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Abstract

For a positive integer k, a k-rainbow dominating function of a graph G
is a function f from the vertex set V(G) to the set of all subsets of the set
{1,2,...,k} such that for any vertex v € V(G) with f(v) = ) the condition
Uuen( f(w) ={1,2,...,k} is fulfilled, where N(v) is the neighborhood of
v. The 1-rainbow domination is the same as the ordinary domination. A set
{f1, f2y--, fa} of k-rainbow dominating functions on G with the property
that 2?21 |fi(v)] < k for each v € V(G), is called a k-rainbow dominating
family (of functions) on G. The maximum number of functions in a k-
rainbow dominating family on G is the k-rainbow domatic number of G,
denoted by d,(G). Note that d1(G) is the classical domatic number d(G).
In this paper we initiate the study of the k-rainbow domatic number in
graphs and we present some bounds for d,;(G). Many of the known bounds
of d(G) are immediate consequences of our results.
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1. INTRODUCTION

In this paper, G is a simple graph with vertex set V' = V(G) and edge set
E = E(G). The order |V| of G is denoted by n = n(G). For every vertex
v € V, the open neighborhood N (v) is the set {u € V(G) | uv € E(G)} and the
closed neighborhood of v is the set N[v] = N(v) U {v}. The degree of a vertex
v € Visdw) = |N(v)|. The minimum and mazimum degree of a graph G are
denoted by 0 = §(G) and A = A(G), respectively. The open neighborhood of a
set S C V is the set N(S) = [, cq N(v), and the closed neighborhood of S is the
set N[S] = N(S)US. The complement of a graph G is denoted by G. We write
K, for the complete graph of order n, C,, for a cycle of length n and P, for a
path of order n.

A subset S of vertices of G is a dominating set if N[S] = V. The domination
number v(G) is the minimum cardinality of a dominating set of G. A domatic
partition is a partition of V' into dominating sets, and the domatic number d(G)
is the largest number of sets in a domatic partition. The domatic number was
introduced by Cockayne and Hedetniemi [7]. In their paper, they showed that

(1) (@) - d(G) < n.

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph
G is a function f from the vertex set V(G) to the set of all subsets of the set
{1,2,...,k} such that for any vertex v € V(G) with f(v) = 0 the condition
UueN(v) f(u) = {1,2,...,k} is fulfilled. The weight of a kRDF f is the value
w(f) =2 pev [f()]. The k-rainbow domination number of a graph G, denoted by
Yk (G), is the minimum weight of a kKRDF of G. A 7,1 (G)-function is a k-rainbow
dominating function of G' with weight 7,;(G). Note that 7,1(G) is the classical
domination number v(G). The k-rainbow domination number was introduced by
Bresar, Henning, and Rall [2] and has been studied by several authors (see for
example [3, 4, 5, 12]). Rainbow domination of a graph G coincides with ordinary
domination of the Cartesian product of G with the complete graph, in particular,
Yi(G) = 7(GOK}) for any graph G [2]. This implies (cf. [4]) that

(2) Y1(G) < y2(G) < -+ - < %i(G) < n for any graph G of order n.
Furthermore, it was proved in [8] that
min{|V(G)|,7(G) + k — 2} < v4(G) < kvy(G) for any k > 2 and any graph G.

A set {f1, fo,..., fa} of k-rainbow dominating functions of G with the property
that Zle |fi(v)| < k for each v € V(G), is called a k-rainbow dominating family
(of functions) on G. The maximum number of functions in a k-rainbow dominat-
ing family (kRD family) on G is the k-rainbow domatic number of G, denoted by
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dy(G). The k-rainbow domatic number is well-defined and
(3) d.,(G) > k, for all graphs G

since the set consisting of the function f; : V(G) — P({1,2,...,k}) defined by
fi(v) = {i} for each v € V(G) and each i € {1,2,...,k}, forms a kRD family on
G.

Our purpose in this paper is to initiate the study of the k-rainbow domatic
number in graphs. We first study basic properties and bounds for the k-rainbow
domatic number of a graph. In addition, we determine the 2-rainbow domatic
number of some classes of graphs.

