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Abstract

It is well known that the k-ary n-cube has been one of the most efficient
interconnection networks for distributed-memory parallel systems. A k-ary
n-cube is bipartite if and only if k is even. Let (X,Y) be a bipartition of a
k-ary 2-cube (even integer k > 4). In this paper, we prove that for any two
healthy vertices u € X, v € Y, there exists a hamiltonian path from u to v
in the faulty k-ary 2-cube with one faulty vertex in each part.
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cubes .
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1. INTRODUCTION

The k-ary n-cube has many desired properties, such as easy of implementa-
tion, low-latency and high-bandwidth interprocessor communication. Therefore,
a large number of distributed-memory parallel systems (also known as multicom-
puters) have been built with a k-ary n-cube forming the underling topology, such
as the iWarp [12], the J-machine [11] and the Cray T3D [9]. An interconnection
network is often modeled as a graph, in which vertices and edges correspond to
nodes and communication links, respectively. The k-ary n-cube, denoted by Qfl
(k> 2 and n > 1), is a graph consisting of k™ vertices, each of which has the
form u = Up_1Upn_2...uy, where 0 < u; < k—1for 0 <i<n—1. Two vertices
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U = Up—1Up—9...-uUg and v = V,_1Usp_2...vy are adjacent if and only if there
exists an integer j, 0 < j <n — 1, such that u; = v; + 1(mod k) and u; = v;, for
every i € {1,2,...,n}\ {j}. For clarity of presentation, we omit writing “(mod
k)” in similar expressions for the remainder of the paper.

The graph embedding is a technique that maps a guest graph into a host
graph. Many graph embeddings take paths and cycles as guest graphs because
they are the common structures used to model linear arrays in parallel pro-
cessing [2, 4, 15, 16, 17]. In recent years, the problem of path embeddings in
an interconnection network has attracted a great deal of attention from the re-
searchers. Since failures are inevitable, fault-tolerant is an important issue in
the distributed-memory parallel system. Many works related to embeddings of
the longest paths in various faulty interconnection networks have been studied
previously, including hypercubes [3, 5, 7, 10, 14, 16, 19|, k-ary n-cubes [1, 15, 17,
19] and stars [6, 13]. In particular, Yang et al. [19] proved that for arbitrary two
healthy vertices of Q,’j with odd k& > 3, there exists a fault-free hamiltonian path
connecting these two vertices if the number of faults is at most 2n — 3.

The parity of a vertex u = Up_1Up—2...uy of QfL is defined to be u,_1 +
Up_9 + + -+ + ug modulo 2. We speak of a vertex as being odd or even according
to whether its parity is odd or even. Given any two distinct vertices u and v. Let

o 1, if w and v have different parities,
wo 0, if u and v have the same parity.

For even k > 4, Stewart and Xiang [15] studied the problem of embedding
long paths in the k-ary n-cube with faulty vertices and edges. They presented
the following result.

Theorem 1.1 [15]. Let k > 4 be even and let f, be the number of faulty vertices
and f. be the number of faulty edges in Q5 with 0 < f, + fo < 2. Given any two

healthy vertices u and v of Qé, then there is a path from u to v of length at least
k*—2f, —1if eyy = 1.

Let X be the set of even vertices and Y be the set of odd vertices of a Q% with
even k > 4. Obviously, (X,Y) is a bipartition of the Q5. We denote the set
of faulty vertices of the Q5 by F,. Let f% = max{|F, N X|,|F, NY|}. In
this paper, we prove that there is a path from w to v in the faulty Q’g of length
k% — 2fmar 1 if eup = 1. As |[F, N X|+|F, NY| = f,, we have f"* < f,.
Obviously, k% — 2fma® — 1 > k? — 2f, — 1. Therefore, our result improves the
result noted above.

The rest of this paper is organized as follows. In the next section, some
basic definitions are introduced. In Section 3, we construct a hamiltonian path
connecting any two healthy verities in different parts in the faulty k-ary 2-cube
(even k > 4) with one faulty vertex in each part. Conclusions are covered in
Section 4.
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2. BAsis DEFINITION

Throughout this paper, we restrict our attention to n = 2 and even k > 4. For
convenience, we write v, as the vertex of Q% with the form vivy = ab, where
0<a,b<k—1 For0<i<j<k—1, Row(i:j) of Q} is the subgraph of Q}
induced by {vap:i<a<j, 0<b<k—1, Col(i: j) of Q} is the subgraph of
Q% induced by {v,:0<a<k—1,i <b<j}.

