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Abstract

For a positive integer k, a k-rainbow dominating function of a graph G
is a function f from the vertex set V (G) to the set of all subsets of the set
{1, 2, . . . , k} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition
⋃

u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled, where N(v) is the neighborhood of
v. The 1-rainbow domination is the same as the ordinary domination. A set
{f1, f2, . . . , fd} of k-rainbow dominating functions on G with the property

that
∑

d

i=1 |fi(v)| ≤ k for each v ∈ V (G), is called a k-rainbow dominating

family (of functions) on G. The maximum number of functions in a k-
rainbow dominating family on G is the k-rainbow domatic number of G,
denoted by drk(G). Note that dr1(G) is the classical domatic number d(G).
In this paper we initiate the study of the k-rainbow domatic number in
graphs and we present some bounds for drk(G). Many of the known bounds
of d(G) are immediate consequences of our results.

Keywords: k-rainbow dominating function, k-rainbow domination number,
k-rainbow domatic number.
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1. Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set
E = E(G). The order |V | of G is denoted by n = n(G). For every vertex
v ∈ V , the open neighborhood N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and the
closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree of a vertex
v ∈ V is d(v) = |N(v)|. The minimum and maximum degree of a graph G are
denoted by δ = δ(G) and ∆ = ∆(G), respectively. The open neighborhood of a
set S ⊆ V is the set N(S) =

⋃

v∈S N(v), and the closed neighborhood of S is the
set N [S] = N(S) ∪ S. The complement of a graph G is denoted by G. We write
Kn for the complete graph of order n, Cn for a cycle of length n and Pn for a
path of order n.

A subset S of vertices of G is a dominating set if N [S] = V . The domination

number γ(G) is the minimum cardinality of a dominating set of G. A domatic
partition is a partition of V into dominating sets, and the domatic number d(G)
is the largest number of sets in a domatic partition. The domatic number was
introduced by Cockayne and Hedetniemi [7]. In their paper, they showed that

(1) γ(G) · d(G) ≤ n.

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph
G is a function f from the vertex set V (G) to the set of all subsets of the set
{1, 2, . . . , k} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition
⋃

u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled. The weight of a kRDF f is the value
ω(f) =

∑

v∈V |f(v)|. The k-rainbow domination number of a graph G, denoted by
γrk(G), is the minimum weight of a kRDF of G. A γrk(G)-function is a k-rainbow
dominating function of G with weight γrk(G). Note that γr1(G) is the classical
domination number γ(G). The k-rainbow domination number was introduced by
Brešar, Henning, and Rall [2] and has been studied by several authors (see for
example [3, 4, 5, 12]). Rainbow domination of a graph G coincides with ordinary
domination of the Cartesian product of G with the complete graph, in particular,
γrk(G) = γ(G�Kk) for any graph G [2]. This implies (cf. [4]) that

(2) γr1(G) ≤ γr2(G) ≤ · · · ≤ γrk(G) ≤ n for any graph G of order n.

Furthermore, it was proved in [8] that

min{|V (G)|, γ(G) + k − 2} ≤ γrk(G) ≤ kγ(G) for any k ≥ 2 and any graph G.

A set {f1, f2, . . . , fd} of k-rainbow dominating functions of G with the property
that

∑d
i=1 |fi(v)| ≤ k for each v ∈ V (G), is called a k-rainbow dominating family

(of functions) on G. The maximum number of functions in a k-rainbow dominat-
ing family (kRD family) on G is the k-rainbow domatic number of G, denoted by
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drk(G). The k-rainbow domatic number is well-defined and

(3) drk(G) ≥ k, for all graphs G

since the set consisting of the function fi : V (G) → P({1, 2, . . . , k}) defined by
fi(v) = {i} for each v ∈ V (G) and each i ∈ {1, 2, . . . , k}, forms a kRD family on
G.

Our purpose in this paper is to initiate the study of the k-rainbow domatic
number in graphs. We first study basic properties and bounds for the k-rainbow
domatic number of a graph. In addition, we determine the 2-rainbow domatic
number of some classes of graphs.