2. PROPERTIES OF THE k-RAINBOW DOMATIC NUMBER

In this section we mainly present basic properties of d,;(G) and bounds on the
k-rainbow domatic number of a graph. However, we start with a lower and an
upper bound on the k-rainbow domination number.

Observation 1. If G is a graph of order n, then v,1(G) <n — A(G) + k — 1.

Proof. Let v be a vertex of maximum degree A(G). Define f : V(G) —
P({1,2,...,k}) by f(v) ={1,2,...,k} and

_J 0 if x € N(v),
T@ =111} iteev(@) - Nl
It is easy to see that f is a k-rainbow dominating function on G and so v, (G) <
n—AG)+k—1. |

Let £ > 1 be an integer, and let G be a graph of order n > k and maximum
degree A(G) = n — 1. Since n > k, we observe that v.,(G) > k. If v is
a vertex of maximum degree A(G), then define f : V(G) — P({1,2,...,k}) by
fw)=11,2,...,k}, f(z) =0if 2 € V(G)\{v}. Because of d(v) = A(G) =n—1,
f is a k-rainbow dominating function on G and thus v,,(G) < k. Tt follows that
Yik(G) =k =n—A(G)+k—1. This example shows that Observation 1 is sharp.
The case k = 1 in Observation 1 is attributed to Berge [1]. In 1979, Walikar,
Acharya and Sampathkumar [10] proved v(G) > [n/(A(G) + 1)] for each graph
of order n. Next we will give an analogues lower bound for 7,;(G) when k > 2.

Theorem 2. If G is a graph of order n and maximum degree A, then

(@)= | 305
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Proof. Let f be a 7,2(G)-function and let V; = {v | |f(v)| = i} for ¢ = 0,1, 2.
Then v,2(G) = |Vi| + 2|Va| and n = V| + V1| + [V2|. Since each vertex of Vj
is adjacent to at least one vertex of Vs or at least two vertices of Vi, we deduce
that [Vo| < A|Va| + $A[VA].

This implies that

(A +2)72(G) = 272(G) + A(|Vi] + 2|Va]) = 272(G) + 2|V
= 2|Vi| + 4| Va| + 2|Vo| = 2n + 2[V2| > 2n,

and this leads to the desired bound. [ |

Using inequality (2) and Theorem 2, we obtain the next result immediately.

Theorem 3. If k > 2 is an integer, and G is a graph of order n and mazximum

degree A, then
2n
> .

Theorem 4. If G is a graph of order n, then v, (G) - dyk(G) < kn.

Moreover, if v1(G) - dvi,(G) = kn, then for each KRD family {f1, fo,..., fa} on
G with d = d,,(G), each function f; is a v, (G)-function and Z?Zl |fitv)] =k
forallveV.

Proof. Let {fi, fa,..., fa} be a kRD family on G such that d = d,(G). Then

d-9(G) = XL k(G < S0 S v 1 £i(0)]

= Yoev Lot [fi(0)] < X ey k= k.
If v4(G) - dyk(G) = kn, then the two inequalities occurring in the proof be-
come equalities. Hence for the kRD family {fi, fa,..., f¢} on G and for each
i, > opev |fi(v)] = %r(G). Thus each function f; is a 7,,(G)-function, and

S| fi(v)| =k for all v e V. =

The case k = 1 in Theorem 4 leads to the well-known inequality v(G) - d(G) < n,
given by Cockayne and Hedetniemi [7] in 1977.

Corollary 5. If k is a positive integer, and G is a graph of order n >k, then

dyx(G) < n.

Proof. The hypothesis n > k leads to v,.x(G) > k. Therefore it follows from
Theorem 4 that ©

kn kn
and this is the desired inequality. ]

drk(G) < < =n,
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Corollary 6. If k is a positive integer, and G is isomorphic to the complete
graph K, of order n >k, then d.,(G) = n.

