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Abstract

In this paper we prove that the projective plane crossing number of the
circulant graph C(3k; {1, k}) is k − 1 for k ≥ 4, and is 1 for k = 3.
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1. Introduction

The crossing number is an important measure of the non-planarity of a graph.
Bhatt and Leighton [1] showed that the crossing number of a network (graph)
is closely related to the minimum layout area required for the implementation
of a VLSI circuit for that network. In general, determining the crossing number
of a graph is hard. Garey and Johnson [3] showed that it is NP-complete. In
fact, Hliněný [6] has proved that the problem remains NP-complete even when
restricted to cubic graphs. Moreover, the exact crossing number is not known
even for specific graph families, such as complete graphs [16], complete bipartite
graphs [11, 22], and circulant graph [8, 12, 13, 14, 20, 23]. For more about crossing
number, see [2, 21] and references therein.

Attention has been paid to the crossing number of graphs on surfaces [4, 5, 7,
9, 10, 17, 18, 19]. However, exact values are known only for very restricted classes
of graphs. In this paper, we compute the projective plane crossing number of the
circulant graph C(3k; {1, k}).

Theorem 1. The projective plane crossing number of the circulant graph

C(3k; {1, k}) is given by

cr1(C(3k; {1, k})) =

{

k − 1 for k ≥ 4,
1 for k = 3.
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Note that there are only few infinite classes of graphs whose projective plane
crossing number are known exactly. See [9, 19].

Here are some definitions. Let G be a simple graph with the vertex set
V = V (G) and the edge set E = E(G). The circulant graph C(n;S) is the
graph with the vertex set V (C(n;S)) = {vi | 1 ≤ i ≤ n} and the edge set
E(C(n;S)) = {vivj | 1 ≤ i, j ≤ n, (i−j) mod n ∈ S} where S ⊆ {1, 2, . . . , ⌊n/2⌋}.

The projective plane crossing number cr1(G) of G is the minimum number
of crossings of all the drawings of G in the projective plane having the following
properties: (i) no edge has a self-intersection; (ii) no two adjacent edges intersect;
(iii) no two edges intersect each other more than once; (iv) each intersection of
edges is a crossing rather than tangential; and (v) no three edges intersect in a
common point. Similarly one can define the plane crossing number cr(G) of the
graph G. In a drawing D, if an edge (or a set of edges) does not cross other edges,
we call it clean; otherwise, we call it cross. For a drawing D, the total number
of crossings is denoted by v(D).

Let A and B be two (not necessary disjoint) subsets of the edge set E. In
a drawing D, the number of crossings crossed by an edge in A and another edge
in B is denoted by vD(A,B). In particular, vD(A,A) is denoted by vD(A), and
hence v(D) = vD(E). By counting the number of crossings in D, we have the
following:

Lemma 2. Let A,B,C be mutually disjoint subsets of E. Then,

vD(A,B ∪ C) = vD(A,B) + vD(A,C),

vD(A ∪B) = vD(A) + vD(B) + vD(A,B).
(1)

The plan of this paper is as follows. In Section 2 we prove the upper bound of
the projective crossing number of C(3k; {1, k}). In Section 3, we prove the lower
bound of the projective crossing number of C(3k; {1, k}) by assuming Lemma 7.
In Section 4, we prove Lemma 7, which says that for any drawing of C(3k; {1, k})
with all of its cycles being clean, its number of crossing is at least k − 1.

2. Upper Bounds

From now on, we will denote the circulant graph C(3k; {1, k}) by C(k) for sim-
plicity. First we have the following:

Lemma 3. cr1(C(3)) ≤ 1.

Proof. One can refer to the drawing of C(3) in the projective plane in Figure 1.

Lemma 4. cr1(C(k)) ≤ k − 1 for k ≥ 4.
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Proof. For a non-planar graph G, the plane crossing number is strictly greater
than the projective plane crossing number, i.e., cr1(G) ≤ cr(G) − 1. Lemma 4
follows from cr(C(k)) = k for k ≥ 4, which is proved in [12].

