THE PROJECTIVE PLANE CROSSING NUMBER OF THE CIRCULANT GRAPH $C(3 k ;\{1, k\})$

Pak Tung Ho
Department of Mathematics, Sogang University, Seoul 121-742, Korea
e-mail: ptho@sogang.ac.kr

Abstract

In this paper we prove that the projective plane crossing number of the circulant graph $C(3 k ;\{1, k\})$ is $k-1$ for $k \geq 4$, and is 1 for $k=3$. Keywords: crossing number, circulant graph, projective plane. 2010 Mathematics Subject Classification: 05C10.

1. Introduction

The crossing number is an important measure of the non-planarity of a graph. Bhatt and Leighton [1] showed that the crossing number of a network (graph) is closely related to the minimum layout area required for the implementation of a VLSI circuit for that network. In general, determining the crossing number of a graph is hard. Garey and Johnson [3] showed that it is NP-complete. In fact, Hliněný [6] has proved that the problem remains NP-complete even when restricted to cubic graphs. Moreover, the exact crossing number is not known even for specific graph families, such as complete graphs [16], complete bipartite graphs $[11,22]$, and circulant graph $[8,12,13,14,20,23]$. For more about crossing number, see $[2,21]$ and references therein.

Attention has been paid to the crossing number of graphs on surfaces $[4,5,7$, $9,10,17,18,19]$. However, exact values are known only for very restricted classes of graphs. In this paper, we compute the projective plane crossing number of the circulant graph $C(3 k ;\{1, k\})$.

Theorem 1. The projective plane crossing number of the circulant graph $C(3 k ;\{1, k\})$ is given by

$$
\operatorname{cr}_{1}(C(3 k ;\{1, k\}))= \begin{cases}k-1 & \text { for } k \geq 4 \\ 1 & \text { for } k=3\end{cases}
$$

Note that there are only few infinite classes of graphs whose projective plane crossing number are known exactly. See [9, 19].

Here are some definitions. Let G be a simple graph with the vertex set $V=V(G)$ and the edge set $E=E(G)$. The circulant graph $C(n ; S)$ is the graph with the vertex set $V(C(n ; S))=\left\{v_{i} \mid 1 \leq i \leq n\right\}$ and the edge set $E(C(n ; S))=\left\{v_{i} v_{j} \mid 1 \leq i, j \leq n,(i-j) \bmod n \in S\right\}$ where $S \subseteq\{1,2, \ldots,\lfloor n / 2\rfloor\}$.

The projective plane crossing number $c r_{1}(G)$ of G is the minimum number of crossings of all the drawings of G in the projective plane having the following properties: (i) no edge has a self-intersection; (ii) no two adjacent edges intersect; (iii) no two edges intersect each other more than once; (iv) each intersection of edges is a crossing rather than tangential; and (v) no three edges intersect in a common point. Similarly one can define the plane crossing number $\operatorname{cr}(G)$ of the graph G. In a drawing D, if an edge (or a set of edges) does not cross other edges, we call it clean; otherwise, we call it cross. For a drawing D, the total number of crossings is denoted by $v(D)$.

Let A and B be two (not necessary disjoint) subsets of the edge set E. In a drawing D, the number of crossings crossed by an edge in A and another edge in B is denoted by $v_{D}(A, B)$. In particular, $v_{D}(A, A)$ is denoted by $v_{D}(A)$, and hence $v(D)=v_{D}(E)$. By counting the number of crossings in D, we have the following:

Lemma 2. Let A, B, C be mutually disjoint subsets of E. Then,

$$
\begin{align*}
& v_{D}(A, B \cup C)=v_{D}(A, B)+v_{D}(A, C) \\
& v_{D}(A \cup B)=v_{D}(A)+v_{D}(B)+v_{D}(A, B) \tag{1}
\end{align*}
$$

The plan of this paper is as follows. In Section 2 we prove the upper bound of the projective crossing number of $C(3 k ;\{1, k\})$. In Section 3, we prove the lower bound of the projective crossing number of $C(3 k ;\{1, k\})$ by assuming Lemma 7. In Section 4, we prove Lemma 7, which says that for any drawing of $C(3 k ;\{1, k\})$ with all of its cycles being clean, its number of crossing is at least $k-1$.

2. Upper Bounds

From now on, we will denote the circulant graph $C(3 k ;\{1, k\})$ by $C(k)$ for simplicity. First we have the following:

Lemma 3. $c r_{1}(C(3)) \leq 1$.
Proof. One can refer to the drawing of $C(3)$ in the projective plane in Figure 1.

Lemma 4. $c r_{1}(C(k)) \leq k-1$ for $k \geq 4$.

Proof. For a non-planar graph G, the plane crossing number is strictly greater than the projective plane crossing number, i.e., $c r_{1}(G) \leq \operatorname{cr}(G)-1$. Lemma 4 follows from $\operatorname{cr}(C(k))=k$ for $k \geq 4$, which is proved in [12].

Figure 1. Drawing of $C(3)$.

Figure 2. $F_{1}(9,15)$.

3. Lower Bounds

Next, we have the following:
Lemma 5. $c r_{1}(C(3)) \geq 1$.
Proof. It suffices to show that $C(3)$ cannot be embedded in the projective plane. Note that $C(3)-\left\{v_{1} v_{7}, v_{2} v_{8}, v_{3} v_{6}\right\}$ is isomorphic to $F_{1}(9,15)$ (see Figure 2) in the list of the minimal forbidden subgraphs for the projective plane (see Appendix A in [15]). This shows that $C(3)$ cannot be embedded in the projective plane.

In fact, we have shown the following:
Corollary 6. If e is an edge in the cycle C_{i} (see the definition below) in $C(3)$, then $\mathrm{cr}_{1}(C(3)-e) \geq 1$.