2. Properties of the k-rainbow Domatic Number

In this section we mainly present basic properties of drk(G) and bounds on the
k-rainbow domatic number of a graph. However, we start with a lower and an
upper bound on the k-rainbow domination number.

Observation 1. If G is a graph of order n, then γrk(G) ≤ n−∆(G) + k − 1.

Proof. Let v be a vertex of maximum degree ∆(G). Define f : V (G) →
P({1, 2, . . . , k}) by f(v) = {1, 2, . . . , k} and

f(x) =

{

∅ if x ∈ N(v),
{1} if x ∈ V (G)−N [v].

It is easy to see that f is a k-rainbow dominating function on G and so γrk(G) ≤
n−∆(G) + k − 1.

Let k ≥ 1 be an integer, and let G be a graph of order n ≥ k and maximum
degree ∆(G) = n − 1. Since n ≥ k, we observe that γrk(G) ≥ k. If v is
a vertex of maximum degree ∆(G), then define f : V (G) → P({1, 2, . . . , k}) by
f(v) = {1, 2, . . . , k}, f(x) = ∅ if x ∈ V (G)\{v}. Because of d(v) = ∆(G) = n−1,
f is a k-rainbow dominating function on G and thus γrk(G) ≤ k. It follows that
γrk(G) = k = n−∆(G)+k−1. This example shows that Observation 1 is sharp.

The case k = 1 in Observation 1 is attributed to Berge [1]. In 1979, Walikar,
Acharya and Sampathkumar [10] proved γ(G) ≥ ⌈n/(∆(G) + 1)⌉ for each graph
of order n. Next we will give an analogues lower bound for γrk(G) when k ≥ 2.

Theorem 2. If G is a graph of order n and maximum degree ∆, then

γr2(G) ≥
⌈

2n

∆+ 2

⌉

.
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Proof. Let f be a γr2(G)-function and let Vi = {v | |f(v)| = i} for i = 0, 1, 2.
Then γr2(G) = |V1| + 2|V2| and n = |V0| + |V1| + |V2|. Since each vertex of V0

is adjacent to at least one vertex of V2 or at least two vertices of V1, we deduce
that |V0| ≤ ∆|V2|+ 1

2∆|V1|.
This implies that

(∆ + 2)γr2(G) = 2γr2(G) + ∆(|V1|+ 2|V2|) ≥ 2γr2(G) + 2|V0|
= 2|V1|+ 4|V2|+ 2|V0| = 2n+ 2|V2| ≥ 2n,

and this leads to the desired bound.

Using inequality (2) and Theorem 2, we obtain the next result immediately.

Theorem 3. If k ≥ 2 is an integer, and G is a graph of order n and maximum

degree ∆, then

γrk(G) ≥
⌈

2n

∆+ 2

⌉

.

Theorem 4. If G is a graph of order n, then γrk(G) · drk(G) ≤ kn.

Moreover, if γrk(G) · drk(G) = kn, then for each kRD family {f1, f2, . . . , fd} on

G with d = drk(G), each function fi is a γrk(G)-function and
∑d

i=1 |fi(v)| = k
for all v ∈ V .

Proof. Let {f1, f2, . . . , fd} be a kRD family on G such that d = drk(G). Then

d · γrk(G) =
∑d

i=1 γrk(G) ≤ ∑d
i=1

∑

v∈V |fi(v)|
=

∑

v∈V

∑d
i=1 |fi(v)| ≤

∑

v∈V k = kn.

If γrk(G) · drk(G) = kn, then the two inequalities occurring in the proof be-
come equalities. Hence for the kRD family {f1, f2, . . . , fd} on G and for each
i,

∑

v∈V |fi(v)| = γrk(G). Thus each function fi is a γrk(G)-function, and
∑d

i=1 |fi(v)| = k for all v ∈ V .