··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··

··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

∧ ∨

<

>

•

•

•

v1

v4

v7�
�

❅
❅ •

•

•❅
❅

�
�
v2

v5

v8

•

•

•

v6

v9

v3

�
��

❅
❅❅

Figure 1. Drawing of C(3).
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Figure 2. F1(9, 15).

3. Lower Bounds

Next, we have the following:

Lemma 5. cr1(C(3)) ≥ 1.

Proof. It suffices to show that C(3) cannot be embedded in the projective plane.
Note that C(3)−{v1v7, v2v8, v3v6} is isomorphic to F1(9, 15) (see Figure 2) in the
list of the minimal forbidden subgraphs for the projective plane (see Appendix A
in [15]). This shows that C(3) cannot be embedded in the projective plane.

In fact, we have shown the following:

Corollary 6. If e is an edge in the cycle Ci (see the definition below) in C(3),
then cr1(C(3)− e) ≥ 1.

In C(k), we define

Ci = {vivk+i, viv2k+i, vk+iv2k+i},

where 1 ≤ i ≤ k. We have the following:

Lemma 7. For k ≥ 4, let D be a drawing of C(k) such that Ci is clean for all

1 ≤ i ≤ k. Then v(D) ≥ k − 1.
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We postpone its proof to Section 4. By assuming Lemma 7, we are in a position
to prove the lower bound of cr1(C(k)).

Lemma 8.

cr1(C(k)) ≥ k − 1 for k ≥ 4.(2)

Proof. We will prove (2) by induction on k. First consider k = 4. Suppose D
is a drawing of C(4). We will prove v(D) ≥ 3 by contradiction. Suppose that
v(D) ≤ 2. Then there exists Ci which crosses; otherwise, if all Ci are clean,
v(D) ≥ 3 by Lemma 7.
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Figure 3(b)

• •

•

• •

•

•

•

•

•

v7 v9

v8

v10 v1

v2

v3

v4

v11

v12

✟✟✟✟

❍❍❍❍

❍❍❍❍

✟✟✟✟

✁
✁

✁
✁

✂
✂
✂
✂
✂
✂✂

❅
❅

�
�

✂
✂
✂
✂
✂
✂✂

✁
✁
✁
✁

�
�

❅
❅

❍❍❍❍

❍❍❍❍

Figure 3(c)

Without loss of generality, we may assume that the edge v1v5 in C1 crosses. Then
there exists an edge e in D − v1v5 such that D − v1v5 − e is an embedding in
the projective plane. Note that e cannot be the edge in any cycle C1: If e is an
edge in C1 other than v1v5, then D − C1, which is a subdivision of C(3), is an
embedding in the projective plane, which is impossible by Lemma 5. If e is an
edge in Ci with i 6= 1, then D − C1 − e, which is a subdivision of C(3) minus an
edge in the cycle Ci is an embedding in the projective plane, which contradicts
Corollary 6.

Therefore, by symmetry, we have the following possibilities: e = v2v3, e =
v4v5, e = v5v6, e = v6v7, e = v7v8, e = v8v9. We will show that it is impossible
for C(4)−v1v5−e to be embedded in the projective plane for each of these cases,
which will give the required contradiction.

First, by contracting the edges v5v6 and v7v8 in C(4) − {v1v5, v4v5, v8v9}, we
get a graph which contains a subgraph isomorphic to F4(10, 16) (see Figure
3(a)) in the list of the minimal forbidden subgraphs for the projective plane
(see Appendix A in [15]). Moreover, by contracting the edges v3v4 and v5v6 in
C(4) − {v1v5, v2v3, v6v7}, we get a graph which contains a subgraph isomorphic
to F4(10, 16) (see Figure 3(b)).
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Next we are going to show that C(4) − {v1v5, v5v6} cannot be embedded in
the projective plane. Suppose it is not true and let D be an embedding of
C(4)− {v1v5, v5v6} in the projective plane. Delete the edge v2v6 in the drawing.
Since v1v5 and v5v6 are absent, we can always draw an edge connecting v4 and
v9 which is close to the edges v4v5 and v5v9 without producing new crossings
(see Figure 4(a)). Similarly, since v2v6 and v5v6 are absent, we can draw an
edge connecting v7 and v10 which is close to the edges v6v7 and v6v10 without
producing new crossings (see Figure 4(b)). Therefore, we obtain an embedding
of C(12, {1, 4})− {v1v5, v5v6, v2v6}+ {v4v9, v7v10} in the projective plane, which
is impossible since it contains a minor isomorphic to F4(10, 16) (see Figure 3(c)).

