-1)+1}\right)=\{2\}, f_{2}\left(v_{4(i-1)+3}\right)=\{1\}$, for $0 \leq i \leq(n-1) / 4-1$,
$f_{2}\left(v_{n}\right)=\{2\}$ and $f_{2}(x)=\emptyset$ otherwise,
$f_{3}\left(v_{4(i-1)+2}\right)=f_{3}\left(v_{4(i-1)+4}\right)=\{1,2\}$ for $0 \leq i \leq(n-1) / 4-1$, and $f_{3}(x)=0$ otherwise.
Clearly, f_{i} is a 2-rainbow dominating function on G for each i and $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a 2-rainbow dominating family on G. Thus $d_{r 2}\left(C_{n}\right)=3$.

Case $3 . n \equiv 3(\bmod 4)$. Then by Theorem 4 and Proposition $3, d_{r 2}\left(C_{n}\right) \leq 3$. Define the 2 -rainbow dominating functions f_{1}, f_{2}, f_{3} as follows:
$f_{1}\left(v_{4(i-1)+1}\right)=\{1\}, f_{1}\left(v_{4(i-1)+3}\right)=\{2\}$, for $0 \leq i \leq(n+1) / 4-1$, and $f_{1}(x)=\emptyset$ otherwise,
$f_{2}\left(v_{4(i-1)+1}\right)=\{2\}, f_{2}\left(v_{4(i-1)+3}\right)=\{1\}$, for $0 \leq i \leq(n+1) / 4-1$, and $f_{2}(x)=\emptyset$ otherwise,
$f_{3}\left(v_{4(i-1)+2}\right)=f_{3}\left(v_{4(i-1)+4}\right)=\{1,2\}$ for $0 \leq i \leq(n-3) / 4-1$,
$f_{3}\left(v_{n-1}\right)=1$ and $f_{3}(x)=0$ otherwise.
Clearly, f_{i} is a 2-rainbow dominating function on G for each i and $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a 2-rainbow dominating family on G. Thus $d_{r 2}\left(C_{n}\right)=3$.

Case 4. $n \equiv 2(\bmod 4)$. Then by Theorem 4 and Proposition $3, d_{r 2}\left(C_{n}\right) \leq 3$. Define the 2 -rainbow dominating functions f_{1}, f_{2}, f_{3} as follows:
$f_{1}\left(v_{1}\right)=f_{1}\left(v_{2}\right)=f_{1}\left(v_{4 i+3}\right)=\{1\}, f_{1}\left(v_{4}\right)=f_{1}\left(v_{5}\right)=f_{1}\left(v_{4 i+5}\right)=\{2\}$ for $1 \leq i \leq \frac{n-6}{4}$ and $f_{1}(x)=\emptyset$ otherwise,
$f_{2}\left(v_{1}\right)=f_{2}\left(v_{2}\right)=f_{2}\left(v_{4 i+3}\right)=\{2\}, f_{2}\left(v_{4}\right)=f_{2}\left(v_{5}\right)=f_{2}\left(v_{4 i+5}\right)=\{1\}$ for $1 \leq i \leq \frac{n-6}{4}$ and $f_{2}(x)=\emptyset$ otherwise,
$f_{3}\left(v_{3}\right)=f_{3}\left(v_{4 i+2}\right)=\{1,2\}$ for $1 \leq i \leq \frac{n-2}{4}$ and $f_{3}(x)=\emptyset$ otherwise.
Clearly, f_{i} is a 2-rainbow dominating function on G for each i and $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a 2-rainbow dominating family on G. Thus $d_{r 2}\left(C_{n}\right)=3$.

Theorem 2 and its proof lead immediately to the next result.

