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Abstract

For a connected graph G of order n, a set S of vertices is called a double
geodetic set of G if for each pair of vertices x, y in G there exist vertices
u, v ∈ S such that x, y ∈ I[u, v]. The double geodetic number dg(G) is
the minimum cardinality of a double geodetic set. Any double godetic of
cardinality dg(G) is called dg-set of G. The double geodetic numbers of
certain standard graphs are obtained. It is shown that for positive integers
r, d such that r < d ≤ 2r and 3 ≤ a ≤ b there exists a connected graph G
with rad G = r, diam G = d, g(G) = a and dg(G) = b. Also, it is proved
that for integers n, d ≥ 2 and l such that 3 ≤ k ≤ l ≤ n and n−d− l+1 ≥ 0,
there exists a graph G of order n diameter d, g(G) = k and dg(G) = l.
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double geodetic number.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without loops
or multiple edges. The order and size of G are denoted by n and m respectively.
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For basic graph theoretic terminology we refer to [4]. For vertices x and y in a
connected graph G, the distance d(x, y) is the length of a shortest x-y path in G.
It is known that the distance is a metric on the vertex set of G. An x − y path
of length d(x, y) is called an x− y geodesic. A vertex v is said to lie on an x− y
geodesic P if v is a vertex of P including the vertices x and y. For any vertex u of
G, the eccentricity of u is e(u) = max{d(u, v) : v ∈ V }. A vertex v is an eccentric
vertex of u if e(u) = d(u, v). The radius rad G and diameter diam G are defined
by rad G = min{e(v) : v ∈ V } and diam G = max{e(v) : v ∈ V } respectively.
The neighborhood of a vertex v is the set N(v) consisting of all vertices u which
are adjacent with v. A vertex v is an extreme vertex of G if the subgraph induced
by its neighbors is complete.

The closed interval I[x, y] consists of all vertices lying on some x−y geodesic
of G, while for S ⊆ V, I[S] =

⋃

x,y∈S I[x, y]. A set S of vertices is a geodetic set
if I[S] = V, and the minimum cardinality of a geodetic set is the geodetic number
g(G). A geodetic set of cardinality g(G) is called a g-set of G. The geodetic
number of a graph was introduced in [1, 5] and further studied in [2, 3, 6]. It
was shown in [5] that determining the geodetic number of a graph is an NP-hard
problem. Let 2V denote the set of all subsets of V . The mapping I : V ×V → 2V

defined by I[u, v] = {w ∈ V : w lies on a u − v geodesic in G} is the interval
function of G. One of the basic properties of I is that u, v ∈ I[u, v] for any
pair u, v ∈ V . Hence the interval function captures every pair of vertices and
so the problem of double geodetic sets is trivially well-defined while it is clear
that this fails in many graphs already for triplets (for example, complete graphs).
This motivated us to introduce and study double geodetic sets. The following
theorems will be used in the sequel.

Theorem 1.1 [3]. Every geodetic set of a graph G contains its extreme vertices.
In particular, if the set of extreme vertices S of G is a geodetic set of G, then S
is the unique minimum geodetic set of G.

Theorem 1.2 [3]. Let G be a connected graph with a cut vertex v. Then every
geodetic set of G contains at least one vertex from each component of G− v.

2. Double Geodetic Number of a Graph

Definition. Let G be a connected graph with at least two vertices. A set S of
vertices of G is called a double geodetic set of G if for each pair of vertices x, y
in G there exist vertices u, v in S such that x, y ∈ I[u, v]. The double geodetic
number dg(G) of G is the minimum cardinality of a double geodetic set. Any
double geodetic set of cardinality dg(G) is called dg-set of G.
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Example 2.1. For the graph G in Figure 2.1, it is clear that no 2-element or
no 3-element subset of G is a double geodetic set of G. S = {u1, u3, u4, u5} is a
double geodetic set,then it follows that dg(G) = 4.
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Remark 2.2. For the graph G in Figure 2.1 S = {u1, u3, u5} is a g-set of G and
so g(G) = 3. Thus, the double geodetic number and geodetic number of a graph
can be different.

Theorem 2.3. For any graph G of order n, 2 ≤ g(G) ≤ dg(G) ≤ n.