Finally, one can see that C(12, {1, 4})−{v1v5, v7v8} contains a minor isomor-
phic to F5(10, 16) (see Figure 5) in the list of the minimal forbidden subgraphs
for the projective plane (see Appendix A in [15]).

Therefore, (2) is true for k = 4. Now suppose that (2) is true for all values
less than k ≥ 5. Let D be a drawing of C(k) in the projective plane and we are
going to show that v(D) ≥ k − 1.

If there exists 1 ≤ i ≤ 3k such that vivk+i crosses, then by deleting vivk+i,
vk+iv2k+i, v2k+ivi, we obtain a drawing of a subdivision of C(k− 1), denote it by
D

′

. By our construction, v(D
′

) ≤ v(D) − 1. On the other hand, v(D
′

) ≥ k − 2
by induction assumption. This implies v(D) ≥ k− 1. Therefore, we may assume
that vivk+i is clean in D for all 1 ≤ i ≤ 3k, i.e., Ci is clean for all 1 ≤ i ≤ k.
Then by Lemma 7, we have v(D) ≥ k − 1.

Proof of Theorem 1. It follows from Lemma 3, 4, 5 and 8.

4. Proof of Lemma 7

This section is devoted to proving Lemma 7. Throughout this section, we assume
that Ci is clean for 1 ≤ i ≤ k, as we have assumed in Lemma 7.



96 P.T. Ho

For 1 ≤ i ≤ k, let

Fi = {vivk+i, viv2k+i, vk+iv2k+i, vivi+1, vk+ivk+i+1, v2k+iv2k+i+1}.

Note that the set of all Fi is a partition of the edge set E of C(k), i.e.,

E =
k
⋃

i=1

Fi and Fi ∩ Fj = ∅ for i 6= j.(3)

For 1 ≤ i ≤ k, define

fD(Fi) = vD(Fi) +
1

2

∑

j 6=i

vD(Fi, Fj).(4)

Since we have assumed that each Ci is clean, there are only two possible ways of
drawing Ci, depending on whether it is contractible or not, which are shown in
Figure 6(a) and 6(b).

If Ci and Ci+1 are both contractible, there are three possible ways of drawing
Ci ∪ Ci+1 for each i, which are shown in Figure 7(a), 7(b) and 7(c).
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Figure 6(a). Ci is contractible.
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We have the following:

Proposition 9. If Ci and Ci+1 are drawn as in Figure 7(a) or 7(b), then
fD(Fi) ≥ 1.

Proof. Suppose fD(Fi) < 1. By (4), vivi+1, vk+ivk+i+1, v2k+iv2k+i+1 do not cross
each other. If Ci ∪ Ci+1 is drawn as in Figure 7(a), Fi ∪ Ci+1 must be drawn
as in Figure 8 since Ci, Ci+1 are clean and vivi+1, vk+ivk+i+1, v2k+iv2k+i+1 do
not cross each other. Since Ci−1 is clean, Ci−1 must lies entirely in one of the
regions f1, f2 or f3. We may assume that Ci−1 lies in the region f1, for other
cases the proof is the same. If Ci−1 lies in f1, then vk+i−1vk+i must cross vivi+1

or v2k+iv2k+i+1. On the other hand, the path vk+i+1vk+i+2 · · · v2k−i−1 must cross
vivi+1 or v2k+iv2k+i+1. Hence, by (4), fD(Fi) ≥ 1. Similarly, one can show that
fD(Fi) ≥ 1 if Ci ∪ Ci+1 is drawn as in Figure 7(b).
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Proposition 10. If Ci ∪ Ci+1 is drawn as in Figure 7(c) and fD(Fi) < 1, then
Fi ∪ Ci+1 must be drawn as in Figure 9(b).

