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Abstract

For a graph G and a vertex-coloring c : V (G) → {1, 2, . . . , k}, the color
code of a vertex v is the (k + 1)-tuple (a0, a1, . . . , ak), where a0 = c(v), and
for 1 ≤ i ≤ k, ai is the number of neighbors of v colored i. A recognizable
coloring is a coloring such that distinct vertices have distinct color codes.
The recognition number of a graph is the minimum k for which G has a rec-
ognizable k-coloring. In this paper we prove three conjectures of Chartrand
et al. in [8] regarding the recognition number of cycles and trees.
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1. Introduction

Distinguishing the vertices of a graph G by means of a coloring is a topic that
has received much attention in the literature. Typically, the edges of G are col-
ored and the vertices are distinguished based on the coloring of their incident
edges. For example, in [9], given an edge-coloring of G, two vertices of G are
distinguished if the sets of colors assigned to their incident edges are different.
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Another example is that of irregular edge-colorings, where two vertices are dis-
tinguished if, for some color k, they are incident with different numbers of edges
colored k. Irregular colorings were studied in [1, 2, 3, 4] and [5]. Another way is
to distinguish vertices according to the sum of the colors of their incident edges.
See [6].

In [8], a new method of distinguishing the vertices of a graph G was intro-
duced. This method involves coloring vertices rather than edges, and combines a
number of the features of the various previous methods.

For a graph G and a (not necessarily proper) vertex coloring c : V (G) →
{1, 2, . . . , k}, the color code of a vertex v is the (k + 1)-tuple (a0, a1, . . . , ak),
where a0 = c(v), and for 1 ≤ i ≤ k, ai is the number of neighbors of v colored i.
A recognizable coloring is a coloring such that distinct vertices have distinct color
codes. The recognition number of a graph G, denoted by rn(G), is the minimum
k for which G has a recognizable k-coloring. Such a coloring is called a minimum

recognizable coloring.

Since every coloring that assigns distinct colors to the vertices of a connected
graph is recognizable, the recognition number is always defined.

In this paper we will study the recognition number of cycles, paths and trees
and prove three results conjectured in [8] about these three classes of graphs.

For graph-theoretical notation or terminology not defined in this paper we
refer the reader to [7].

2. Cycles

The following observation from [8], which follows easily by standard counting
methods, will be useful.

Observation 1. The number of distinct color codes on k colors for vertices of

degree r is k
(

k+r−1
r

)

. In particular, for vertices of degree 2, there are (k3 + k2)/2
distinct color codes on k colors.

Our main result is the following theorem, which was conjectured in [8]. It is also
used to prove the other two conjectures regarding paths and trees in [8].

Theorem 2. Let k ≥ 3 be an integer. Then rn(Cn) = k for all integers n such

that
(k−1)3+(k−1)2−2(k−1)+2

2 ≤ n ≤ k3+k2

2 if k is odd,

(k−1)3+(k−1)2+2
2 ≤ n ≤ k3+k2−2k

2 if k is even.

It is interesting to note that the monotonicity of rn(Cn) (i.e., for any integers n1,
n2, if n1 ≤ n2, then rn(Cn1

) ≤ rnC(n2)) follows immediately from Theorem 2.
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However, this is surprisingly difficult to prove directly. The situation with paths
is different. There we can prove monotonicity, and the full result then follows
from extreme cases. See Section 3.

It will be convenient to use a simpler notation for color codes of vertices of
degree two: If a vertex v of degree two has color a and its neighbors are colored
b and c, (where possibly b = c) we will also denote the color code of v by (a; b, c).
Note that (a; b, c) and (a; c, b) are equal.

That rn(Cn) ≥ k if n is as in the statement of Theorem 2 is proved in [8].
When k is even, this follows immediately from Observation 1 applied to k − 1
colors. For k odd, this follows from the fact that on a cycle, codes of the form
(a; a, b) with a 6= b occur in pairs, so at least k − 1 codes cannot occur in a
recognizable k − 1 coloring of Cn if k − 1 is even. See [8] for details.

Hence, to prove Theorem 2, we must show that rn(Cn) ≤ k if n ≤ (k3+k2)/2
and k is odd, or n ≤ (k3+ k2− 2k)/2 and k is even. In [8], the authors construct
a recognizable 5-coloring of C75 by finding an appropriate Eulerian subdigraph
of a de Bruijn digraph. This is the approach we will use.