Proof. A geodetic set needs at least two vertices and therefore g(G) ≥ 2. It is
clear that every double geodetic set is also a geodetic set and so g(G) ≤ dg(G),
since the set of all vertices of G is a double geodetic set of G, dg(G) ≤ n.

Remark 2.4. The bounds in Theorem 2.3 are sharp. For the complete graph
Kn (n ≥ 2), we have dg(Kn) = n. The set of the two end vertices of a nontrivial
path Pn on n vertices is its unique double geodetic set so that dg(Pn) = 2. Thus
the complete graph Kn has the largest possible double geodetic number n and
that the nontrivial paths have the smallest double geodetic number.

Theorem 2.5. Each extreme vertex of a connected graph G belongs to every
double geodetic set of G. In particular, if the set of all end vertices of G is a
double geodetic set, then it is the unique dg-set of G.

Proof. Since every double geodetic set is a geodetic set, the result follows from
Theorem 1.1.

Corollary 2.6. For a graph G of order n with k extreme vertices, max{2, k}
≤ dg(G) ≤ n.

Proof. This follows from Theorems 2.3 and 2.5.

Theorem 2.7. Let G be a connected graph with a cut vertex v. Then each double
geodetic set of G contains at least one vertex from each component of G− v.
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Proof. This follows from Theorem 1.2 and the fact that every double geodetic
set is a geodetic set.

Theorem 2.8. No cut-vertex of a connected graph G belongs to any dg-set of G.

Proof. Let S be any dg-set of G. Suppose that S contains a cut vertex z of
G. Let G1, G2, . . . , Gr (r ≥ 2) be the components of G − z. Let S1 = S − {z}.
We claim that S1 is a double geodetic set of G. Let x, y ∈ V (G). Since S is a
double geodetic set, there exist u, v ∈ S such that x, y ∈ I[u, v]. If z /∈ {u, v} then
u, v ∈ S1 and so S1 is a double geodetic set of G, which is contradiction to the
minimality of S. Now, assume that z ∈ {u, v} say z = u. Assume without loss of
generality that v belongs to S1. By Theorem 2.7, we can choose a vertex w in
Gk (k 6= 1) such that w ∈ S. Now, since z is a cut vertex of G, it follows that
I[z, v] ⊆ I[w, v]. Hence x, y ∈ I[w, v] with w, v ∈ S1. Thus S1 is a double geodetic
set of G which is contradiction to the minimality of S. Thus no cut vertex belongs
to any dg-set of G.

Corollary 2.9. For any tree T, the double geodetic number dg(T ) equals the
number of end vertices in T. In fact, the set of all end vertices of T is the unique
dg-set of T.

Proof. This follows from Theorems 2.5 and 2.8.

Corollary 2.10. For every pair k, n of integers with 2 ≤ k ≤ n, there exists a
connected graph G of order n such that dg(G) = k.

Proof. For k = n, let G = Kn. Then, by Theorem 2.5 dg(G) = n = k. Also, for
each pair of integers with 2 ≤ k < n, there exists a tree of order n with k end
vertices. Hence the result follows from Corollary 2.9.

Proposition 2.11. For a nontrivial connected graph G, g(G) = 2 if and only if
dg(G) = 2.

Proof. If dg(G) = 2, then by Theorem 2.3, g(G) = 2. Suppose that g(G) = 2.
Let S = {u, v} be a g-set of G. Then it is clear that x, y ∈ I[u, v] for any pair x, y
of vertices of G. Thus S is a dg-set of G and so dg(G) = 2.

Corollary 2.12. For the cycle C2n (n ≥ 2), dg(C2n) = 2.

Proof. Since g(C2n) = 2, the result follows from Proposition 2.11.

Definition. A vertex v in a connected graph G is said to be a weak extreme
vertex if there exists a vertex u in G such that u, v ∈ I[x, y] for a pair of vertices
x, y in G, then v = x or v = y.
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Equivalently, a vertex v in a connected graph is a weak extreme vertex if there
exists a vertex u in G such that v is either an initial vertex or a terminal vertex
of any interval containing both u and v.

Example 2.13. Each extreme vertex of a graph is weak extreme. Also, for the
graph G in Figure 2.2, it is clear that the pair v2, v5 lies only on the v2 − v5
geodesic and so v2 and v5 are weak extreme vertices of G. Similarly, the vertices
v4 and v6 are also weak extreme vertices of G. It is easily seen that v1 and v3 are
also weak extreme vertices of G.