In $C(k)$, we define

$$
C_{i}=\left\{v_{i} v_{k+i}, v_{i} v_{2 k+i}, v_{k+i} v_{2 k+i}\right\},
$$

where $1 \leq i \leq k$. We have the following:
Lemma 7. For $k \geq 4$, let D be a drawing of $C(k)$ such that C_{i} is clean for all $1 \leq i \leq k$. Then $v(D) \geq k-1$.

We postpone its proof to Section 4. By assuming Lemma 7, we are in a position to prove the lower bound of $c r_{1}(C(k))$.

Lemma 8.

$$
\begin{equation*}
\operatorname{cr}_{1}(C(k)) \geq k-1 \text { for } k \geq 4 \text {. } \tag{2}
\end{equation*}
$$

Proof. We will prove (2) by induction on k. First consider $k=4$. Suppose D is a drawing of $C(4)$. We will prove $v(D) \geq 3$ by contradiction. Suppose that $v(D) \leq 2$. Then there exists C_{i} which crosses; otherwise, if all C_{i} are clean, $v(D) \geq 3$ by Lemma 7 .

Figure 3(a)

Figure 3(b)

Figure 3(c)

Without loss of generality, we may assume that the edge $v_{1} v_{5}$ in C_{1} crosses. Then there exists an edge e in $D-v_{1} v_{5}$ such that $D-v_{1} v_{5}-e$ is an embedding in the projective plane. Note that e cannot be the edge in any cycle C_{1} : If e is an edge in C_{1} other than $v_{1} v_{5}$, then $D-C_{1}$, which is a subdivision of $C(3)$, is an embedding in the projective plane, which is impossible by Lemma 5 . If e is an edge in C_{i} with $i \neq 1$, then $D-C_{1}-e$, which is a subdivision of $C(3)$ minus an edge in the cycle C^{i} is an embedding in the projective plane, which contradicts Corollary 6.

Therefore, by symmetry, we have the following possibilities: $e=v_{2} v_{3}, e=$ $v_{4} v_{5}, e=v_{5} v_{6}, e=v_{6} v_{7}, e=v_{7} v_{8}, e=v_{8} v_{9}$. We will show that it is impossible for $C(4)-v_{1} v_{5}-e$ to be embedded in the projective plane for each of these cases, which will give the required contradiction.
First, by contracting the edges $v_{5} v_{6}$ and $v_{7} v_{8}$ in $C(4)-\left\{v_{1} v_{5}, v_{4} v_{5}, v_{8} v_{9}\right\}$, we get a graph which contains a subgraph isomorphic to $F_{4}(10,16)$ (see Figure $3(\mathrm{a})$) in the list of the minimal forbidden subgraphs for the projective plane (see Appendix A in [15]). Moreover, by contracting the edges $v_{3} v_{4}$ and $v_{5} v_{6}$ in $C(4)-\left\{v_{1} v_{5}, v_{2} v_{3}, v_{6} v_{7}\right\}$, we get a graph which contains a subgraph isomorphic to $F_{4}(10,16)$ (see Figure 3(b)).

Next we are going to show that $C(4)-\left\{v_{1} v_{5}, v_{5} v_{6}\right\}$ cannot be embedded in the projective plane. Suppose it is not true and let D be an embedding of $C(4)-\left\{v_{1} v_{5}, v_{5} v_{6}\right\}$ in the projective plane. Delete the edge $v_{2} v_{6}$ in the drawing. Since $v_{1} v_{5}$ and $v_{5} v_{6}$ are absent, we can always draw an edge connecting v_{4} and v_{9} which is close to the edges $v_{4} v_{5}$ and $v_{5} v_{9}$ without producing new crossings (see Figure 4(a)). Similarly, since $v_{2} v_{6}$ and $v_{5} v_{6}$ are absent, we can draw an edge connecting v_{7} and v_{10} which is close to the edges $v_{6} v_{7}$ and $v_{6} v_{10}$ without producing new crossings (see Figure 4(b)). Therefore, we obtain an embedding of $C(12,\{1,4\})-\left\{v_{1} v_{5}, v_{5} v_{6}, v_{2} v_{6}\right\}+\left\{v_{4} v_{9}, v_{7} v_{10}\right\}$ in the projective plane, which is impossible since it contains a minor isomorphic to $F_{4}(10,16)$ (see Figure 3(c)).

Finally, one can see that $C(12,\{1,4\})-\left\{v_{1} v_{5}, v_{7} v_{8}\right\}$ contains a minor isomorphic to $F_{5}(10,16)$ (see Figure 5) in the list of the minimal forbidden subgraphs for the projective plane (see Appendix A in [15]).

Therefore, (2) is true for $k=4$. Now suppose that (2) is true for all values less than $k \geq 5$. Let D be a drawing of $C(k)$ in the projective plane and we are going to show that $v(D) \geq k-1$.

If there exists $1 \leq i \leq 3 k$ such that $v_{i} v_{k+i}$ crosses, then by deleting $v_{i} v_{k+i}$, $v_{k+i} v_{2 k+i}, v_{2 k+i} v_{i}$, we obtain a drawing of a subdivision of $C(k-1)$, denote it by D^{\prime}. By our construction, $v\left(D^{\prime}\right) \leq v(D)-1$. On the other hand, $v\left(D^{\prime}\right) \geq k-2$ by induction assumption. This implies $v(D) \geq k-1$. Therefore, we may assume that $v_{i} v_{k+i}$ is clean in D for all $1 \leq i \leq 3 k$, i.e., C_{i} is clean for all $1 \leq i \leq k$. Then by Lemma 7 , we have $v(D) \geq k-1$.

Proof of Theorem 1. It follows from Lemma 3, 4, 5 and 8.

4. Proof of Lemma 7

This section is devoted to proving Lemma 7. Throughout this section, we assume that C_{i} is clean for $1 \leq i \leq k$, as we have assumed in Lemma 7 .