The case k = 1 in Theorem 4 leads to the well-known inequality γ(G) · d(G) ≤ n,
given by Cockayne and Hedetniemi [7] in 1977.

Corollary 5. If k is a positive integer, and G is a graph of order n ≥ k, then

drk(G) ≤ n.

Proof. The hypothesis n ≥ k leads to γrk(G) ≥ k. Therefore it follows from
Theorem 4 that

drk(G) ≤ kn

γrk(G)
≤ kn

k
= n,

and this is the desired inequality.
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Corollary 6. If k is a positive integer, and G is isomorphic to the complete

graph Kn of order n ≥ k, then drk(G) = n.

Proof. In view of Corollary 5, we have drk(G) ≤ n. If {v1, v2, . . . , vn} is the
vertex set of G, then we define the function fi : V (G) → P({1, 2, . . . , k}) by
fi(vj) = {1, 2, . . . , k} for i = j and fi(vj) = ∅ for i 6= j, where i, j ∈ {1, 2, . . . , n}.
Then {f1, f2, . . . , fn} is a kRD family on G and thus drk(G) = n.

Theorem 7. If G is a graph of order n ≥ k, then

γrk(G) + drk(G) ≤ n+ k.

Proof. Applying Theorem 4, we obtain

γrk(G) + drk(G) ≤ kn

drk(G)
+ drk(G).

Note that drk(G) ≥ k, by inequality (3), and that Corollary 5 implies that
drk(G) ≤ n. Using these inequalities, and the fact that the function g(x) =
x + (kn)/x is decreasing for k ≤ x ≤

√
kn and increasing for

√
kn ≤ x ≤ n, we

obtain

γrk(G) + drk(G) ≤ max

{

kn

k
+ k,

kn

n
+ n

}

= n+ k,

and this is the desired bound.

If G is isomorphic to the complete graph of order n ≥ k, then γrk(G) = k and
drk(G) = n by Corollary 6. Thus γrk(Kn)·drk(Kn) = nk and γrk(Kn)+drk(Kn) =
n+ k when n ≥ k. This example shows that Theorems 4 and 7 are sharp.

Corollary 8 (Cockayne and Hedetniemi, [7], 1977). If G is a graph of order

n ≥ 1, then γ(G) + d(G) ≤ n+ 1

Theorem 9. For every graph G,

drk(G) ≤ δ(G) + k.

Proof. Let {f1, f2, . . . , fd} be a kRD family on G such that d = drk(G), and
let v be a vertex of minimum degree δ(G). Since

∑

u∈N [v] |fi(u)| ≥ 1 for all
i ∈ {1, 2, . . . , d} and

∑

u∈N [v] |fi(u)| < k for at most k indices i ∈ {1, 2, . . . , d},
we obtain

kd− k(k − 1) ≤ ∑d
i=1

∑

u∈N [v] |fi(u)| =
∑

u∈N [v]

∑d
i=1 |fi(u)|

≤ ∑

u∈N [v] k = k(δ(G) + 1),

and this leads to the desired bound.
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To prove sharpness of Theorem 9, let p ≥ 2 be an integer, and let Gi be a copy
of Kp+k+1 with vertex set V (Gi) = {vi1, vi2, . . . , vip+k+1} for 1 ≤ i ≤ p. Now let

G be the graph obtained from
⋃p

i=1Gi by adding a new vertex v and joining v
to each vi1. Define the k-rainbow dominating functions f1, f2, . . . , fp+k as follows:
for 1 ≤ i ≤ p and 1 ≤ s ≤ k

fi(v
i
1) = {1, 2, . . . , k}, fi(vji+1) = {1, 2, . . . , k} if j ∈ {1, 2, . . . , p} − {i} and

f(x) = ∅ otherwise,

fp+s(v) = {1}, fp+s(v
j
p+s+1) = {1, 2, . . . , k} if j ∈ {1, 2, . . . , p} and

f(x) = ∅ otherwise.