Proposition 2.14. Every double geodetic set of a connected graph G contains
all the weak extreme vertices of G. In particular, if the set W of all weak extreme
vertices is a double geodetic set, then W is the unique dg-set of G.

Proof. Let S be a double geodetic set of G and v a weak extreme vertex such
that v /∈ S. Let u be a vertex in G such that u 6= v. Since S is a double geodetic
set of G, we have u, v ∈ I[x, y] for some x, y ∈ S. Also, since v is a weak extreme
vertex of G, we have v = x or v = y. Thus v ∈ S, which is a contadiction.

Example 2.15. For the graph G in Figure 2.3, the set S = {v1, v5, v10} of end
vertices is the unique minimum geodetic set of G so that g(G) = 3. Since the pair
of vertices v3, v9 do not lie on any geodesic of a pair vertices from S, S is not a
double geodetic set of G. It is clear that the vertex v3 is the only weak extreme
vertex, which is not extreme. Since S′ = {v1, v3, v5, v10} is a double geodetic set
of G, it follows from Proposition 2.14 that dg(G) = 4.

Theorem 2.16. For the cycle C2n+1 (n ≥ 1), dg(C2n+1) = 2n+ 1.
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Proof. Let v be a vertex of C2n+1 and u an eccentric vertex of v. It is clear that
the pair u, v of vertices lie only on the interval I[u, v] and so the vertex v is weak
extreme. Hence it follows from Proposition 2.14 that the set of all vertices of
C2n+1 is the unique double geodetic set of C2n+1. Thus dg(C2n+1) = 2n+ 1.
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Theorem 2.17. For the wheel Wn (n ≥ 5), dg(Wn) =

{

2 if n = 5,
n− 1 if n ≥ 6.

Proof. Since g(W5) = 2, it follows from Proposition 2.11 that dg(W5) = 2. Let
Wn = K1 + Cn−1 (n ≥ 6) with x the vertex of K1. Let v be any vertex of Cn−1.
First we prove that v is a weak extreme vertex of Wn. Let v

′ be an eccentric vertex
of v in Wn. Then v 6= x and v, v′ lie only on I[v, v′] so that v is a weak extreme
vertex of Wn. Hence it follows from Proposition 2.14 that dg(Wn) ≥ n − 1. It is
clear that the set of all vertices of Cn−1 is a double geodetic set of Wn and so
dg(Wn) = n− 1.

Theorem 2.18. For the complete bipartite graph G = Km,n (m,n ≥ 2),
dg(G) = min{m,n}.

Proof. Let X and Y be the partite sets of Km,n. Let S be a double geodetic set
of Km,n. We claim that X ⊆ S or Y ⊆ S. Otherwise, there exist vertices x, y such
that x ∈ X, y ∈ Y and x, y /∈ S. Now, since the pair of vertices x, y lie only on
the intervals I[x, y], I[x, t] and I[s, y] for some t ∈ X and s ∈ Y , it follows that
x ∈ S or y ∈ S, which is a contradiction to x, y /∈ S. Thus X ⊆ S or Y ⊆ S. Also
it is clear that both X and Y are double geodetic sets of Km,n and so the result
follows.

Theorem 2.19. Let G be a connected graph of order n ≥ 2. If G has exactly
one vertex v of degree n− 1, then dg(G) ≤ n− 1.

Proof. Let v be the vertex of degree n− 1. Let S = V (G)− {v}. We claim that
S is double geodetic set of G. Let x, y ∈ V (G). If x, y ∈ S, then it is clear that
x, y ∈ I[x, y]. So assume that x ∈ S and y = v. Since v is the only vertex of degree
n−1, there exists a vertex x′ 6= v which is non adjacent to x. Hence x, y ∈ I[x, x′]
and it follows that S is a double geodetic set of G and so dg(G) ≤ |S| = n− 1.

Remark 2.20. For the graph given in Figure 2.1 dg(G) = 4 so that the bound
in Theorem 2.19 is sharp. For the wheel W5, dg(W5) = 2 (see Theorem 2.17) and
so the inequality in Theorem 2.19 can also be strict.