Proof. In view of Corollary 5, we have d.,(G) < n. If {v1,v9,...,v,} is the
vertex set of G, then we define the function f; : V(G) — P({1,2,...,k}) by
filv;) ={1,2,...,k} for i = j and fi(v;) = 0 for i # j, where 4,5 € {1,2,...,n}.
Then {f1, f2,..., fn} is a kRD family on G and thus d,;(G) = n. n

Theorem 7. If G is a graph of order n > k, then
Yk (G) + dri(G) < n + k.

Proof. Applying Theorem 4, we obtain

kn
k(G) + dop(G) € —— +di(G).
Vrk(G) + vk (G) I +di(G)
Note that d,x(G) > k, by inequality (3), and that Corollary 5 implies that
dy;(G) < n. Using these inequalities, and the fact that the function g(z) =
x + (kn)/x is decreasing for k < x < Vkn and increasing for Vkn < x < n, we

obtain
kn

k
(G + A (@) < max{,j br +n} ——

and this is the desired bound. ]

If G is isomorphic to the complete graph of order n > k, then ~,,(G) = k and
d,(G) = n by Corollary 6. Thus v, (K,)-d.k(K,) = nk and v, (K, )+di (Ky) =
n + k when n > k. This example shows that Theorems 4 and 7 are sharp.

Corollary 8 (Cockayne and Hedetniemi, [7], 1977). If G is a graph of order
n > 1, then y(G) +d(G) <n+1

Theorem 9. For every graph G,
dyx(G) <6(G) + k.

Proof. Let {fi, fo,..., fa} be a kRD family on G such that d = d,;(G), and
let v be a vertex of minimum degree 6(G). Since >_, . npy [ fi(w)| = 1 for all
i€{1,2,...,d} and ZuEN[v] |fi(u)] < k for at most k indices i € {1,2,...,d},
we obtain
kd — k(k = 1) < 300 Y uenp [FW] = Yuenp i 1fi(w)]
< ZUEN[U] k= k‘((;(G) + 1)7
and this leads to the desired bound. [
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To prove sharpness of Theorem 9, let p > 2 be an integer, and let G; be a copy
of Kpipi1 with vertex set V(G;) = {vi, v, ... ,U;Jrk“} for 1 <i < p. Now let
G be the graph obtained from | J!_; G; by adding a new vertex v and joining v
to each v!. Define the k-rainbow dominating functions fi, fa, ..., fp+x as follows:
forlgigpandlgsgk

fio) ={1,2,.. .k}, filvl,) ={1,2,... .k} if je{1,2,...,p} —{i} and
f(z) =0 otherwise,

fors(@) = {1}, fors(v)iir) ={1,2,...,k} if j € {1,2,...,p} and

f(z) =0 otherwise.

It is straightforward to verify that f; is a k-rainbow dominating function on G
for each i and {f1, f2,..., fp+x} is a k-rainbow dominating family on G. Since
4(G) = p, we have d.1(G) = 6(G) + k.

The special case k = 1 in Theorem 9 was done by Cockayme and Hedetniemi
[7]. As an application of Theorem 9, we will prove the following Nordhaus-
Gaddum type result.

Theorem 10. For every graph G of order n,

drk(G) + drk(G) <n+2k-1.

If di(G) + dvi(G) = n+ 2k — 1, then G is regular.

Proof. It follows from Theorem 9 that

dr1,(G) + dpi(G) < (6(G) + k) + (6(G) + k)
=0(G)+k)+(n—AG)—1+k)<n+2k-1
If G is not regular, then A(G) — ¢§(G) > 1, and this inequality chain leads to the

better bound d,;(G) + d,x(G) < n+ 2k — 2, and the proof is complete. ]

Corollary 11 (Cockayne and Hedetniemi [7] 1977). If G is a graph of order

n>1, then d(G) +d(G) <n+1.

3. PROPERTIES OF THE 2-RAINBOW DOMATIC NUMBER

Let AfUAyU---U A, be a domatic partition of V(G) into dominating sets such
that d = d(G). Then the set of functions {f1, fa,..., fa} with fi(v) = {1,2} if
v € A; and fi(v) = 0, otherwise for 1 <14 < d is a 2RD family on G. This shows
that d(G) < dy2(G) for every graph G.