Consider the de Bruijn digraph Dk where V (Dk) = {(a, b) : 1 ≤ a, b ≤ k}
and E(Dk) = {(a, b)(b, c) : 1 ≤ a, b, c ≤ k}. Any circuit C in Dk, as a se-
quence of vertices, has the form (a1, a2), (a2, a3), . . . , (am, a1). Such a circuit
corresponds to a k-coloring g of Cm by setting g(x) = ax, where we take V (Cm)
to be {1, 2, . . . ,m}. Each arc e = (a, b)(b, c) of C corresponds to a vertex of Cm

with code (b; a, c). The only way an arc f 6= e can correspond to a vertex with
the same code is if f = (c, b)(b, a). Therefore, if for all a, b and c, at most one
element of {(a, b)(b, c), (c, b)(b, a)} is on C, g is a recognizable k-coloring of Cm.
(Note that {(a, b)(b, c), (c, b)(b, a)} can be a singleton set.)

To show that rn(Cn) ≤ k for some n and k, it suffices then to find a subdi-
graph G of Dk such that G contains a circuit of length n and at most one element
of {(a, b)(b, c), (c, b)(b, a)}, for all a, b and c. To this end, we make the following
definitions:

For three distinct integers a, b and c, we can consider the triple (a, b, c) to be
a permutation of (d, e, f), where (d, e, f) is (a, b, c) in increasing order. We call
(a, b, c) even (odd) if it is an even (odd) permutation of (d, e, f). Note that the
even permutations of (a, b, c) are the cycles (a, b, c), (c, a, b) and (b, c, a).

For k ≥ 3 we define the directed graphs H ′

k and G′

k as follows:

V (H ′

k) = V (G′

k) = {(a, b) : 1 ≤ a, b ≤ k},

E(H ′

k) = {(a, a)(a, b) : a < b and b − a is odd } ∪ {(a, a)(a, b) : a > b and a − b
is even }∪{(b, a)(a, a) : b > a and b− a is even } ∪ {(b, a)(a, a) : a > b
and a− b is odd },

E(G′

k) = E(H ′

k) ∪ Ek, where [Ek =] {(a, b)(b, c) : a, b, c distinct and (a, b, c) is
even } ∪ {(a, b)(b, a) : a, b ≤ k}.
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Figure 1. H6.

If k is odd, we let Gk = G′

k and Hk = H ′

k. Otherwise, we let Gk and Hk

be obtained from G′

k and H ′

k, respectively, by removing the arcs (1, 1)(1, 2),
(1, 2)(2, 2), (3, 3)(3, 4), (3, 4)(4, 4), . . . , (k − 1, k − 1)(k − 1, k), (k − 1, k)(k, k).
As examples, H6 is depicted in Figure 1 and E4 in Figure 2.

We will also write (a, b, c) for the arc (a, b)(b, c). Vertices of the form (a, a)
will be called diagonal vertices.

We now prove a few properties satisfied by the graphs Gk and Hk that are
necessary for the proof of Theorem 2.

Lemma 3. For all integers k ≥ 3:

1. For all a, b, c ≤ k, exactly one element of {(a, b, c), (c, b, a)} is an arc of G′

k.

2. Every vertex of Hk has equal in- and out-degree.

3. Gk and Hk[E(Hk)] (Hk minus its isolated vertices) are connected.

4. If k is odd, |E(Gk)| = (k3 + k2)/2. Otherwise, |E(Gk)| = (k3 + k2 − 2k)/2.

5. If k is odd, |E(Hk)| = k(k − 1). Otherwise, |E(Hk)| = k(k − 2).

6. For all distinct a, b and c, (a, b, c) ∈ Ek if and only if (c, a, b) ∈ Ek if and only

if (b, c, a) ∈ Ek.

Proof. 1. If a, b and c are distinct, (a, b, c) is even iff (c, b, a) is odd, and the
result follows. All triples of the form (a, b, a) (where possibly a = b) are arcs, so
the result is true if a = c. Otherwise we have a = b and b 6= c, or b = c and a 6= b.
In either case we must show that for all a 6= b, exactly one of (a, a, b) and (b, a, a)
is an arc. This is clear from the definition of E(H ′

k).
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(a) Arcs of the form (a, b)(b, c) with
a, b, c distinct and (a, b, c) even.

(b) Arcs of the form (a, b)(b, a).

Figure 2. E4. Labels are omitted, but the vertex arrangement is similar to that of
Figure 1.