It is straightforward to verify that fi is a k-rainbow dominating function on G
for each i and {f1, f2, . . . , fp+k} is a k-rainbow dominating family on G. Since
δ(G) = p, we have drk(G) = δ(G) + k.

The special case k = 1 in Theorem 9 was done by Cockayme and Hedetniemi
[7]. As an application of Theorem 9, we will prove the following Nordhaus-
Gaddum type result.

Theorem 10. For every graph G of order n,

drk(G) + drk(G) ≤ n+ 2k − 1.

If drk(G) + drk(G) = n+ 2k − 1, then G is regular.

Proof. It follows from Theorem 9 that

drk(G) + drk(G) ≤ (δ(G) + k) + (δ(G) + k)

= (δ(G) + k) + (n−∆(G)− 1 + k) ≤ n+ 2k − 1.

If G is not regular, then ∆(G)− δ(G) ≥ 1, and this inequality chain leads to the
better bound drk(G) + drk(G) ≤ n+ 2k − 2, and the proof is complete.

Corollary 11 (Cockayne and Hedetniemi [7] 1977). If G is a graph of order

n ≥ 1, then d(G) + d(G) ≤ n+ 1.

3. Properties of the 2-rainbow Domatic Number

Let A1 ∪A2 ∪ · · · ∪Ad be a domatic partition of V (G) into dominating sets such
that d = d(G). Then the set of functions {f1, f2, . . . , fd} with fi(v) = {1, 2} if
v ∈ Ai and fi(v) = ∅, otherwise for 1 ≤ i ≤ d is a 2RD family on G. This shows
that d(G) ≤ dr2(G) for every graph G.

Observation 12. Let G be a graph of order n ≥ 2. Then γr2(G) = n and

dr2(G) = 2 if and only if ∆(G) ≤ 1.
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Proof. If γr2(G) = n, then, by Theorem 1, ∆(G) ≤ 1.

Conversely, let ∆(G) ≤ 1. If ∆(G) = 0, then obviously γr2(G) = n and
dr2(G) = 2. Let ∆(G) = 1. Then G = rK1 ∪ n−r

2 K2 with n− r ≥ 2 even, and we
have

γr2(G) = rγr2(K1) +
n− r

2
γr2(K2) = r + (n− r) = n.

By (3) and Theorem 4, we obtain dr2(G) = 2. This completes the proof.

Using Theorem 9 and the following proposition, we determine the 2-rainbow
domatic number of paths.

Proposition A [3]. For n ≥ 2,

γr2(Pn) =
⌊n

2

⌋

+ 1.

Proposition 13. For n ≥ 3,

dr2(Pn) =

{

2 if n = 4,
3 otherwise.

Proof. Let G = Pn. If n = 4, then Proposition 3 implies γr2(G) = 3, and the
result follows from Theorem 4 and (3). Assume now that n 6= 4. By Theorem 4
and Proposition 3, we have dr2(G) ≤ 3. Consider four cases.

Case 1. n ≡ 3 (mod 4). Define the 2-rainbow dominating functions f1, f2, f3
as follows:

f1(v4i+1) = {1}, f1(v4i+3) = {2} for 0 ≤ i ≤ (n− 3)/4, and
f1(x) = ∅ otherwise,

f2(v4i+1) = {2}, f2(v4i+3) = {1} for 0 ≤ i ≤ (n− 3)/4, and
f2(x) = ∅ otherwise,
f3(v2i+2) = {1, 2} for 0 ≤ i ≤ (n− 3)/2, and f3(x) = ∅ otherwise.

It is easy to see that fi is a 2-rainbow dominating function on G for each i and
{f1, f2, f3} is a 2-rainbow dominating family on G.

Case 2. n ≡ 1 (mod 4). Define the 2-rainbow dominating functions f1, f2, f3
as follows:

f1(vn) = {1}, f1(v4i+1) = {1}, f1(v4i+3) = {2} for 0 ≤ i ≤ (n− 1)/4− 1 and
f1(x) = ∅ otherwise,

f2(vn) = {2}, f2(v4i+1) = {2}, f2(v4i+3) = {1} for 0 ≤ i ≤ (n− 1)/4− 1 and
f2(x) = ∅ otherwise,

f3(v2i) = {1, 2} for 1 ≤ i ≤ (n− 1)/2, and f3(x) = ∅ otherwise.