Observation 12. Let G be a graph of order n > 2. Then v2(G) = n and
dr2(G) =2 if and only if A(G) < 1.
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Proof. If ~,2(G) = n, then, by Theorem 1, A(G) < 1.

Conversely, let A(G) < 1. If A(G) = 0, then obviously v2(G) = n and
dr2(G) = 2. Let A(G) = 1. Then G = rK1 U 5" K3 with n —r > 2 even, and we
have

Yr2(G) = rypa(Ky) + ot

By (3) and Theorem 4, we obtain d,2(G) = 2. This completes the proof. |

Yro(Ka) =71+ (n—71) =n.

Using Theorem 9 and the following proposition, we determine the 2-rainbow
domatic number of paths.

Proposition A [3]. Forn > 2,

n

Yr2(Pn) = LgJ +1

Proposition 13. Forn > 3,

2 ifn=4,
3 otherwise.

dro(Ppn) = {

Proof. Let G = P,. If n = 4, then Proposition 3 implies v,2(G) = 3, and the
result follows from Theorem 4 and (3). Assume now that n # 4. By Theorem 4
and Proposition 3, we have d,2(G) < 3. Consider four cases.

Case 1. n =3 (mod 4). Define the 2-rainbow dominating functions f1, fa, f3
as follows:
Ji(vaipa) = {1}, fi(vaigs) = {2} for 0 <i < (n—3)/4, and
fi(z) =0 otherwise,
Jo(vaiv1) = {2}, fo(vaiys) = {1} for 0 <i < (n—3)/4, and
fa(z) =0 otherwise,
f3(veiz2) = {1,2} for 0<i<(n—23)/2, and f3(x) =0 otherwise.
It is easy to see that f; is a 2-rainbow dominating function on G for each i and

{f1, f2, f3} is a 2-rainbow dominating family on G.

Case 2. n =1 (mod 4). Define the 2-rainbow dominating functions f1, fo, f3
as follows:
fi(on) = {1}, fi(vair1) = {1}, fi(vaips) = {2} for 0<i<(n—1)/4—1and
fi(z) =0 otherwise,
fa(vn) = {2}, fa(vair1) = {2}, fo(vairs) = {1} for 0<i<(n—1)/4—1and
fa(z) =0 otherwise,
f3(ve;) ={1,2} for 1 <i<(n—1)/2, and f3(x) = () otherwise.
Clearly, f; is a 2-rainbow dominating function on G for each i and {f1, fo, f3} is
a 2-rainbow dominating family on G.
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Case 3. n =0 (mod 4). Define the 2-rainbow dominating functions f1, f2, f3
as follows:

fi(v1) = fi(vaive) = {1}, f1(vs) = fi(va) = fi(vairs) = {2} for 0 <i <n/d -2,
and f1(x) = () otherwise,

fo(v1) = fo(vaive) = {2}, fa(vs) = fa(va) = fo(vairs) = {1} for 0 <i<n/4-2,
and fa(z) = () otherwise,

f3(ve) = f3(veir1) = {1,2} for 2<i<n/2—1, and f3(x) = 0 otherwise.

It is easy to see that f; is a 2-rainbow dominating function on G for each 7 and
{f1, f2, f3} is a 2-rainbow dominating family on G.

Case 4. n =2 (mod 4). Define the 2-rainbow dominating functions f1, fo, f3
as follows:

fi(v1) = fi(vn) = fi(vaire) = {1}, fi(vs) = fi(ve) = fi(vaiys) = {2} for
0<i<(n—2)/4—2andfi(z) =0 otherwise,
)=

fo(v1) = fa(vn) = fa(vaire) = {2}, fo(v3) = fo(va) = fa(vaiys) = {1} for
0<i<(n—2)/4—2, andfy(z) = 0 otherwise,

fa(v2) = fa(veit1) = {1,2} for 2<i<n/2—1, and f3(x) = 0 otherwise.

Clearly f; is a 2-rainbow dominating function on G for each ¢ and {f1, fo, f3} is
a 2-rainbow dominating family on G. This completes the proof. [

Using Theorem 4 and the following proposition, we determine the 2-rainbow
domatic number of cycles.