For $1 \leq i \leq k$, let

$$
F_{i}=\left\{v_{i} v_{k+i}, v_{i} v_{2 k+i}, v_{k+i} v_{2 k+i}, v_{i} v_{i+1}, v_{k+i} v_{k+i+1}, v_{2 k+i} v_{2 k+i+1}\right\}
$$

Note that the set of all F_{i} is a partition of the edge set E of $C(k)$, i.e.,

$$
\begin{equation*}
E=\bigcup_{i=1}^{k} F_{i} \text { and } F_{i} \cap F_{j}=\emptyset \text { for } i \neq j \tag{3}
\end{equation*}
$$

For $1 \leq i \leq k$, define

$$
\begin{equation*}
f_{D}\left(F_{i}\right)=v_{D}\left(F_{i}\right)+\frac{1}{2} \sum_{j \neq i} v_{D}\left(F_{i}, F_{j}\right) \tag{4}
\end{equation*}
$$

Since we have assumed that each C_{i} is clean, there are only two possible ways of drawing C_{i}, depending on whether it is contractible or not, which are shown in Figure 6(a) and 6(b).

If C_{i} and C_{i+1} are both contractible, there are three possible ways of drawing $C_{i} \cup C_{i+1}$ for each i, which are shown in Figure 7(a), 7(b) and 7(c).

Figure 6(a). C_{i} is contractible.

Figure $6(\mathrm{~b}) . C_{i}$ is non-contractible.

We have the following:
Proposition 9. If C_{i} and C_{i+1} are drawn as in Figure $7(a)$ or $7(b)$, then

$$
f_{D}\left(F_{i}\right) \geq 1
$$

Proof. Suppose $f_{D}\left(F_{i}\right)<1$. By (4), $v_{i} v_{i+1}, v_{k+i} v_{k+i+1}, v_{2 k+i} v_{2 k+i+1}$ do not cross each other. If $C_{i} \cup C_{i+1}$ is drawn as in Figure $7(\mathrm{a}), F_{i} \cup C_{i+1}$ must be drawn as in Figure 8 since C_{i}, C_{i+1} are clean and $v_{i} v_{i+1}, v_{k+i} v_{k+i+1}, v_{2 k+i} v_{2 k+i+1}$ do not cross each other. Since C_{i-1} is clean, C_{i-1} must lies entirely in one of the regions f_{1}, f_{2} or f_{3}. We may assume that C_{i-1} lies in the region f_{1}, for other cases the proof is the same. If C_{i-1} lies in f_{1}, then $v_{k+i-1} v_{k+i}$ must cross $v_{i} v_{i+1}$ or $v_{2 k+i} v_{2 k+i+1}$. On the other hand, the path $v_{k+i+1} v_{k+i+2} \cdots v_{2 k-i-1}$ must cross $v_{i} v_{i+1}$ or $v_{2 k+i} v_{2 k+i+1}$. Hence, by (4), $f_{D}\left(F_{i}\right) \geq 1$. Similarly, one can show that $f_{D}\left(F_{i}\right) \geq 1$ if $C_{i} \cup C_{i+1}$ is drawn as in Figure 7(b).

Figure 7(a)

Figure 7(c)

Proposition 10. If $C_{i} \cup C_{i+1}$ is drawn as in Figure $7(c)$ and $f_{D}\left(F_{i}\right)<1$, then $F_{i} \cup C_{i+1}$ must be drawn as in Figure 9(b).

Proof. Since $f_{D}\left(F_{i}\right)<1$, by (4), $v_{k+i} v_{k+i+1}, v_{2 k+i} v_{2 k+i+1}$ do not cross each other. Then $F_{i} \cup C_{i+1}$ must be drawn as in Figure $9(\mathrm{a})$ or $9(\mathrm{~b})$. If $F_{i} \cup C_{i+1}$ is drawn as in Figure $9(\mathrm{a})$, then C_{i-1} must lie entirely in one of the regions f_{1}, f_{2} or f_{3} since C_{i-1} is clean. We may assume that C_{i-1} lies in the region f_{1}, for other cases the proof is the same. If C_{i-1} lies in f_{1}, then $v_{i-1} v_{i}$ must cross $v_{k+i} v_{k+i+1}$ or $v_{2 k+i} v_{2 k+i+1}$ since C_{i} and C_{i+1} are clean. On the other hand, the path $v_{i+1} v_{i+2} \cdots v_{k-i-1}$ must cross F_{i}. Hence, by (4), we have $f_{D}\left(F_{i}\right) \geq 1$, which contradicts that $f_{D}\left(F_{i}\right)<1$.

Figure 8

Figure 9(a)

Figure 9(b)

Combining Proposition 9 and 10 , we have the following:
Corollary 11. If $F_{i} \cup C_{i+1}$ is not drawn as in Figure $9(\mathrm{~b})$, then $f_{D}\left(F_{i}\right) \geq 1$.
Proof. By Proposition 10, either $f_{D}\left(F_{i}\right) \geq 1$ or $C_{i} \cup C_{i+1}$ is not drawn as in Figure $7(\mathrm{c})$. In the latter case, $C_{i} \cup C_{i+1}$ must be drawn as in Figure 7(a) or 7(b). By Proposition 9, again we have $f_{D}\left(F_{i}\right) \geq 1$.

Remark 12. Hereafter, we say that $F_{j} \cup C_{j+1}$ is drawn as in Figure 9(b) if it is drawn as in Figure 9(c), i.e., replacing all the indices i by j.

Figure 9(c)

Figure 10. $F_{i} \cup C_{i+1} \cup F_{j} \cup C_{j+1}$.

Figure 9(d)

Figure 11. $F_{1} \cup F_{2} \cup C_{3}$.