Proof. Since fD(Fi) < 1, by (4), vk+ivk+i+1, v2k+iv2k+i+1 do not cross each
other. Then Fi ∪ Ci+1 must be drawn as in Figure 9(a) or 9(b). If Fi ∪ Ci+1

is drawn as in Figure 9(a), then Ci−1 must lie entirely in one of the regions f1,
f2 or f3 since Ci−1 is clean. We may assume that Ci−1 lies in the region f1,
for other cases the proof is the same. If Ci−1 lies in f1, then vi−1vi must cross
vk+ivk+i+1 or v2k+iv2k+i+1 since Ci and Ci+1 are clean. On the other hand, the
path vi+1vi+2 · · · vk−i−1 must cross Fi. Hence, by (4), we have fD(Fi) ≥ 1, which
contradicts that fD(Fi) < 1.

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

· · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · ·

∧ ∨

<

>

•

•

•

vk+i

v2k+i

vi�
�

❅
❅

•

•

•

vk+i+1

v2k+i+1

vi+1

✚
✚
✚

✚
✚
✚

❩
❩
❩

❩
❩
❩❇
❇❇

✂
✂✂

f1

f2

f3

Figure 8

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

· · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · ·

∧ ∨

<

>

•

•

•

vk+i

v2k+i

vi�
�

❅
❅ •

•

•❅
❅

�
�
vk+i+1

v2k+i+1

vi+1
f1

f2

f3

Figure 9(a)

··
··
··
··
··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
··
··
··
··
··
·

· · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · ·

∧ ∨

<

>

•

•

•

vk+i

v2k+i

vi�
�

❅
❅ •

•

•❅
❅

�
�
vk+i+1

v2k+i+1

vi+1

Figure 9(b)

Combining Proposition 9 and 10, we have the following:

Corollary 11. If Fi ∪ Ci+1 is not drawn as in Figure 9(b), then fD(Fi) ≥ 1.

Proof. By Proposition 10, either fD(Fi) ≥ 1 or Ci ∪ Ci+1 is not drawn as in
Figure 7(c). In the latter case, Ci∪Ci+1 must be drawn as in Figure 7(a) or 7(b).
By Proposition 9, again we have fD(Fi) ≥ 1.
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Remark 12. Hereafter, we say that Fj ∪Cj+1 is drawn as in Figure 9(b) if it is
drawn as in Figure 9(c), i.e., replacing all the indices i by j.
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Figure 10. Fi ∪ Ci+1 ∪ Fj ∪ Cj+1.
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Figure 11. F1 ∪ F2 ∪ C3.

Proposition 13. Suppose that Fi ∪ Ci+1 is drawn as in Figure 9(b). If j 6=
i− 1, i, i+1 such that Fj ∪Cj+1 is drawn as in Figure 9(b), then Fi and Fj must

cross each other. In particular, we have fD(Fi) ≥ 1/2 and fD(Fj) ≥ 1/2.

Proof. Note that two non-contractible curves in the projective plane must cross
each other. Since Fi ∪ Ci+1 and Fj ∪ Cj+1 are drawn as in Figure 9(b) where
j 6= i−1, i+1, Fi and Fj must cross each other since Ci, Ci+1, Cj , Cj+1 are clean.
See Figure 10 for a possible drawing of Fi ∪ Ci+1 ∪ Fj ∪ Cj+1. Since Fi and Fj

cross each other, we have vD(Fi, Fj) ≥ 1, which implies that fD(Fi) ≥ 1/2 and
fD(Fj) ≥ 1/2 by (4).
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Here is the outline of the proof of Lemma 7. We will consider two cases:

Case 1. Ci is contractible for all 1 ≤ i ≤ k.

Case 2. Ci is non-contractible for some 1 ≤ i ≤ k.

For Case 1, by simple arguments, we can show that F1∪C2 is drawn as in Figure
9(b). Moreover, we can show that fD(Fi0) < 1 for some i0 6= 1. Then we will
consider two cases:

Case 1.1. i0 6= 2, k.

Case 1.2. i0 = 2 or k.

Case 1.1 can be solved easily. For Case 1.2, we will assume that i0 = 2 since the
proof for i0 = k is the same. Then we will consider two cases:

Case 1.2.1. fD(Fj) ≥ 1 for all j 6= 1, 2.