Clearly, fi is a 2-rainbow dominating function on G for each i and {f1, f2, f3} is
a 2-rainbow dominating family on G.
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Case 3. n ≡ 0 (mod 4). Define the 2-rainbow dominating functions f1, f2, f3
as follows:

f1(v1) = f1(v4i+6) = {1}, f1(v3) = f1(v4) = f1(v4i+8) = {2} for 0 ≤ i ≤ n/4− 2,
and f1(x) = ∅ otherwise,

f2(v1) = f2(v4i+6) = {2}, f2(v3) = f2(v4) = f2(v4i+8) = {1} for 0 ≤ i ≤ n/4− 2,
and f2(x) = ∅ otherwise,

f3(v2) = f3(v2i+1) = {1, 2} for 2 ≤ i ≤ n/2− 1, and f3(x) = ∅ otherwise.

It is easy to see that fi is a 2-rainbow dominating function on G for each i and
{f1, f2, f3} is a 2-rainbow dominating family on G.

Case 4. n ≡ 2 (mod 4). Define the 2-rainbow dominating functions f1, f2, f3
as follows:

f1(v1) = f1(vn) = f1(v4i+6) = {1}, f1(v3) = f1(v4) = f1(v4i+8) = {2} for
0 ≤ i ≤ (n− 2)/4− 2, andf1(x) = ∅ otherwise,

f2(v1) = f2(vn) = f2(v4i+6) = {2}, f2(v3) = f2(v4) = f2(v4i+8) = {1} for
0 ≤ i ≤ (n− 2)/4− 2, andf2(x) = ∅ otherwise,

f3(v2) = f3(v2i+1) = {1, 2} for 2 ≤ i ≤ n/2− 1, and f3(x) = ∅ otherwise.

Clearly fi is a 2-rainbow dominating function on G for each i and {f1, f2, f3} is
a 2-rainbow dominating family on G. This completes the proof.

Using Theorem 4 and the following proposition, we determine the 2-rainbow
domatic number of cycles.

Proposition B [3]. For n ≥ 3,

γr2(Cn) =
⌊n

2

⌋

+
⌈n

4

⌉

−
⌊n

4

⌋

.

Proposition 14. If Cn is the cycle on n ≥ 4 vertices, then

dr2(Cn) =

{

4 n ≡ 0 (mod 4),
3 otherwise.

Proof. Let Cn = (v1, v2, . . . , vn). Consider four cases.

Case 1. n ≡ 0 (mod 4). Define the 2-rainbow dominating functions f1, f2, f3,
f4 as follows:
f1(v4(i−1)+1) = {1}, f1(v4(i−1)+3) = {2} for 0 ≤ i ≤ n/4− 1, and
f1(x) = ∅ otherwise,

f2(v4(i−1)+1) = {2}, f2(v4(i−1)+3) = {1} for 0 ≤ i ≤ n/4− 1, and
f2(x) = ∅ otherwise,

f3(v4(i−1)+2) = {1}, f3(v4(i−1)+4) = {2} for 0 ≤ i ≤ n/4− 1, and
f3(x) = ∅ otherwise,
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f4(v4(i−1)+2) = {2}, f4(v4(i−1)+4) = {1} for 0 ≤ i ≤ n/4− 1, and
f4(x) = ∅ otherwise.

It is easy to see that fi is a 2-rainbow dominating function on G for each i and
{f1, f2, f3, f4} is a 2-rainbow dominating family on G. Thus dr2(Cn) = 4.