Proposition 13. Suppose that $F_{i} \cup C_{i+1}$ is drawn as in Figure 9(b). If $j \neq$ $i-1, i, i+1$ such that $F_{j} \cup C_{j+1}$ is drawn as in Figure $9(\mathrm{~b})$, then F_{i} and F_{j} must cross each other. In particular, we have $f_{D}\left(F_{i}\right) \geq 1 / 2$ and $f_{D}\left(F_{j}\right) \geq 1 / 2$.

Proof. Note that two non-contractible curves in the projective plane must cross each other. Since $F_{i} \cup C_{i+1}$ and $F_{j} \cup C_{j+1}$ are drawn as in Figure 9(b) where $j \neq i-1, i+1, F_{i}$ and F_{j} must cross each other since $C_{i}, C_{i+1}, C_{j}, C_{j+1}$ are clean. See Figure 10 for a possible drawing of $F_{i} \cup C_{i+1} \cup F_{j} \cup C_{j+1}$. Since F_{i} and F_{j} cross each other, we have $v_{D}\left(F_{i}, F_{j}\right) \geq 1$, which implies that $f_{D}\left(F_{i}\right) \geq 1 / 2$ and $f_{D}\left(F_{j}\right) \geq 1 / 2$ by (4).

Here is the outline of the proof of Lemma 7. We will consider two cases:
Case 1. C_{i} is contractible for all $1 \leq i \leq k$.
Case 2. C_{i} is non-contractible for some $1 \leq i \leq k$.
For Case 1, by simple arguments, we can show that $F_{1} \cup C_{2}$ is drawn as in Figure $9(\mathrm{~b})$. Moreover, we can show that $f_{D}\left(F_{i_{0}}\right)<1$ for some $i_{0} \neq 1$. Then we will consider two cases:

Case 1.1. $i_{0} \neq 2, k$.
Case 1.2. $i_{0}=2$ or k.
Case 1.1 can be solved easily. For Case 1.2 , we will assume that $i_{0}=2$ since the proof for $i_{0}=k$ is the same. Then we will consider two cases:

Case 1.2.1. $f_{D}\left(F_{j}\right) \geq 1$ for all $j \neq 1,2$.
Case 1.2.2. $f_{D}\left(F_{j}\right)<1$ for some $j \neq 1,2$.
For Case 1.2.1, by assumption, $f_{D}\left(F_{j}\right) \geq 1$ for all $j \neq 1,2$. We just need to show that $f_{D}\left(F_{1}\right)+f_{D}\left(F_{2}\right)>0$, which implies that $v(D)=\sum_{j=1}^{k} f_{D}\left(F_{j}\right)=$ $f_{D}\left(F_{1}\right)+f_{D}\left(F_{2}\right)+\sum_{j \neq 1,2} f_{D}\left(F_{j}\right)>k-2$, and hence $v(D) \geq k-1$ since $v(D)$ is an integer. For Case 1.2.2, by assumption, $f_{D}\left(F_{j}\right)<1$ for some $j \neq 1,2$. Then we will consider two cases:

Case 1.2.2.1. $j \neq 3, k$.
Case 1.2.2.2. $j=3$ or k.
Case 1.2.2.1 can be solved easily.
For Case 1.2.2.2, we can assume that

$$
\begin{equation*}
f_{D}\left(F_{l}\right) \geq 1 \text { for } l \neq 1,2,3, k \tag{5}
\end{equation*}
$$

Otherwise, if $f_{D}\left(F_{l}\right)<1$ for some $l \neq 1,2,3, k$, then it can be reduces to Case 1.2.2.1 by taking $j=l$. By simple arguments, we can reduced it to the case when both $F_{3} \cup C_{4}$ and $F_{k} \cup C_{1}$ are drawn as in Figure 9(b). That is to say, $F_{i} \cup C_{i+1}$ is drawn as in Figure 9(b) for $i=1,2,3, k$. Then by Proposition 13, F_{1} crosses F_{3} and F_{2} crosses F_{k}. Moreover, if $k \geq 5$, then F_{1} also crosses F_{k}. All these implies

$$
\begin{equation*}
f_{D}\left(F_{1}\right) \geq 1, f_{D}\left(F_{k}\right) \geq 1, f_{D}\left(F_{2}\right) \geq 1 / 2, \text { and } f_{D}\left(F_{3}\right) \geq 1 / 2 \tag{6}
\end{equation*}
$$

Combining (5) and (6), we get $v(D) \geq k-1$. For $k=4$, we will use different arguments by making use the fact that $F_{i} \cup C_{i+1}$ is drawn as in Figure 9(b) for $i=1,2,3,4$.

Now we are ready to prove Lemma 7 .

Proof of Lemma 7. By (1), (3) and (4), the total number of crossing of the drawing D is $v(D)=v_{D}(E)=\sum_{i=1}^{k} f_{D}\left(F_{i}\right)$. Therefore, it suffices to prove that $\sum_{i=1}^{k} f_{D}\left(F_{i}\right) \geq k-1$. To prove by contradiction, we assume that

$$
\begin{equation*}
\sum_{i=1}^{k} f_{D}\left(F_{i}\right)<k-1 \tag{7}
\end{equation*}
$$

We will consider two cases: Case 1. C_{i} is contractible for all $1 \leq i \leq k$ and Case 2. C_{i} is non-contractible for some $1 \leq i \leq k$.

Case 1. Since we have assumed that C_{i} is clean for $1 \leq i \leq k$, as we have said at the beginning of this section, there are three possible ways of drawing $C_{i} \cup C_{i+1}$ for each i, which are shown in Figure 7(a), 7(b) or 7(c).

Note that (7) implies that $f_{D}\left(F_{i}\right)<1$ for some i. Without loss of generality, we may assume $i=1$, i.e.,

$$
\begin{equation*}
f_{D}\left(F_{1}\right)<1 \tag{8}
\end{equation*}
$$

By Proposition $9, C_{1} \cup C_{2}$ must be drawn as in Figure 7(c). Hence, by (8) and Proposition 10, $F_{1} \cup C_{2}$ is drawn as in Figure 9(b) (see Figure 9(d)).