Proposition B [3]. Forn >3,

(@ = 5]+ 5] - [3)

Proposition 14. If C), is the cycle on n > 4 vertices, then

[ 4 n=0(mod4),
dra(Cn) = { 3 otherwise.
Proof. Let C,, = (v1,v2,...,v,). Consider four cases.

Case 1. n =0 (mod 4). Define the 2-rainbow dominating functions fi, f, f3,
f1 as follows:

f1 Vy(i—1 +1) = {1}, fi(vai—1)43) = {2} for 0 <i<n/4-1, and
x) = () otherwise,

(
Sl
fo(va—1y+1) = {2} fa(vgr)gs) = {1} for 0<i<n/4-1, and
f2(z) = 0 otherwise,

Js(

Js(

3(vai—1)12) = {1}, fa(vag—1)1a) = {2} for 0 <i<n/4-1, and
x) = () otherwise,
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fa(vagi—1)42) = {2}, fa(vai—1y4a) = {1} for 0<i<n/4—1, and
fa(x) =0 otherwise.

It is easy to see that f; is a 2-rainbow dominating function on G for each i and
{f1, f2, f3, fa} is a 2-rainbow dominating family on G. Thus d,o(C,,) = 4.

Case 2. n =1 (mod 4). Then by Theorem 4 and Proposition 3, d,2(C,,) < 3.
Define the 2-rainbow dominating functions f1, fo, f3 as follows:

fi(vag—1y11) = {1} fivag-1)3) = {2}, for 0<i<(n—-1)/4-1,
fi(vp) = {1} and fi(z) =0 otherwise,

(
fa(vai—1y+1) = {2}, fa(vagi-1)43) = {1}, for 0<i<(n-—-1)/4-1,
fa(vn) = {2} andfa(z) =0 0therw1se

f3(v

Vgii-1)+2) = f3(Va@i—1)44) = {1,2} for 0<i<(n—1)/4—1, and
fa(x) = O otherwise.
Clearly, f; is a 2-rainbow dominating function on G for each i and {f1, fo, f3} is
a 2-rainbow dominating family on G. Thus d,2(C,) = 3.

Case 3. n = 3 (mod 4). Then by Theorem 4 and Proposition 3, d,2(C,,) < 3.
Define the 2-rainbow dominating functions f1, fo, f3 as follows:

fi(vag—1)11) = {1} fi(vag-1)3) = {2}, for 0<i<(n+1)/4—1, and

fi(z) =0 otherwise,

f2(U4(z 1 +1) = {2}, fo(vai—1)43) = {1}, for 0<i<(n+1)/4—1, and
fa(x) =0 otherwise,

f3(vagi—1 +2) f3(vai—1y4a) = {1,2} for 0<i < (n—3)/4—1,

fa(vp—1) =1 and f3(xr) =0 otherwise.

Clearly, f; is a 2-rainbow dominating function on G for each i and {fi, fo, f3} is
a 2-rainbow dominating family on G. Thus d,2(C),) = 3.

Case 4. n =2 (mod 4). Then by Theorem 4 and Proposition 3, d,2(C,,) < 3.
Define the 2-rainbow dominating functions f1, fo, f3 as follows:

fi(v) = f1(’U2) fi(vaivs) = {1}, fi(va) = f1(vs) = f1(vairs) = {2} for

1<i<25and f(z) =0 otherwise,

fa(v1) = fz(vz) f2(vais) = {2}, fa(va) = fa(vs) = fa(vaiys) = {1} for

1<i<™Cand fo(z) =0 otherwise,
fa(vs) = f3(v4i+2) ={1,2} for 1 <i<2:2 and f3(z) = 0 otherwise.

Clearly, f; is a 2-rainbow dominating function on G for each i and {f1, fo, f3} is
a 2-rainbow dominating family on G. Thus d,2(C),) = 3. [ ]

Theorem 2 and its proof lead immediately to the next result.
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Corollary 15. Let G be a graph of order n and mazximum degree A. Then

. [QA”;’_‘QQ if there is a v,2(G)- function f with V5 # 0,
Yr2(G) = [A%Lﬂ otherwise.