Corollary 15. Let G be a graph of order n and maximum degree Δ. Then

$$
\gamma_{r 2}(G) \geq\left\{\begin{array}{lc}
\left\lceil\frac{2 n+2}{\Delta+2}\right\rceil & \text { if there is a } \gamma_{r 2}(G) \text { - function } f \text { with } V_{2} \neq \emptyset, \\
\left\lceil\frac{2 n}{\Delta+2}\right\rceil & \text { otherwise. }
\end{array}\right.
$$

Using Corollary 15, we will improve the upper bound on $d_{r 2}(G)$ given in Theorem 9 for some regular graphs.

Theorem 16. If G is a δ-regular graph of order n with $\delta \geq 1$ and a $\gamma_{r 2}(G)$ function f such that $V_{2} \neq \emptyset$ or $2 n \not \equiv 0(\bmod (\delta+2))$, then

$$
d_{r 2}(G) \leq \delta+1 .
$$

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a 2RD family on G such that $d=d_{r 2}(G)$. It follows that

$$
\begin{equation*}
\sum_{i=1}^{d} \omega\left(f_{i}\right)=\sum_{i=1}^{d} \sum_{v \in V}\left|f_{i}(v)\right|=\sum_{v \in V} \sum_{i=1}^{d}\left|f_{i}(v)\right| \leq \sum_{v \in V} 2=2 n . \tag{4}
\end{equation*}
$$

Suppose to the contrary that $d \geq \delta+2$. If $V_{2} \neq \emptyset$, then Corollary 15 leads to

$$
\sum_{i=1}^{d} \omega\left(f_{i}\right) \geq \sum_{i=1}^{d} \gamma_{r 2}(G) \geq d\left\lceil\frac{2 n+2}{\delta+2}\right\rceil \geq(\delta+2)\left(\frac{2 n+2}{\delta+2}\right)>2 n
$$

a contradiction to the inequality (4). If $2 n \not \equiv 0(\bmod (\delta+2))$, then it follows from Corollary 15 that

$$
\sum_{i=1}^{d} \omega\left(f_{i}\right) \geq \sum_{i=1}^{d} \gamma_{r 2}(G) \geq d\left\lceil\frac{2 n}{\delta+2}\right\rceil>(\delta+2)\left(\frac{2 n}{\delta+2}\right)=2 n
$$

a contradiction to (4) again. Therefore $d \leq \delta+1$ and the proof is complete.
By Theorem 14, $d_{r 2}\left(C_{4}\right)=4$ and therefore $d_{r 2}\left(C_{4}\right)=\delta\left(C_{4}\right)+2$. This 2-regular graph demonstrates that the bound in Theorem 16 is not valid in general in the case that $2 n \equiv 0(\bmod (\delta+2))$.

Using Theorems 9, 10 and 16, we will improve the upper bound given in Theorem 10 in the case that $k=2$.

Theorem 17. If G is a graph of order n, then

$$
d_{r 2}(G)+d_{r 2}(\bar{G}) \leq n+2 .
$$

Proof. If G is not regular, then Theorem 10 implies the desired result. Now let G be δ-regular.

Assume that G has a $\gamma_{r 2}(G)$-function f such that $V_{2} \neq \emptyset$ or $V_{2}=\emptyset$ and $2\left|V_{0}\right|<\delta\left|V_{1}\right|$. Then we deduce from Theorem 16 that $d_{r 2}(G) \leq \delta+1$. Using Theorem 9, we obtain the desired result as follows

$$
\begin{aligned}
d_{r 2}(G)+d_{r 2}(\bar{G}) & \leq(\delta(G)+1)+(\delta(\bar{G})+2) \\
& =(\delta(G)+1)+(n-\delta(G)-1+2)=n+2 .
\end{aligned}
$$

It remains the case that G has a $\gamma_{r 2}(G)$-function f such $V_{2}=\emptyset$ and $2\left|V_{0}\right|=\delta\left|V_{1}\right|$. Note that $n=\left|V_{0}\right|+\left|V_{1}\right|$ and $\left|V_{1}\right| \geq 2$. Since $\delta(G)+\delta(\bar{G})=n-1$, it follows that $\delta(G) \geq(n-1) / 2$ or $\delta(\bar{G}) \geq(n-1) / 2$. We assume, without loss of generality, that $\delta(G) \geq(n-1) / 2$.