Case 2. n ≡ 1 (mod 4). Then by Theorem 4 and Proposition 3, dr2(Cn) ≤ 3.
Define the 2-rainbow dominating functions f1, f2, f3 as follows:

f1(v4(i−1)+1) = {1}, f1(v4(i−1)+3) = {2}, for 0 ≤ i ≤ (n− 1)/4− 1,
f1(vn) = {1} and f1(x) = ∅ otherwise,

f2(v4(i−1)+1) = {2}, f2(v4(i−1)+3) = {1}, for 0 ≤ i ≤ (n− 1)/4− 1,
f2(vn) = {2} andf2(x) = ∅ otherwise,

f3(v4(i−1)+2) = f3(v4(i−1)+4) = {1, 2} for 0 ≤ i ≤ (n− 1)/4− 1, and
f3(x) = 0 otherwise.

Clearly, fi is a 2-rainbow dominating function on G for each i and {f1, f2, f3} is
a 2-rainbow dominating family on G. Thus dr2(Cn) = 3.

Case 3. n ≡ 3 (mod 4). Then by Theorem 4 and Proposition 3, dr2(Cn) ≤ 3.
Define the 2-rainbow dominating functions f1, f2, f3 as follows:

f1(v4(i−1)+1) = {1}, f1(v4(i−1)+3) = {2}, for 0 ≤ i ≤ (n+ 1)/4− 1, and
f1(x) = ∅ otherwise,

f2(v4(i−1)+1) = {2}, f2(v4(i−1)+3) = {1}, for 0 ≤ i ≤ (n+ 1)/4− 1, and
f2(x) = ∅ otherwise,

f3(v4(i−1)+2) = f3(v4(i−1)+4) = {1, 2} for 0 ≤ i ≤ (n− 3)/4− 1,
f3(vn−1) = 1 and f3(x) = 0 otherwise.

Clearly, fi is a 2-rainbow dominating function on G for each i and {f1, f2, f3} is
a 2-rainbow dominating family on G. Thus dr2(Cn) = 3.

Case 4. n ≡ 2 (mod 4). Then by Theorem 4 and Proposition 3, dr2(Cn) ≤ 3.
Define the 2-rainbow dominating functions f1, f2, f3 as follows:

f1(v1) = f1(v2) = f1(v4i+3) = {1}, f1(v4) = f1(v5) = f1(v4i+5) = {2} for
1 ≤ i ≤ n−6

4 and f1(x) = ∅ otherwise,

f2(v1) = f2(v2) = f2(v4i+3) = {2}, f2(v4) = f2(v5) = f2(v4i+5) = {1} for
1 ≤ i ≤ n−6

4 and f2(x) = ∅ otherwise,

f3(v3) = f3(v4i+2) = {1, 2} for 1 ≤ i ≤ n−2
4 and f3(x) = ∅ otherwise.

Clearly, fi is a 2-rainbow dominating function on G for each i and {f1, f2, f3} is
a 2-rainbow dominating family on G. Thus dr2(Cn) = 3.

Theorem 2 and its proof lead immediately to the next result.
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Corollary 15. Let G be a graph of order n and maximum degree ∆. Then

γr2(G) ≥
{ ⌈2n+2

∆+2 ⌉ if there is a γr2(G)- function f with V2 6= ∅,
⌈ 2n
∆+2⌉ otherwise.

Using Corollary 15, we will improve the upper bound on dr2(G) given in Theorem
9 for some regular graphs.

Theorem 16. If G is a δ-regular graph of order n with δ ≥ 1 and a γr2(G)-
function f such that V2 6= ∅ or 2n 6≡ 0 (mod (δ + 2)), then

dr2(G) ≤ δ + 1.

Proof. Let {f1, f2, . . . , fd} be a 2RD family on G such that d = dr2(G). It
follows that

(4)
d

∑

i=1

ω(fi) =
d

∑

i=1

∑

v∈V

|fi(v)| =
∑

v∈V

d
∑

i=1

|fi(v)| ≤
∑

v∈V

2 = 2n.