Case 1.2.2. fD(Fj) < 1 for some j 6= 1, 2.

For Case 1.2.1, by assumption, fD(Fj) ≥ 1 for all j 6= 1, 2. We just need to

show that fD(F1) + fD(F2) > 0, which implies that v(D) =
∑k

j=1
fD(Fj) =

fD(F1) + fD(F2) +
∑

j 6=1,2 fD(Fj) > k− 2, and hence v(D) ≥ k− 1 since v(D) is
an integer. For Case 1.2.2, by assumption, fD(Fj) < 1 for some j 6= 1, 2. Then
we will consider two cases:

Case 1.2.2.1. j 6= 3, k.

Case 1.2.2.2. j = 3 or k.

Case 1.2.2.1 can be solved easily.

For Case 1.2.2.2, we can assume that

fD(Fl) ≥ 1 for l 6= 1, 2, 3, k.(5)

Otherwise, if fD(Fl) < 1 for some l 6= 1, 2, 3, k, then it can be reduces to Case
1.2.2.1 by taking j = l. By simple arguments, we can reduced it to the case when
both F3∪C4 and Fk ∪C1 are drawn as in Figure 9(b). That is to say, Fi∪Ci+1 is
drawn as in Figure 9(b) for i = 1, 2, 3, k. Then by Proposition 13, F1 crosses F3

and F2 crosses Fk. Moreover, if k ≥ 5, then F1 also crosses Fk. All these implies

fD(F1) ≥ 1, fD(Fk) ≥ 1, fD(F2) ≥ 1/2, and fD(F3) ≥ 1/2.(6)

Combining (5) and (6), we get v(D) ≥ k − 1. For k = 4, we will use different
arguments by making use the fact that Fi ∪ Ci+1 is drawn as in Figure 9(b) for
i = 1, 2, 3, 4.

Now we are ready to prove Lemma 7.
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Proof of Lemma 7. By (1), (3) and (4), the total number of crossing of the
drawing D is v(D) = vD(E) =

∑k
i=1

fD(Fi). Therefore, it suffices to prove that
∑k

i=1
fD(Fi) ≥ k − 1. To prove by contradiction, we assume that

k
∑

i=1

fD(Fi) < k − 1.(7)

We will consider two cases: Case 1. Ci is contractible for all 1 ≤ i ≤ k and Case
2. Ci is non-contractible for some 1 ≤ i ≤ k.

Case 1. Since we have assumed that Ci is clean for 1 ≤ i ≤ k, as we have
said at the beginning of this section, there are three possible ways of drawing
Ci ∪ Ci+1 for each i, which are shown in Figure 7(a), 7(b) or 7(c).

Note that (7) implies that fD(Fi) < 1 for some i. Without loss of generality,
we may assume i = 1, i.e.,

fD(F1) < 1.(8)

By Proposition 9, C1 ∪ C2 must be drawn as in Figure 7(c). Hence, by (8) and
Proposition 10, F1 ∪ C2 is drawn as in Figure 9(b) (see Figure 9(d)).

There exists i0 6= 1 such that Fi0 ∪ Ci0+1 is drawn as in Figure 9(b). (Oth-
erwise, if Fj ∪ Cj+1 is not drawn as in Figure 9(b) for all j 6= 1, fD(Fj) ≥ 1 for

all j 6= 1 by Corollary 11, which implies
∑k

j=1
fD(Fj) ≥

∑

j 6=1
fD(Fj) ≥ k − 1.)

We will consider two cases: Case 1.1. i0 6= 2, k and Case 1.2. i0 = 2 or k.