There exists $i_{0} \neq 1$ such that $F_{i_{0}} \cup C_{i_{0}+1}$ is drawn as in Figure 9(b). (Otherwise, if $F_{j} \cup C_{j+1}$ is not drawn as in Figure $9(\mathrm{~b})$ for all $j \neq 1, f_{D}\left(F_{j}\right) \geq 1$ for all $j \neq 1$ by Corollary 11, which implies $\sum_{j=1}^{k} f_{D}\left(F_{j}\right) \geq \sum_{j \neq 1} f_{D}\left(F_{j}\right) \geq k-1$.) We will consider two cases: Case 1.1. $i_{0} \neq 2, k$ and Case 1.2. $i_{0}=2$ or k.

Case 1.1. If $i_{0} \neq 2, k$, i.e., $C_{i_{0}} \cup C_{i_{0}+1}$ is drawn as in Figure 9(b) for some $i_{0} \neq 1,2, k$, then by Proposition $13, F_{1}$ and $F_{i_{0}}$ cross each others,

$$
\begin{equation*}
f_{D}\left(F_{1}\right) \geq 1 / 2 \text { and } f_{D}\left(F_{i_{0}}\right) \geq 1 / 2 \tag{9}
\end{equation*}
$$

Moreover, if there exists $j \neq 1,2, i_{0}, k$ such that $f_{D}\left(F_{j}\right)<1$, then $F_{j} \cup C_{j+1}$ must be drawn as in Figure $9(\mathrm{~b})$ by Proposition 10. By Proposition 13, F_{j} and F_{1} must also cross each other. Hence, $f_{D}\left(F_{1}\right) \geq 1$ since F_{1} crosses both $F_{i_{0}}$ and F_{j}, which contradicts (8). Therefore,

$$
\begin{equation*}
f_{D}\left(F_{j}\right) \geq 1 \text { for all } j \neq 1,2, i_{0}, k \tag{10}
\end{equation*}
$$

Moreover, we can assume that

$$
\begin{equation*}
f_{D}\left(F_{2}\right) \geq 1 \text { and } f_{D}\left(F_{k}\right) \geq 1 \tag{11}
\end{equation*}
$$

(Otherwise, $f_{D}\left(F_{2}\right)<1$ or $f_{D}\left(F_{k}\right)<1$ implies that $F_{2} \cup C_{3}$ or $F_{k} \cup C_{1}$ is drawn as in Figure $9(\mathrm{~b})$ by Proposition 10. Replacing i_{0} by 2 or k, one can reduce this to Case 1.2.) Combining (9), (10) and (11), we have $\sum_{j=1}^{k} f_{D}\left(F_{j}\right) \geq f_{D}\left(F_{1}\right)+$ $f_{D}\left(F_{i_{0}}\right)+\sum_{j \neq 1, i_{0}} f_{D}\left(F_{j}\right) \geq k-1$.

Case 1.2. If $i_{0}=2$ or k, then we may assume that $i_{0}=2$ since the proof for $i_{0}=k$ is the same. Then $F_{2} \cup C_{3}$ is drawn as in Figure 9(b). We will consider two cases: Case 1.2.1. $f_{D}\left(F_{j}\right) \geq 1$ for all $j \neq 1,2$ and Case 1.2.2. $f_{D}\left(F_{j}\right)<1$ for some $j \neq 1,2$.

Case 1.2.1. By assumption,

$$
\begin{equation*}
f_{D}\left(F_{j}\right) \geq 1 \text { for all } j \neq 1,2 \tag{12}
\end{equation*}
$$

If we can show that

$$
\begin{equation*}
f_{D}\left(F_{1}\right)+f_{D}\left(F_{2}\right)>0 \tag{13}
\end{equation*}
$$

then by (12) and (13),

$$
v(D)=\sum_{j=1}^{k} f_{D}\left(F_{j}\right)=f_{D}\left(F_{1}\right)+f_{D}\left(F_{2}\right)+\sum_{j \neq 1,2} f_{D}\left(F_{j}\right)>k-2, \text { which }
$$ implies that $v(D) \geq k-1$ since the total number of crossing $v(D)$ is an integer.

Figure 12

Figure 13

Figure 14

Suppose (13) is not true, i.e.,

$$
\begin{equation*}
f_{D}\left(F_{1}\right)=f_{D}\left(F_{2}\right)=0 \tag{14}
\end{equation*}
$$

Recall that $F_{1} \cup C_{2}$ is drawn as in Figure $9(\mathrm{~d})$. Since C_{3} is clean, C_{3} must lie entirely in regions f_{1} or f_{2} in Figure $9(\mathrm{~d})$. If C_{3} lies in f_{1}, then $v_{2} v_{3}$ must cross $v_{k+1} v_{k+2}$ or $v_{2 k+1} v_{2 k+2}$. By (4), $f_{D}\left(F_{2}\right) \geq 1 / 2$, which contradicts (14). Therefore, C_{3} lies in f_{2}. By (4) and (14), $v_{2} v_{3}, v_{k+2} v_{k+3}, v_{2 k+2} v_{2 k+3}$ are clean. Then the only possible drawing of $F_{1} \cup F_{2} \cup C_{3}$ is shown as in Figure 11. (It is true up to renaming the vertices. For example, it is possible for $F_{1} \cup F_{2} \cup C_{3}$ to be drawn as in Figure 12. But one can reduce it to Figure 11 by the transformation $v_{j} \mapsto v_{j-k}$.)