2. Let v = (a, b), with a 6= b. The only possible arcs incident with v are the
in-edge (a, a, b) and the out-edge (a, b, b). Since (a, a, b) ∈ E(Hk) if and only if
(a, b, b) ∈ E(Hk), either v is isolated in Hk or v has in- and out-degree one.

Next, suppose v is a diagonal vertex (a, a). If k is odd, v has in- and out-
degree (k − 1)/2 in Hk. If k and a are even, v has in-degree k/2 in H ′

k and
out-degree k/2 − 1 in H ′

k, hence v has in- and out-degree k/2 − 1 in Hk. If k is
even and a is odd, v has out-degree k/2 in H ′

k and in-degree k/2−1 in H ′

k, hence
v has in- and out-degree k/2− 1 in Hk.

3. For every a < k, (a, a) is connected to (k, k) in the underlying undirected
graph of Hk via (a, k) or (k, a), unless k is even and a = k − 1, in which case we
have the path (k, k)(k, k− 2)(k− 2, k− 2)(k− 2, k− 1)(k− 1, k− 1). Since every
arc of Hk is incident with a diagonal vertex, Hk[E(Hk)] is connected.

For the connectedness of Gk, note that for all a 6= b, (a, b) or (b, a) is adjacent
to a diagonal vertex, unless k is even and (a, b) has the form (2m − 1, 2m). In
this case we can still find a path from (a, b) to a diagonal vertex: If m < k/2, we
have the path (2m − 1, 2m)(2m, 2m + 1)(2m + 1, 2m + 1). If m = k/2, we have
(k − 2, k − 2)(k − 2, k − 1)(k − 1, k).

Now, for all a 6= b, one of (a, b) and (b, a) is connected to a diagonal vertex.
Since (a, b, a) ∈ E(Gk) for all a and b, and all diagonal vertices are connected to
each other, Gk is connected.

4. From the discussion on de Bruijn graphs, there is a one-to-one correspon-
dence between color codes for vertices of degree two and sets {(a, b, c), (c, b, a)}.
From (1) it follows that G′

k has as many arcs as there are color codes for degree-
2 vertices. By Observation 1 this equals (k3 + k2)/2. If k is odd, |E(Gk)| =



86 M.J. Dorfling and S. Dorfling

|E(G′

k)|, otherwise exactly k arcs are removed from G′

k to obtain Gk, hence
|E(Gk)| = (k3 + k2 − 2k)/2.

5. Every arc of Hk is incident with a diagonal vertex. No two diagonal
vertices are adjacent, hence |E(Hk)| =

∑k
a=1[id(a, a) + od(a, a)]. From the proof

of (2), id(a, a) = od(a, a) = (k − 1)/2 if k is odd, so |E(Hk)| = k(k − 1). If k is
even, id(a, a) = od(a, a) = (k − 2)/2, so |E(Hk)| = k(k − 2).

6. As noted before, the even permutations of (a, b, c) are the cyclic permuta-
tions.

Proof of Theorem 2. We first show that, for all k ≥ 3 and n such that
|E(Hk)| ≤ n ≤ |E(Gk)|, Gk contains a circuit of length n. Such a circuit corre-
sponds directly to a recognizable k-coloring of Cn.

Since Hk ⊆ Gk and Hk[E(Hk)] is Eulerian by Lemma 3, we have a circuit of
length n for n = |E(Hk)|.

From (6) of the lemma it follows that the arcs of Gk not in Hk, i.e., Ek,
can be partitioned into a set C of 3-cycles {(a, b, c), (b, c, a), (c, a, b)}, 2-cycles
{(a, b, a), (b, a, b)} and loops {(a, a, a)}. Since Hk[E(Hk)] and Gk are connected,
we can form a sequence Hk[E(Hk)] = H0 ⊂ H1 ⊂ · · · ⊂ Hm ⊂ Gk of connected
digraphs, where H i+1 is obtained from H i by adding the arcs (and possibly some
vertices) of a 2- or 3-cycle in C, and m = |C| − k.