Case 1.1. If i0 6= 2, k, i.e., Ci0 ∪ Ci0+1 is drawn as in Figure 9(b) for some
i0 6= 1, 2, k, then by Proposition 13, F1 and Fi0 cross each others,

fD(F1) ≥ 1/2 and fD(Fi0) ≥ 1/2.(9)

Moreover, if there exists j 6= 1, 2, i0, k such that fD(Fj) < 1, then Fj ∪Cj+1 must
be drawn as in Figure 9(b) by Proposition 10. By Proposition 13, Fj and F1

must also cross each other. Hence, fD(F1) ≥ 1 since F1 crosses both Fi0 and Fj ,
which contradicts (8). Therefore,

fD(Fj) ≥ 1 for all j 6= 1, 2, i0, k.(10)

Moreover, we can assume that

fD(F2) ≥ 1 and fD(Fk) ≥ 1.(11)

(Otherwise, fD(F2) < 1 or fD(Fk) < 1 implies that F2 ∪ C3 or Fk ∪ C1 is drawn
as in Figure 9(b) by Proposition 10. Replacing i0 by 2 or k, one can reduce this
to Case 1.2.) Combining (9), (10) and (11), we have

∑k
j=1

fD(Fj) ≥ fD(F1) +
fD(Fi0) +

∑

j 6=1,i0
fD(Fj) ≥ k − 1.
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Case 1.2. If i0 = 2 or k, then we may assume that i0 = 2 since the proof
for i0 = k is the same. Then F2 ∪ C3 is drawn as in Figure 9(b). We will
consider two cases: Case 1.2.1. fD(Fj) ≥ 1 for all j 6= 1, 2 and Case 1.2.2.
fD(Fj) < 1 for some j 6= 1, 2.

Case 1.2.1. By assumption,

fD(Fj) ≥ 1 for all j 6= 1, 2.(12)

If we can show that

fD(F1) + fD(F2) > 0,(13)

then by (12) and (13),

v(D) =
∑k

j=1
fD(Fj) = fD(F1) + fD(F2) +

∑

j 6=1,2 fD(Fj) > k − 2, which
implies that v(D) ≥ k − 1 since the total number of crossing v(D) is an integer.
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Suppose (13) is not true, i.e.,

fD(F1) = fD(F2) = 0.(14)

Recall that F1 ∪ C2 is drawn as in Figure 9(d). Since C3 is clean, C3 must
lie entirely in regions f1 or f2 in Figure 9(d). If C3 lies in f1, then v2v3 must
cross vk+1vk+2 or v2k+1v2k+2. By (4), fD(F2) ≥ 1/2, which contradicts (14).
Therefore, C3 lies in f2. By (4) and (14), v2v3, vk+2vk+3, v2k+2v2k+3 are clean.
Then the only possible drawing of F1 ∪ F2 ∪ C3 is shown as in Figure 11. (It is
true up to renaming the vertices. For example, it is possible for F1∪F2∪C3 to be
drawn as in Figure 12. But one can reduce it to Figure 11 by the transformation
vj 7→ vj−k.)
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Since C4 is clean, it must lie entirely in one of the regions in Figure 11. Note
that v3, vk+3 and v2k+3 do not lie in the the same region in Figure 11. No matter
which region C4 lies in Figure 11, one of the edges v3v4, vk+3vk+4 and v2k+3v2k+4

must cross the F1 or F2 (Note that k ≥ 4 is crucial here for C4 being not equal
to C1). Hence, fD(F1) + fD(F2) > 0 which gives (13).

Case 1.2.2. If fD(Fj) < 1 for some j 6= 1, 2, then Fj ∪ Cj+1 must be drawn
as in Figure 9(b) by Proposition 10. We will consider two cases: Case 1.2.2.1.
j 6= 3, k and Case 1.2.2.2. j = 3 or k.

Case 1.2.2.1. Since Fj ∪ Cj+1 is drawn as in Figure 9(b) where j 6= 1, 2, 3, k,
Fj must cross F1 and F2 by Proposition 13, since F1 ∪C2 and F2 ∪C3 are drawn
as in Figure 9(b). This implies that, by (4),

fD(F1) ≥ 1/2, fD(F2) ≥ 1/2, and fD(Fj) ≥ 1.(15)

Note that

fD(Fr) ≥ 1 for all r 6= 1, 2, 3, j, k.(16)

Otherwise, if fD(Fr) < 1 for some r 6= 1, 2, 3, j, k , then by Proposition 10,
Fr ∪Cr+1 is drawn as in Figure 9(b). By Proposition 13, Fr also crosses F1. This
implies fD(F1) ≥ 1 since F1 cross Fj and Fr, which contradicts (8).