Using Corollary 15, we will improve the upper bound on d,(G) given in Theorem
9 for some regular graphs.

Theorem 16. If G is a d-reqular graph of order n with 6 > 1 and a v,2(G)-
function f such that Vo # 0 or 2n # 0 (mod (§ + 2)), then

Proof. Let {fi, fa,..., fa} be a 2RD family on G such that d = d,2(G). It
follows that

d d
(4) Yowlfi) =3 Ifilv) ZZ o< 2=2n
=1 =1 veV cV i=1 vEV
Suppose to the contrary that d > 6 + 2. If V5 # (), then Corollary 15 leads to

>owlf) = gm(G) >d [2;"‘:22} > (5+2) (2:;2) > 2n,

i=1

a contradiction to the inequality (4). If 2n # 0 (mod (6 + 2)), then it follows
from Corollary 15 that

d 2 2
;w ) >Z%2 { fJ > (5+2) (5f2) = 2n,

a contradiction to (4) again. Therefore d < § + 1 and the proof is complete. =

By Theorem 14, d,o(C4) = 4 and therefore d,o(Cy) = 6(Cy) + 2. This 2-regular
graph demonstrates that the bound in Theorem 16 is not valid in general in the
case that 2n =0 (mod (§ + 2)).

Using Theorems 9, 10 and 16, we will improve the upper bound given in
Theorem 10 in the case that k = 2.

Theorem 17. If G is a graph of order n, then

dTQ(G) + drg(a) <n+2.



THE k-RAINBOW DOMATIC NUMBER OF A GRAPH 139

Proof. If G is not regular, then Theorem 10 implies the desired result. Now let
G be §-regular.

Assume that G has a ~,2(G)-function f such that Vo # () or Vo = () and
2|Vo| < d|Vi|. Then we deduce from Theorem 16 that d.o(G) < § + 1. Using
Theorem 9, we obtain the desired result as follows

dr2(G) + dr2(G) < (6(G) +1) + (0(G) + 2)
=0(G)+1)+(n—=906G)—1+2)=n+2.
It remains the case that G has a 7,2(G)-function f such Vo = ) and 2|Vp| = §|V4].

Note that n = V| 4+ |V1| and |Vi| > 2. Since 6(G) +6(G) = n — 1, it follows that
§(G) > (n—1)/2 or §(G) > (n —1)/2. We assume, without loss of generality,
that 6(G) > (n—1)/2.

If |Vi| > 4, then 2|Vy| = V1| > 46 and thus |Vp| > 2§. This leads to the
contradiction

n=|VW+V>20+4>n—-1+4=n+3.

In the case V1| = 3, we define V{ = {v | f(v) = {1}} and V{" = {v | f(v) =
{2}}. We assume, without loss of generality, that |V{| =1 < 2 = |V/’]. Since each
vertex of Vj is adjacent to at least one vertex of V{, we deduce that [Vp| < d < 20.
This implies that

2\Vol = Vol + Vol < 6 + 26 = §|V]| + 0|V{"| = 6|V,

a contradiction to the assumption 2|Vp| = d|V4].

If |[V4] = 2, then |Vp| = and so n = § + 2. Hence 6(G) =n—6 —1 =1 and

so dy2(G) = 2. Now Theorem 9 implies that

dro(G) + dpa(G) < (5(G)+2) +2=n+2,
the desired bound. Since we have discussed all possible cases, the proof is com-

plete. [

If G is isomorphic to the complete graph K, with n > 2, then Corollarry 6 implies

dy2(G) = n. Since d,2(G) = 2, we obtain d,2(G) + dy2(G) = n+ 2. This example
demonstrates that Theorem 17 is sharp.

We conclude this paper with a conjecture.

Conjecture 18. For every integer k > 2 and every graph G of order n,

drk(G) + drk(G) <n+2k-2.

Note that Theorem 17 shows that this conjecture is valid for k = 2. In addition,
the complete graph K,, demonstrates that Conjecture 1 does not hold for k = 1.
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