H0 is Eulerian, and each H i+1 is connected and obtained from H i by adding
a cycle. Therefore each H i is Eulerian. Since |E(H i+1)| − |E(H i)| ≤ 3, for all i,
we can add loops to some H i, as necessary, to obtain an Eulerian digraph G ⊆ Gk

of size n, for any n such that |E(Hk)| ≤ n ≤ |E(Gk)|.
Now, if k is even (so k ≥ 4) we have that |E(Hk)| = k(k − 2) ≤ ((k −

1)3 + (k − 1)2 + 2)/2 (the lower bound on n). If k is odd and k ≥ 5, we have
|E(Hk)| = k(k− 1) ≤ ((k− 1)3+(k− 1)2− 2(k− 1)+ 2)/2. Since |E(Gk)| equals
the upper bound on n, we are done for k ≥ 4. If k = 3, then |E(Hk)| = 6, so to
complete the proof we need a recognizable 3-coloring of C5, which is easy to find.

Corresponding to the arcs that are removed from G′

k to obtain Gk when k is even
we define special codes for vertices of degree 2 to be the codes (1; 1, 2), (2; 1, 2),
(3; 3, 4), (4; 3, 4), . . .. From the proof above we have the following:

Theorem 4. If k is even and n = (k3 + k2 − 2k)/2, there is a recognizable k-
coloring of Cn such that none of the special codes occur, while every other possible

code does occur.
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3. Paths

As mentioned in Section 2, the following monotonicity property of rn(Pn) enables
us to determine the recognition number of paths by considering extreme cases
only. These extreme cases are proved using Theorem 2.

Theorem 5. rn(Pn−1) ≤ rn(Pn), for all integers n ≥ 2.

Proof. For n ≤ 6, it is easily verified that rn(Pn) = 2, so assume n ≥ 7. Let
c be a recognizable coloring of P = Pn = u1, u2, . . . , un−3, v3, v2, v1. If c is a
recognizable coloring of P − u1, we are done. Otherwise, c(u2) = c(v1) and
c(u3) = c(v2). Similarly, if c is not a recognizable coloring of P − v1, then
c(v2) = c(u1) and c(v3) = c(u2). Remove u1 and u2 from P , and add a vertex w
and the edge v1w to form a path P ′ = Pn−1. Set c(w) = c(u1). Only the color
codes of u3, v1 and w are affected. Note that c(u4) 6= c(v1), since u3 and v2 have
different codes in P . Therefore w and u3 have different codes in P ′. Since the
code of v1 in P ′ is the same as the code of u2 in P , and u2 is removed, c is a
recognizable k-coloring of P ′.

Theorem 6. Let k ≥ 3 be an integer. Then rn(Pn) = k for all integers n such

that

(k−1)3+(k−1)2−2(k−1)+10
2 ≤ n ≤ k3+k2+4

2 if k is odd,

(k−1)3+(k−1)2+6
2 ≤ n ≤ k3+k2−2k+8

2 if k is even.

Proof. That rn(Pn) ≥ k if n is as given is proved in [8]. For the upper bounds,
we need only prove the maximal cases, by Theorem 5. First suppose k is odd,
and let n = (k3 + k2 + 4)/2. By Theorem 2 there is a recognizable k-coloring c
of Cn−2. Let uv be any edge of Cn−2 such that c(u) 6= c(v). Remove uv and add
vertices u′ and v′ together with the edges uv′ and vu′. Setting c(u′) = c(u) and
c(v′) = c(v) yields a recognizable k-coloring of Pn.

Next, suppose k is even and let n = (k3+k2−2k+8)/2. By Theorem 4, there
is a recognizable k-coloring c of Cn−4 such that every code except the special codes
occurs. In particular, neither of the codes (1; 1, 2) and (2; 1, 2) occurs. Let uv be
an edge of Cn−4 such that c(u) = 1 and c(v) = 2. (Such a u and v exist since, for
example, the code (1; 2, 3) occurs.) Remove uv and add vertices u1, u2, v1 and v2,
and edges uv1, v1v2, vu1 and u1u2. Set c(u1) = c(u2) = 1 and c(v1) = c(v2) = 2.
Then c is a recognizable k-coloring of Pn.

In the first paragraph of the preceding proof we can take uv such that c(u) = 1
and c(v) = 2, since every possible color code occurs. In the second paragraph,
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c is a recognizable k-coloring of Cn such that no special code occurs. The con-
struction then adds only the codes (1; 1, 2), (2; 1, 2) and two degree one codes,
while preserving all other codes. We therefore have:

Theorem 7. Let n ≥ 4 and P = Pn with end-vertices u1 and v1. Let the

neighbors of u1 and v1 be u2 and v2, respectively.
If k is odd and n = (k3 + k2 + 4)/2, there is a recognizable k-coloring c of P

such that c(u1) = c(v2) = 1 and c(v1) = c(u2) = 2.
If k is even and n = (k3+k2−2k+8)/2, there is a recognizable k-coloring c of

P such that c(u1) = c(u2) = 1 and c(v1) = c(v2) = 2. Moreover, every color code

for vertices of degree two occurs, except for the special codes other than (1; 1, 2)
and (2; 1, 2).