The following theorem gives a necessary condition for a graph G of order n to
have dg(G) = n− 1.

Theorem 2.21. Let G be a connected graph such that G has a full degree vertex
v and G− v has radius at least 3. Then dg(G) = n− 1.

Proof. Let u 6= v be a vertex of G and u′ an eccentric vertex of u. Since G− v
has radius at least 3, we have d(u, u′) ≥ 3. Now, since diam G = 2, it follows
that P : u, v, u′ is the unique u− u′ geodesic containing the vertices u and u′ in
G. Hence u is a weak extreme vertex of G. Thus, all the vertices of G except v



Double Geodetic Number of a Graph 115

are weak extreme vertices. Since G− v has radius at least 3, it follows that v is
not a weak extreme vertex of G. Now, V (G)− {v} is a double geodetic set of G
and hence by Proposition 2.14, dg(G) = n− 1.

Problem 2.22. Characterize graphs G of order n for which

(i) dg(G) = n− 1,

(ii) dg(G) = n.

3. The Double Geodetic Number and Diameter of a Graph

If G is connected graph of order n and diameter d, it is proved in [2] that g(G) ≤
n − d + 1. However, the same is not true for the double geodetic number of a
graph. For the graph G given in Figure 3.1, n = 6, d = 3 and dg(G) = 4 so that
dg(G) = n − d + 1. Similarly, for the graph G given in Figure 3.2, dg(G) = 5 so
that dg(G) > n − d + 1 and for the graph G given in Figure 3.3, dg(G) = 3 so
that dg(G) < n− d+ 1.
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A caterpillar is a tree, the removal of whose end-vertices leaves a path.

Theorem 3.1. For every nontrivial tree T of order n with diameter d, dg(G)
= n− d+ 1 if and only if T is a caterpillar.
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Proof. Let T be any nontrivial tree. Let P : u = v0, v1, v2, . . . , vd−1, vd = v
be a diameteral path and let d = d(u, v). Let k be the number of end vertices
of T and l the number of internal vertices of T other than v1, v2, . . . , vd−1. Then
d−1+l+k = n. By Theorem 2.5, dg(T ) = k = n−d+1−l. Hence dg(T ) = n−d+1
if and only if l = 0, if and only if all the internal vertices of T lie on the diameteral
path P, if and only if T is caterpillar.

Corollary 3.2. For a non trivial tree T of order n with diameter d, the following
are equivalent:

(i) g(T ) = n− d+ 1,

(ii) dg(T ) = n− d+ 1,

(iii) T is a caterpillar.

Proof. This follows from Theorem 3.1 and the fact that g(T ) = dg(T ) for any
tree T .

For every connected graph G, rad G ≤ diam G ≤ 2 rad G. Ostrand [7] showed
that every two positive integers a and b with a ≤ b ≤ 2a are realizable as the
radius and diameter respectively, of some connected graph. Now, Ostrand’s the-
orem can be extended so that the geodetic number and double geodetic number
can also be priscribed, when r < d ≤ 2r.
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Theorem 3.3. For positive integers r, d, a and b such that r < d ≤ 2r and
3 ≤ a ≤ b, there exists a connected graph G with rad G = r, diam G = d, g(G) = a
and dg(G) = b.

Proof. Case 1. r = 1. Then d = 2. Construct a graph G as follows: Let
P3 = u1, u2, u3 be a path of order 3. Add a−2 new vertices v1, v2, . . . , va−2 to P2

and join each vi (1 ≤ i ≤ a− 2) to the vertex u2 and obtain the graph H. Also,
add (b− a) new vertices w1, w2, . . . , wb−a to H and join each wi (1 ≤ i ≤ b− a)
to u1, u2 and u3 and obtain the graph G in Figure 3.4. Then G has radius 1
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and diameter 2. It is clear that S1 = {v1, v2, . . . , va−2, u1, u3} is a minimum
geodetic set of G and so by Theorem 1.1, g(G) = a. It is clear that S2 =
{v1, v2, . . . , va−2, u1, u3, w1, w2, . . . , wb−a} is the set of all weak extreme vertices
of G and since S2 is a double geodetic set of G, it follows from Proposition 2.14
that dg(G) = b.
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Case 2. r ≥ 2. Construct a graph G as follows: Let C2r : v1, v2, . . . , v2r, v1 be
a cycle of order 2r and let Pd−r+1 : u0, u1, . . . , ud−r be a path of order d− r+ 1.
Let H be the graph obtained from C2r and Pd−r+1 by identifying v1 in C2r and
u0 in Pd−r+1. First, assume that b > a. Add a− 2 new vertices w1, w2, . . . , wa−2