We claim that

fD(F3) ≥ 1 and fD(Fk) ≥ 1.(17)

To see this, suppose that fD(F3) < 1. Then F3∪C4 is drawn as in Figure 9(b) by
Proposition 10. Hence F1 must cross F3 and Fj by Proposition 13, which implies
that fD(F1) ≥ 1 and contradicts (8). On the other hand, if fD(Fk) < 1, then
Fk ∪C1 must be drawn as in Figure 9(b) by Proposition 10. Hence F2 must cross
Fk and Fj by Proposition 13, which implies that fD(F2) ≥ 1 and contradicts (8).
This proves (17).

Combining (15), (16) and (17), we get
∑k

r=1
fD(Fr) = fD(F1) + fD(F2) +

∑

r 6=1,2 fD(Fr) ≥ k − 1.

Case 1.2.2.2. If j = 3 or k, then Fk ∪ C1 or F3 ∪ C4 is drawn as in Figure
9(b). We may assume that

fD(Fl) ≥ 1 for l 6= 1, 2, 3, k.(18)

(Otherwise, if fD(Fl) < 1 for some l 6= 1, 2, 3, k, then it can be reduces to Case
1.2.2.1 by taking j = l.) It can be reduced to the case when both F3 ∪ C4 and
Fk ∪ C1 are drawn as in Figure 9(b).
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To see this, suppose that F3 ∪ C4 is drawn as in Figure 9(b) and Fk ∪ C1 is not.
Then by Corollary 11

fD(Fk) ≥ 1,(19)

and F3 must cross F1 by Proposition 13 since F1 ∪C2 is drawn as in Figure 9(b).
We claim that F1 must cross Fk. Assuming the claim, we have

fD(F1) ≥ 1 and fD(F3) ≥ 1/2.(20)
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Figure 15(d)

Combining (18), (19) and (20), we get
∑k

r=1
fD(Fr) > k − 2, which implies that

v(D) =
∑k

i=1
fD(Fi) ≥ k − 1 since v(D) is an integer.
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To show the claim, i.e., F1 crosses Fk, we note that F1 ∪C2 is drawn as in Figure
9(b). See Figure 13. Since Ck is clean, it must lie entirely in one of the regions
in Figure 13. It is impossible for Ck to lie in f3, otherwise, the path v2v3 · · · vk
crosses C1. It is also impossible for Ci−1 to lie in f4, otherwise, vkvk+1 crosses C2.
If Ck lies in f1, v3kv1 must cross with vk+1vk+2 or v2k+1v2k+2, which implies that
Fk crosses F1. If Ck lies in f2, then Fk must cross F1 since Fk ∪C1 is not drawn
as in Figure 9(b) by our assumption (See Figure 14 for example). Therefore, F1

must cross Fk, as we claimed.
Similarly, if Fk ∪ C1 is drawn as in Figure 9(b) and F3 ∪ C4 is not, then

∑k
r=1

fD(Fr) ≥ k − 1.
Therefore, we can assume that both F3 ∪ C4 and Fk ∪ C1 are drawn as in

Figure 9(b). Then Fk must cross F2, and F1 must cross with F3 by Proposition
13. Moreover, if k ≥ 5, then F3 and Fk must also cross each other by Proposition
13. All these imply that

fD(F1) ≥ 1/2, fD(F2) ≥ 1/2, fD(F3) ≥ 1, and fD(Fk) ≥ 1.(21)

Combining (18) and (21), we infer
∑k

r=1
fD(Fr) ≥ k − 1 if k ≥ 5.

On the other hand, if k = 4, then Fk ∪ C1 = F4 ∪ C1, F1 ∪ C2, F2 ∪ C3 and
F3∪C4 are drawn as in Figure 9(b) by assumptions. By Proposition 13, F1 must
cross F3, and F2 must cross F4. This implies that

fD(Fi) ≥ 1/2 for 1 ≤ i ≤ 4.(22)

We will show that v(D) ≥ 3. By contradiction, suppose that v(D) ≤ 2. By (1)
and (22), we have

fD(F1) = fD(F2) = fD(F3) = fD(F4) = 1/2.(23)

Since F1 crosses F3, by (4) and (23) we get

vD(F1, F3) = 1, vD(F1, Fj) = 0 for j 6= 3, vD(F3, Fj) = 0 for j 6= 1.(24)