4. Trees

For the proof of the next result, it will be useful to define the following operation:
Let uv be an edge of a graph G, with deg(u) = 3. By G/(u, v) we denote the graph
obtained from G − {u, v} by adding an edge between the other two neighbours
of u. (In our constructions they will never be adjacent in G.)

Theorem 8. For each integer n ≥ 3, the minimum recognition number among

all trees of order n is the unique integer k such that

(k − 1)3 + 5(k − 1)2 − 2

2
≤ n ≤

k3 + 5k2 − 4

2
.

Proof. That a tree of order at least ((k− 1)3 + 5(k− 1)2 − 2)/2 has recognition
number at least k is shown in [8]. For completeness we give the proof: It is
known that if T is a tree of order n with ni vertices of degree i, then n1 =
2+n3+2n4+3n5+ · · ·. If T has recognition number k we have by Observation 1
that n1 ≤ k2 and n2 ≤ k3+k2

2 . Combining these gives n ≤ n1 + n2 + n1 − 2 ≤

2k2 + k3+k2

2 − 2 = k3+5k2−4
2 .

For the upper bound, given k and n, we construct a tree T of order n and
recognition number k.

Case 1. k is odd. First, let n = (k3 + 5k2 − 4)/2. Let P = P(k3+k2+4)/2 with
end-vertices u and v. By Theorem 7 there is a recognizable k-coloring c of P such
that u and the neighbor of v have color 1 and v and the neighbor of u have color
2.

From P we first construct T ′ as follows: For each l, where 1 ≤ l ≤ k, let v1 and
v2 be any two adjacent vertices of color l. Remove v1v2, add a path w1

l , w
2
l , . . . , w

k
l

and add edges v1w
1
l and v2w

k
l . For each wi

l , 1 ≤ l, i ≤ k, add a vertex xil and the
edge xilw

i
l . Set c(w

i
l) = l and c(xil) = i. Let T = (T ′/(w2

1, x
2
1))/(w

1
2, x

1
2).
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The vertices in T of degree two are precisely the vertices of degree two in P
and their color codes are unchanged. There are k2 − 2 new vertices of degree
one, and it is easy to see that each of the k2 color codes for vertices of degree
one occurs exactly once. There are k2 − 2 new vertices of degree three and
it is easily checked that they have distinct color codes. Lastly, T has order
(k3 + k2 + 4)/2 + 2(k2 − 2) = (k3 + 5k2 − 4)/2.

If n ≤ (k3 + k2 + 4)/2, we can take T = Pn by Theorem 6, so suppose that
(k3+k2+4)/2 < n < (k3+5k2−4)/2. From the tree T constructed in the previous
paragraph we can obtain a tree T ′ of order n as follows: For any l and i, c is a
recognizable k-coloring of T/(wi

l , x
i
l). Repeatedly removing pairs (wi

l , x
i
l) using

this operation, we obtain the required T ′ for all n of the form (k3+k2+4)/2+2m.
Any such T ′ has vertices x, y and z of color 1, such that x has degree two and
is adjacent to y and z. If we remove x and add yz, we have a tree of order one
less than the order of T ′ for which c is a recognizable k-coloring, which covers
the remaining cases.

Case 2. k is even. For n = (k3 + 5k2 − 4)/2 we take c to be a recognizable
k-coloring of P(k3+k2−2k+8)/2 according to Theorem 7. Let T ∗ be obtained from
P(k3+k2−2k+8)/2 in the same way that T ′ is obtained in Case 1 and set T =
(T ∗/(w1

1, x
1
1))/(w

2
2, x

2
2).

T has vertices with every possible color code for vertices of degree one and
two, except for the special codes other than (1; 1, 2) and (2; 1, 2). For every odd
l ≥ 3, we add vertices yl and yl+1, edges x

l
lyl and xl+1

l+1yl+1, and set c(xll) = c(yl) =

l+ 1 and c(xl+1
l+1) = c(yl+1) = l. The tree obtained in this way has order n and is

recognizably k-colored by c.
For n < (k3 + 5k2 − 4)/2 the proof is analogous to the proof for Case 1.
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