Since C_{4} is clean, it must lie entirely in one of the regions in Figure 11. Note that v_{3}, v_{k+3} and $v_{2 k+3}$ do not lie in the the same region in Figure 11. No matter which region C_{4} lies in Figure 11, one of the edges $v_{3} v_{4}, v_{k+3} v_{k+4}$ and $v_{2 k+3} v_{2 k+4}$ must cross the F_{1} or F_{2} (Note that $k \geq 4$ is crucial here for C_{4} being not equal to C_{1}). Hence, $f_{D}\left(F_{1}\right)+f_{D}\left(F_{2}\right)>0$ which gives (13).

Case 1.2.2. If $f_{D}\left(F_{j}\right)<1$ for some $j \neq 1,2$, then $F_{j} \cup C_{j+1}$ must be drawn as in Figure 9(b) by Proposition 10. We will consider two cases: Case 1.2.2.1. $j \neq 3, k$ and Case 1.2.2.2. $j=3$ or k.

Case 1.2.2.1. Since $F_{j} \cup C_{j+1}$ is drawn as in Figure $9(\mathrm{~b})$ where $j \neq 1,2,3, k$, F_{j} must cross F_{1} and F_{2} by Proposition 13, since $F_{1} \cup C_{2}$ and $F_{2} \cup C_{3}$ are drawn as in Figure 9(b). This implies that, by (4),

$$
\begin{equation*}
f_{D}\left(F_{1}\right) \geq 1 / 2, f_{D}\left(F_{2}\right) \geq 1 / 2, \text { and } f_{D}\left(F_{j}\right) \geq 1 \tag{15}
\end{equation*}
$$

Note that

$$
\begin{equation*}
f_{D}\left(F_{r}\right) \geq 1 \text { for all } r \neq 1,2,3, j, k \tag{16}
\end{equation*}
$$

Otherwise, if $f_{D}\left(F_{r}\right)<1$ for some $r \neq 1,2,3, j, k$, then by Proposition 10, $F_{r} \cup C_{r+1}$ is drawn as in Figure $9(\mathrm{~b})$. By Proposition $13, F_{r}$ also crosses F_{1}. This implies $f_{D}\left(F_{1}\right) \geq 1$ since F_{1} cross F_{j} and F_{r}, which contradicts (8).

We claim that

$$
\begin{equation*}
f_{D}\left(F_{3}\right) \geq 1 \text { and } f_{D}\left(F_{k}\right) \geq 1 \tag{17}
\end{equation*}
$$

To see this, suppose that $f_{D}\left(F_{3}\right)<1$. Then $F_{3} \cup C_{4}$ is drawn as in Figure 9 (b) by Proposition 10. Hence F_{1} must cross F_{3} and F_{j} by Proposition 13, which implies that $f_{D}\left(F_{1}\right) \geq 1$ and contradicts (8). On the other hand, if $f_{D}\left(F_{k}\right)<1$, then $F_{k} \cup C_{1}$ must be drawn as in Figure $9(\mathrm{~b})$ by Proposition 10. Hence F_{2} must cross F_{k} and F_{j} by Proposition 13 , which implies that $f_{D}\left(F_{2}\right) \geq 1$ and contradicts (8). This proves (17).

Combining (15), (16) and (17), we get $\sum_{r=1}^{k} f_{D}\left(F_{r}\right)=f_{D}\left(F_{1}\right)+f_{D}\left(F_{2}\right)+$ $\sum_{r \neq 1,2} f_{D}\left(F_{r}\right) \geq k-1$.

Case 1.2.2.2. If $j=3$ or k, then $F_{k} \cup C_{1}$ or $F_{3} \cup C_{4}$ is drawn as in Figure 9 (b). We may assume that

$$
\begin{equation*}
f_{D}\left(F_{l}\right) \geq 1 \text { for } l \neq 1,2,3, k \tag{18}
\end{equation*}
$$

(Otherwise, if $f_{D}\left(F_{l}\right)<1$ for some $l \neq 1,2,3, k$, then it can be reduces to Case 1.2.2.1 by taking $j=l$.) It can be reduced to the case when both $F_{3} \cup C_{4}$ and $F_{k} \cup C_{1}$ are drawn as in Figure 9(b).

To see this, suppose that $F_{3} \cup C_{4}$ is drawn as in Figure $9(\mathrm{~b})$ and $F_{k} \cup C_{1}$ is not. Then by Corollary 11

$$
\begin{equation*}
f_{D}\left(F_{k}\right) \geq 1 \tag{19}
\end{equation*}
$$

and F_{3} must cross F_{1} by Proposition 13 since $F_{1} \cup C_{2}$ is drawn as in Figure $9(\mathrm{~b})$. We claim that F_{1} must cross F_{k}. Assuming the claim, we have

$$
\begin{equation*}
f_{D}\left(F_{1}\right) \geq 1 \text { and } f_{D}\left(F_{3}\right) \geq 1 / 2 \tag{20}
\end{equation*}
$$

Figure 15(a)

Figure 15(c)

Figure 15(b)

Figure 15(d)

Combining (18), (19) and (20), we get $\sum_{r=1}^{k} f_{D}\left(F_{r}\right)>k-2$, which implies that $v(D)=\sum_{i=1}^{k} f_{D}\left(F_{i}\right) \geq k-1$ since $v(D)$ is an integer.

To show the claim, i.e., F_{1} crosses F_{k}, we note that $F_{1} \cup C_{2}$ is drawn as in Figure 9(b). See Figure 13. Since C_{k} is clean, it must lie entirely in one of the regions in Figure 13. It is impossible for C_{k} to lie in f_{3}, otherwise, the path $v_{2} v_{3} \cdots v_{k}$ crosses C_{1}. It is also impossible for C_{i-1} to lie in f_{4}, otherwise, $v_{k} v_{k+1}$ crosses C_{2}. If C_{k} lies in $f_{1}, v_{3 k} v_{1}$ must cross with $v_{k+1} v_{k+2}$ or $v_{2 k+1} v_{2 k+2}$, which implies that F_{k} crosses F_{1}. If C_{k} lies in f_{2}, then F_{k} must cross F_{1} since $F_{k} \cup C_{1}$ is not drawn as in Figure 9(b) by our assumption (See Figure 14 for example). Therefore, F_{1} must cross F_{k}, as we claimed.