to H and join each vertex wi (1 ≤ i ≤ a− 2) to the vertex vr and add b− a− 1
new vertices x1, x2, . . . , xb−a−1 to H and join each xi (1 ≤ i ≤ b− a− 1) to both
vr+1 and vr−1 and obtain the graph G of Figure 3.5. Then G has radius r and
diameter d. Let S = {w1, w2, . . . , wa−2, ud−r} be the set of all extreme vertices
of G. Since the vertices vi (r + 1 ≤ i ≤ 2r) and xi (1 ≤ i ≤ b − a − 1) do not
lie on a geodesic joining any pair of vertices S, we see that S is not a geodetic
set of G. Since T = S ∪ {vr+1} is a geodetic set of G, it follows from Theorem
1.1 that g(G) = a. It is clear that the vertex xi (1 ≤ i ≤ b − a − 1) is either an
initial vertex or a terminal vertex of any geodesic containing the vertices xi and
w1 and so each xi is weak extreme. Similarly, vr+1 is either an initial vertex or
a terminal vertex of any geodesic containing the vertices vr+1 and u1. Similarly,
v2ris either an initial vertex or a terminal vertex of any geodesic containing the
vertices v2r and w1. Hence x1, x2, . . . , xb−a, vr+1, v2r are weak extreme vertices.
Let S′ = {w1, w2, . . . , wa−2, ud−r, x1, x2, . . . , xb−a−1, vr+1, v2r}. It is easily verified
that S′ is the set of all weak extreme vertices of G. Since S′ is a double geodetic
set of G, it follows from Proposition 2.14 that dg(G) = b.

Next, assume that a = b. Add (a− 2) new vertices y1, y2, . . . , ya−2 to H and
join each yi (1 ≤ i ≤ a − 2) to the vertex vr+1 in H, and obtain a graph G′.
Then G′ has radius r and diameter d. Let S1 = {y1, y2, . . . , ya−2, ud−r, vr+1} be
the set of all weak extreme vertices of G′. Since S1 is a geodetic set as well as a
double geodetic set of G′, it follows from Theorem 1.1 and Proposition 2.14 that
g(G′) = dg(G′) = a. Thus the proof is complete.
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Theorem 3.4. If n, d ≥ 2 and l are integers such that 3 ≤ k ≤ l ≤ n and
n−d− l+1 ≥ 0, then there exists a graph G of order n diameter d with g(G) = k
and dg(G) = l.

Proof. Let Pd+1 = u0, u1, . . . , ud be a path of length d. Add k − 2 new vertices
v1, v2, . . . , vk−2 to Pd and join each vi (1 ≤ i ≤ k − 2) to u1, there by producing
a tree T. Let H be the graph obtained from T by adding (l − k) new vertices
w1, w2, . . . , wl−k to T and joining each wi (1 ≤ i ≤ l−k) to both u0 and u2. Now,
let G be the graph in Figure 3.6 obtained from H by adding n − d − l + 1 new
vertices x1, x2, . . . , xn−d−l+1 toH and joining each xi (1 ≤ i ≤ n−d−l+1) to both
u1 and u3. Then G has order n and diameter d. Let S = {ud, v1, v2, . . . , vk−2} be
the set of all extreme vertices ofG. It is not a geodetic set ofG. Since S′ = S∪{u0}
is geodetic set of G it follows from Theorem 1.1 that g(G) = k. Now, it is clear
that each vertex wi (1 ≤ i ≤ l − k) is an end of any geodesic containing the
vertex wi and v1 and so each wi is weak extreme. Similarly, u0 is an end of any
geodesic containing the vertices u0 and ud. Now, it is easily verified that S1 =
{ud, v1, v2, . . . , vk−2, w1, w2, . . . , wl−k, u0} is the set of all weak extreme vertices
of G. Since S1 is double geodetic set of G, it follows from Proposition 2.14 that
dg(G) = l.
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