If $\left|V_{1}\right| \geq 4$, then $2\left|V_{0}\right|=\delta\left|V_{1}\right| \geq 4 \delta$ and thus $\left|V_{0}\right| \geq 2 \delta$. This leads to the contradiction

$$
n=\left|V_{0}\right|+\left|V_{1}\right| \geq 2 \delta+4 \geq n-1+4=n+3 .
$$

In the case $\left|V_{1}\right|=3$, we define $V_{1}^{\prime}=\{v \mid f(v)=\{1\}\}$ and $V_{1}^{\prime \prime}=\{v \mid f(v)=$ $\{2\}\}$. We assume, without loss of generality, that $\left|V_{1}^{\prime}\right|=1<2=\left|V_{1}^{\prime \prime}\right|$. Since each vertex of V_{0} is adjacent to at least one vertex of V_{1}^{\prime}, we deduce that $\left|V_{0}\right| \leq \delta<2 \delta$. This implies that

$$
2\left|V_{0}\right|=\left|V_{0}\right|+\left|V_{0}\right|<\delta+2 \delta=\delta\left|V_{1}^{\prime}\right|+\delta\left|V_{1}^{\prime \prime}\right|=\delta\left|V_{1}\right|,
$$

a contradiction to the assumption $2\left|V_{0}\right|=\delta\left|V_{1}\right|$.
If $\left|V_{1}\right|=2$, then $\left|V_{0}\right|=\delta$ and so $n=\delta+2$. Hence $\delta(\bar{G})=n-\delta-1=1$ and so $d_{r 2}(\bar{G})=2$. Now Theorem 9 implies that
$d_{r 2}(G)+d_{r 2}(\bar{G}) \leq(\delta(G)+2)+2=n+2$,
the desired bound. Since we have discussed all possible cases, the proof is complete.

If G is isomorphic to the complete graph K_{n} with $n \geq 2$, then Corollarry 6 implies $d_{r 2}(G)=n$. Since $d_{r 2}(\bar{G})=2$, we obtain $d_{r 2}(G)+\bar{d}_{r 2}(\bar{G})=n+2$. This example demonstrates that Theorem 17 is sharp.

We conclude this paper with a conjecture.
Conjecture 18. For every integer $k \geq 2$ and every graph G of order n,

$$
d_{r k}(G)+d_{r k}(\bar{G}) \leq n+2 k-2 .
$$

Note that Theorem 17 shows that this conjecture is valid for $k=2$. In addition, the complete graph K_{n} demonstrates that Conjecture 1 does not hold for $k=1$.

References

[1] C. Berge, Theory of Graphs and its Applications (Methuen,London, 1962).
[2] B. Brešar, M.A. Henning and D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008) 213-225.
[3] B. Brešar and T.K. Šumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math. 155 (2007) 2394-2400.
[4] G.J. Chang, J. Wu and X. Zhu, Rainbow domination on trees, Discrete Appl. Math. 158 (2010) 8-12.
[5] T. Chunling, L. Xiaohui, Y. Yuansheng and L. Meiqin, 2-rainbow domination of generalized Petersen graphs P(n,2), Discrete Appl. Math 157 (2009) 1932-1937.
[6] E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005) 19-32.
[7] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247-261.
[8] B. Hartnell and D.F. Rall, On dominating the Cartesian product of a graph and K_{2}, Discuss. Math. Graph Theory 24 (2004) 389-402.
[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[10] H.B. Walikar, B.D. Acharya and E. Sampathkumar, Recent Developments in the Theory of Domination in Graphs (in: MRI Lecture Notes in Math., Mahta Research Instit., Allahabad, 1979).
[11] D. B. West, Introduction to Graph Theory (Prentice-Hall, Inc, 2000).
[12] G. Xu, 2-rainbow domination of generalized Petersen graphs $P(n, 3)$, Discrete Appl. Math. 157 (2009) 2570-2573.