Suppose to the contrary that d ≥ δ + 2. If V2 6= ∅, then Corollary 15 leads to

d
∑

i=1

ω(fi) ≥
d

∑

i=1

γr2(G) ≥ d

⌈

2n+ 2

δ + 2

⌉

≥ (δ + 2)

(

2n+ 2

δ + 2

)

> 2n,

a contradiction to the inequality (4). If 2n 6≡ 0 (mod (δ + 2)), then it follows
from Corollary 15 that

d
∑

i=1

ω(fi) ≥
d

∑

i=1

γr2(G) ≥ d

⌈

2n

δ + 2

⌉

> (δ + 2)

(

2n

δ + 2

)

= 2n,

a contradiction to (4) again. Therefore d ≤ δ + 1 and the proof is complete.

By Theorem 14, dr2(C4) = 4 and therefore dr2(C4) = δ(C4) + 2. This 2-regular
graph demonstrates that the bound in Theorem 16 is not valid in general in the
case that 2n ≡ 0 (mod (δ + 2)).

Using Theorems 9, 10 and 16, we will improve the upper bound given in
Theorem 10 in the case that k = 2.

Theorem 17. If G is a graph of order n, then

dr2(G) + dr2(G) ≤ n+ 2.
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Proof. If G is not regular, then Theorem 10 implies the desired result. Now let
G be δ-regular.

Assume that G has a γr2(G)-function f such that V2 6= ∅ or V2 = ∅ and
2|V0| < δ|V1|. Then we deduce from Theorem 16 that dr2(G) ≤ δ + 1. Using
Theorem 9, we obtain the desired result as follows

dr2(G) + dr2(G) ≤ (δ(G) + 1) + (δ(G) + 2)

= (δ(G) + 1) + (n− δ(G)− 1 + 2) = n+ 2.

It remains the case that G has a γr2(G)-function f such V2 = ∅ and 2|V0| = δ|V1|.
Note that n = |V0|+ |V1| and |V1| ≥ 2. Since δ(G)+ δ(G) = n− 1, it follows that
δ(G) ≥ (n − 1)/2 or δ(G) ≥ (n − 1)/2. We assume, without loss of generality,
that δ(G) ≥ (n− 1)/2.

If |V1| ≥ 4, then 2|V0| = δ|V1| ≥ 4δ and thus |V0| ≥ 2δ. This leads to the
contradiction

n = |V0|+ |V1| ≥ 2δ + 4 ≥ n− 1 + 4 = n+ 3.

In the case |V1| = 3, we define V ′

1 = {v | f(v) = {1}} and V ′′

1 = {v | f(v) =
{2}}. We assume, without loss of generality, that |V ′

1 | = 1 < 2 = |V ′′

1 |. Since each
vertex of V0 is adjacent to at least one vertex of V ′

1 , we deduce that |V0| ≤ δ < 2δ.
This implies that

2|V0| = |V0|+ |V0| < δ + 2δ = δ|V ′

1 |+ δ|V ′′

1 | = δ|V1|,
a contradiction to the assumption 2|V0| = δ|V1|.

If |V1| = 2, then |V0| = δ and so n = δ + 2. Hence δ(G) = n− δ − 1 = 1 and
so dr2(G) = 2. Now Theorem 9 implies that

dr2(G) + dr2(G) ≤ (δ(G) + 2) + 2 = n+ 2,

the desired bound. Since we have discussed all possible cases, the proof is com-
plete.

If G is isomorphic to the complete graph Kn with n ≥ 2, then Corollarry 6 implies
dr2(G) = n. Since dr2(G) = 2, we obtain dr2(G) + dr2(G) = n+2. This example
demonstrates that Theorem 17 is sharp.

We conclude this paper with a conjecture.

Conjecture 18. For every integer k ≥ 2 and every graph G of order n,

drk(G) + drk(G) ≤ n+ 2k − 2.

Note that Theorem 17 shows that this conjecture is valid for k = 2. In addition,
the complete graph Kn demonstrates that Conjecture 1 does not hold for k = 1.
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