Similarly, if $F_{k} \cup C_{1}$ is drawn as in Figure 9(b) and $F_{3} \cup C_{4}$ is not, then $\sum_{r=1}^{k} f_{D}\left(F_{r}\right) \geq k-1$.

Therefore, we can assume that both $F_{3} \cup C_{4}$ and $F_{k} \cup C_{1}$ are drawn as in Figure $9(\mathrm{~b})$. Then F_{k} must cross F_{2}, and F_{1} must cross with F_{3} by Proposition 13. Moreover, if $k \geq 5$, then F_{3} and F_{k} must also cross each other by Proposition 13. All these imply that

$$
\begin{equation*}
f_{D}\left(F_{1}\right) \geq 1 / 2, f_{D}\left(F_{2}\right) \geq 1 / 2, f_{D}\left(F_{3}\right) \geq 1, \text { and } f_{D}\left(F_{k}\right) \geq 1 . \tag{21}
\end{equation*}
$$

Combining (18) and (21), we infer $\sum_{r=1}^{k} f_{D}\left(F_{r}\right) \geq k-1$ if $k \geq 5$.
On the other hand, if $k=4$, then $F_{k} \cup C_{1}=F_{4} \cup C_{1}, F_{1} \cup C_{2}, F_{2} \cup C_{3}$ and $F_{3} \cup C_{4}$ are drawn as in Figure 9(b) by assumptions. By Proposition 13, F_{1} must cross F_{3}, and F_{2} must cross F_{4}. This implies that

$$
\begin{equation*}
f_{D}\left(F_{i}\right) \geq 1 / 2 \text { for } 1 \leq i \leq 4 \tag{22}
\end{equation*}
$$

We will show that $v(D) \geq 3$. By contradiction, suppose that $v(D) \leq 2$. By (1) and (22), we have

$$
\begin{equation*}
f_{D}\left(F_{1}\right)=f_{D}\left(F_{2}\right)=f_{D}\left(F_{3}\right)=f_{D}\left(F_{4}\right)=1 / 2 \tag{23}
\end{equation*}
$$

Since F_{1} crosses F_{3}, by (4) and (23) we get

$$
\begin{equation*}
v_{D}\left(F_{1}, F_{3}\right)=1, v_{D}\left(F_{1}, F_{j}\right)=0 \text { for } j \neq 3, v_{D}\left(F_{3}, F_{j}\right)=0 \text { for } j \neq 1 . \tag{24}
\end{equation*}
$$

Similarly, since F_{2} crosses F_{4}, by (4) and (23) we get

$$
\begin{equation*}
v_{D}\left(F_{2}, F_{4}\right)=1, v_{D}\left(F_{2}, F_{j}\right)=0 \text { for } j \neq 4, v_{D}\left(F_{4}, F_{j}\right)=0 \text { for } j \neq 2 . \tag{25}
\end{equation*}
$$

Since $F_{1} \cup C_{2}$ and $F_{3} \cup C_{4}$ are drawn as in Figure 9(b), the only possible drawing of $F_{1} \cup C_{2} \cup F_{3} \cup C_{4}$ is shown in Figure 15(a) in view of (24) and (25). However, one can show that it is impossible for (24), (25) to hold. For example, if $F_{1} \cup$ $C_{2} \cup F_{3} \cup C_{4}$ is drawn in Figure 15(b), then the edge $v_{8} v_{9}$ must cross with F_{1} or F_{3}, which contradicts (24); and if $F_{1} \cup C_{2} \cup F_{3} \cup C_{4}$ is drawn in Figure 15(c), then the edge $v_{2} v_{3}$ must lie entirely in the region f, as in Figure 15(d), since $v_{D}\left(F_{2}, F_{j}\right)=0$ for $j \neq 4$ by (25). However, in Figure 15(d), no matter how $v_{6} v_{7}$
is drawn, $v_{6} v_{7}$ must either (i) cross $v_{2} v_{3}$ which contradicts (25), or (ii) cross C_{i} which contradicts that C_{i} are all clean, or (iii) cross F_{1} or F_{3} which contradicts (25). We leave other cases to the reader.

Case 2. If there exists $1 \leq i \leq k$ such that C_{i} is non-contractible, then we may assume that C_{1} is non-contractible. Then C_{i} is contractible for all $i \neq 1$. (Otherwise, C_{i} crosses C_{1} since two non-contractible curves in the projective plane must cross each other. This contradicts the assumption that all C_{i} are clean.) Since C_{i} and C_{i+1} are clean and contractible for $i \neq 1, k$, there are three possible ways of drawing $C_{i} \cup C_{i+1}$, which are shown in Figure 7(a), 7(b) or 7(c).

We claim that

$$
\begin{equation*}
f_{D}\left(F_{i}\right) \geq 1 \text { for } i \neq 1, k . \tag{26}
\end{equation*}
$$

To prove this, suppose that $f_{D}\left(F_{i}\right)<1$ for some $i \neq 1, k$. By Corollary 11, $F_{i} \cup C_{i+1}$ must be drawn as in Figure 9(b), which crosses the non-contractible C_{1}. This contradicts that C_{1} is clean. This proves (26).