Similarly, since F2 crosses F4, by (4) and (23) we get

vD(F2, F4) = 1, vD(F2, Fj) = 0 for j 6= 4, vD(F4, Fj) = 0 for j 6= 2.(25)

Since F1 ∪C2 and F3 ∪C4 are drawn as in Figure 9(b), the only possible drawing
of F1 ∪C2 ∪ F3 ∪C4 is shown in Figure 15(a) in view of (24) and (25). However,
one can show that it is impossible for (24), (25) to hold. For example, if F1 ∪
C2 ∪ F3 ∪ C4 is drawn in Figure 15(b), then the edge v8v9 must cross with F1

or F3, which contradicts (24); and if F1 ∪ C2 ∪ F3 ∪ C4 is drawn in Figure 15(c),
then the edge v2v3 must lie entirely in the region f , as in Figure 15(d), since
vD(F2, Fj) = 0 for j 6= 4 by (25). However, in Figure 15(d), no matter how v6v7
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is drawn, v6v7 must either (i) cross v2v3 which contradicts (25), or (ii) cross Ci

which contradicts that Ci are all clean, or (iii) cross F1 or F3 which contradicts
(25). We leave other cases to the reader.

Case 2. If there exists 1 ≤ i ≤ k such that Ci is non-contractible, then we
may assume that C1 is non-contractible. Then Ci is contractible for all i 6= 1.
(Otherwise, Ci crosses C1 since two non-contractible curves in the projective
plane must cross each other. This contradicts the assumption that all Ci are
clean.) Since Ci and Ci+1 are clean and contractible for i 6= 1, k, there are three
possible ways of drawing Ci ∪Ci+1, which are shown in Figure 7(a), 7(b) or 7(c).

We claim that

fD(Fi) ≥ 1 for i 6= 1, k.(26)

To prove this, suppose that fD(Fi) < 1 for some i 6= 1, k. By Corollary 11,
Fi ∪ Ci+1 must be drawn as in Figure 9(b), which crosses the non-contractible
C1. This contradicts that C1 is clean. This proves (26).

Now we are going to show that

fD(F1) + fD(Fk) > 0.(27)
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Figure 16. C1 ∪ C2.

Combining this with (26), we will get
∑k

r=1
fD(Fr) > k − 2, which gives v(D) =

∑k
i=1

fD(Fi) ≥ k− 1 since v(D) is an integer. Suppose that (27) is not true, i.e.,

fD(F1) = fD(Fk) = 0.(28)

Since C1 is non-contractile and C2 is contractible, C1 ∪ C2 must be drawn as in
Figure 16. On the other hand, by the same reasons, C1 ∪ Ck must be drawn as
in Figure 16 by replacing C2 by Ck.
By (4) and (28), v1v2, vk+1vk+2, v2k+1v2k+2 do not cross. From Figure 16, one
can see that there are three possible ways of drawing F1 ∪ C2, which are shown
in Figure 17(a), 17(b) and 17(c).
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If F1 ∪C2 is drawn as in Figure 17(b) and 17(c), then C3 must lie entirely in one
of the regions since C3 is clean. Then F2 must cross with F1 since there is no
region in Figure 17(b) or 17(c) containing all of the vertices v2, vk+2 and v2k+2.
This implies fD(F1) > 0, which contradicts (28).

Therefore, F1∪C2 must be drawn as in Figure 17(a). By the same argument,
Fk ∪ C1 must be drawn as in Figure 17(a) by replacing C2 by Ck. Hence, Fk ∪
F1 ∪C2 must be drawn as in Figure 18(a) or 18(b) since F1 does not cross Fk by
(28).
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Figure 18(a)
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Note that C3 must lie in one of the regions in Figure 18(a) or 18(b). Since there
exists no region in Figure 18(a) or 18(b) which contains all of the vertices v2,
vk+2 and v2k+2, F3 must cross either Fk or F1 (k ≥ 4 is needed here for F3 being
not equal to Fk). This implies that fD(F1) > 0 or fD(Fk) > 0, which gives (27).

This finishes the the proof of Lemma 7.
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