Now we are going to show that

$$
\begin{equation*}
f_{D}\left(F_{1}\right)+f_{D}\left(F_{k}\right)>0 \tag{27}
\end{equation*}
$$

Figure 16. $C_{1} \cup C_{2}$.
Combining this with (26), we will get $\sum_{r=1}^{k} f_{D}\left(F_{r}\right)>k-2$, which gives $v(D)=$ $\sum_{i=1}^{k} f_{D}\left(F_{i}\right) \geq k-1$ since $v(D)$ is an integer. Suppose that (27) is not true, i.e.,

$$
\begin{equation*}
f_{D}\left(F_{1}\right)=f_{D}\left(F_{k}\right)=0 . \tag{28}
\end{equation*}
$$

Since C_{1} is non-contractile and C_{2} is contractible, $C_{1} \cup C_{2}$ must be drawn as in Figure 16. On the other hand, by the same reasons, $C_{1} \cup C_{k}$ must be drawn as in Figure 16 by replacing C_{2} by C_{k}.
By (4) and (28), $v_{1} v_{2}, v_{k+1} v_{k+2}, v_{2 k+1} v_{2 k+2}$ do not cross. From Figure 16, one can see that there are three possible ways of drawing $F_{1} \cup C_{2}$, which are shown in Figure 17(a), 17(b) and 17(c).

Figure 17(a)

Figure 17(b)

Figure 17(c)

If $F_{1} \cup C_{2}$ is drawn as in Figure $17(\mathrm{~b})$ and $17(\mathrm{c})$, then C_{3} must lie entirely in one of the regions since C_{3} is clean. Then F_{2} must cross with F_{1} since there is no region in Figure $17(\mathrm{~b})$ or $17(\mathrm{c})$ containing all of the vertices v_{2}, v_{k+2} and $v_{2 k+2}$. This implies $f_{D}\left(F_{1}\right)>0$, which contradicts (28).

Therefore, $F_{1} \cup C_{2}$ must be drawn as in Figure 17(a). By the same argument, $F_{k} \cup C_{1}$ must be drawn as in Figure $17\left(\right.$ a) by replacing C_{2} by C_{k}. Hence, $F_{k} \cup$ $F_{1} \cup C_{2}$ must be drawn as in Figure 18(a) or 18(b) since F_{1} does not cross F_{k} by (28).

Figure 18(a)

Figure 18(b)

Note that C_{3} must lie in one of the regions in Figure 18(a) or 18(b). Since there exists no region in Figure 18(a) or 18(b) which contains all of the vertices v_{2}, v_{k+2} and $v_{2 k+2}, F_{3}$ must cross either F_{k} or $F_{1}\left(k \geq 4\right.$ is needed here for F_{3} being not equal to F_{k}). This implies that $f_{D}\left(F_{1}\right)>0$ or $f_{D}\left(F_{k}\right)>0$, which gives (27).

This finishes the the proof of Lemma 7.

References

[1] S.N. Bhatt and F.T. Leighton, A framework for solving VLSI graph layout problems, J. Comput. System Sci. 28 (1984) 300-343.
[2] P. Erdös, and R.K. Guy, Crossing number problems, Amer. Math. Monthly 80 (1973) 52-58.
[3] M.R. Garey and D.S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic Discrete Methods 1 (1983) 312-316.
[4] R.K. Guy and T.A. Jenkyns, The toroidal crossing number of $K_{m, n}$, J. Combin. Theory 6 (1969) 235-250.
[5] R.K. Guy, T. Jenkyns and J. Schaer, The toroidal crossing number of the complete graph, J. Combin. Theory 4 (1968) 376-390.
[6] P. Hliněný, Crossing number is hard for cubic graphs, J. Combin. Theory (B) 96 (2006) 455-471.
[7] P.T. Ho, A proof of the crossing number of $K_{3, n}$ in a surface, Discuss. Math. Graph Theory 27 (2007) 549-551.
[8] P.T. Ho, The crossing number of $C(3 k+1 ;\{1, k\})$, Discrete Math. 307 (2007) 27712774.
[9] P.T. Ho, The crossing number of $K_{4, n}$ on the projective plane, Discrete Math. 304 (2005) 23-34.
[10] P.T. Ho, The toroidal crossing number of $K_{4, n}$, Discrete Math. 309 (2009) 32383248.
[11] D.J. Kleitman, The crossing number of $K_{5, n}$, J. Combin. Theory 9 (1970) 315-323.
[12] X. Lin, Y. Yang, J. Lu and X. Hao, The crossing number of $C(m k ;\{1, k\})$, Graphs Combin. 21 (2005) 89-96.
[13] X. Lin, Y. Yang, J. Lu and X. Hao, The crossing number of $C(n ;\{1,\lfloor n / 2\rfloor-1\})$, Util. Math. 71 (2006) 245-255.
[14] D. Ma, H. Ren and J. Lu, The crossing number of the circular graph $C(2 m+2, m)$, Discrete Math. 304 (2005) 88-93.
[15] B. Mohar and C. Thomassen, Graphs on Surfaces (Johns Hopkins University Press, Baltimore, 2001).
[16] S. Pan and R.B. Richter, The crossing number of K_{11} is 100, J. Graph Theory 56 (2007) 128-134.
[17] R.B. Richter and J. Širáň, The crossing number of $K_{3, n}$ in a surface, J. Graph Theory 21 (1996) 51-54.
[18] A. Riskin, The genus 2 crossing number of K_{9}, Discrete Math. 145 (1995) 211-227.
[19] A. Riskin, The projective plane crossing number of $C_{3} \times C_{n}$, J. Graph Theory 17 (1993) 683-693.
[20] G. Salazar, On the crossing numbers of loop networks and generalized Petersen graphs, Discrete Math. 302 (2005) 243-253.
[21] L.A. Székely, A successful concept for measuring non-planarity of graphs: the crossing number, Discrete Math. 276 (2004) 331-352.
[22] D.R. Woodall, Cyclic-order graphs and Zarankiewicz's crossing number conjecture, J. Graph Theory 17 (1993) 657-671.
[23] Y. Yang, X. Lin, J. Lu and X. Hao, The crossing number of $C(n ;\{1,3\})$, Discrete Math. 289 (2004) 107-118.

Received 2 September 2010
Revised 26 January 2011
Accepted 26 January 2011