Given 1 < ki, ks < k — 1, the subgraph of Q§ induced by {vgp : 0 < a <
k1 — 1,0 < b < ky — 1} is denoted by Grid(ki, ka). A vertex of Grid(ki, ko) is
called a corner vertex if its degree in Grid(ky, ko) is 2. For 0 <1i < j <k —1,
Row(i : j) of Grid(ki, kz) is the subgraph of Grid(ki, k2) induced by {v,p : i <
a<j0<b<ky—1}. For0<i<j<ky—1, Col(i:j)of Grid(ki,ke) is the
subgraph of Grid(ky, k2) induced by {vep:0<a <k —1,i <b<j}.

Instead of Row(i : i) and Col(j : j) of Q% (resp. Grid(ki, k2)) we simply write
Row(i) and Col(j) of Q5 (resp. Grid(k1,k2)). Row(0 : 2) of Q3 and Grid(2,4)
are shown in Figure 1 and Figure 2, respectively.

m,o v ULl V12 V1,3

V2,0 V2,1 V22 V23

Figure 1. Row(0 : 2) of Q3 Figure 2. Grid(2,4)

Choose a vertex u = vgp (0 < a,b < k — 1) in Row(a) of Q%. The neighbour of
u in Row(a — 1) (resp. Row(a + 1)) is denoted by n®(u) (resp. n%"1(u)), that
is, n7 (1) = vg-1p (vesp. n*TH(u) = vai1p)-

3. PATH EMBEDDINGS IN FAULTY k-ARY 2-CUBES

We start with some useful lemmas.

Lemma 3.1 [8]. Given an integer n > 1, let u be a corner vertex of Grid(2,n).
For any vertex v # u in Grid(2,n) such that e, =1, there exists a hamiltonian
path of Grid(2,n) from u to v.

Lemma 3.2 [8]. Given even ki, ks > 2, let u and v be vertices in Row(0) and
Row(k1—1) of Grid(k1, ke), respectively. If at least one of u and v is a corner ver-
tex of Grid(ki, k2) and ey, =1, then there is a hamiltonian path of Grid(ky, k2)
from u to v.
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In [15], Stewart and Xiang constructed the long paths in Row(0 : p — 1) of
Q% (even k > 4), where 2 < p < k. They present the following result.

Lemma 3.3 [15]. Given an even k > 4, let u and v be any two distinct healthy
vertices in Row(0: p—1) of Q’g, where 2 < p < k. If ey, = 1, then there exists a
hamiltonian path of Row(0 : p— 1) from u to v that contains at least one healthy
edge of Row(0).

According to the proof of Lemma 1 in [15], we have the following lemma.

Lemma 3.4 [15]. Given an even k > 4, let u and v be any two distinct healthy
vertices and = be a faulty vertez in Row(0 : 1) of Q5. If ez = 1 and ey, = 0,
then there exists a hamiltonian path of Row(0 : 1) — x from u to v that contains
at least one healthy edge of Row(1).

Lemma 3.5. Given an even k > 4, let x be the only faulty vertex in Row(0 : 1)

of Q’; and let u,v be any two distinct healthy vertices in Row(0 : p — 1) of QIZ‘“'

such that ez, = 1 and ey, = 0, where p is even and 4 < p < k. Then there exists

a hamiltonian path of Row(0 : p—1) —x from u to v if one of the following holds.
(i) u,v € V(Row(0: 1)).

(ii) u,v € V(Row(p — 1)).

(iii) u € V(Row(0: 1)) and v € V(Row(p — 1)).

Proof. Suppose that u,v € V(Row(0 : 1)). As z € V(Row(0 : 1)) and ez, =
1, eyn = 0, Lemma 3.4 implies that there is a hamiltonian path P; of Row(0 :
1) — z from u to v that contains an edge (s,t) of Row(1). As en2(5)n2¢p) = 1,
by Lemma 3.3, there is a hamiltonian path P» of Row(2 : p — 1) from n=(s) to
n2(t). Then, P U Py — {(s,t)} + {(s,n2(5)), (t,n?(t))} is a hamiltonian path of
Row(0:p—1) —z from u to v.

Suppose that u,v € V(Row(p —1)). Let v = wvp_1;,v = vp_1j, Where
0<7,7 <k—1andj# j. Without loss of generality, we assume that j < 7'
Letge {j,j+1,7+2,...,5'} beodd and let G; = Row(2: p—1)NCol(0 : ¢) and
Goa=Row(2:p—1)NCol(q+1:k—1). Obviously, u € V(G;) and v € V(G2).
As g is odd, we have €y, vy, = €y 4100, = 1. Thus one of ey4,, = 1 and
Cu,vy, = 1 holds. Without loss of generality, we may assume that ey .,, = 1. As
G is isomorphic to Grid(p — 2,q + 1) and va is a corner vertex of G, Lemma
3.2 implies that there is a hamiltonian path P; of G'1 from v to u. As ey, =0,
it is easy to see that ey, ., » = 1. As G is isomorphic to Grid(p — 2,k —q — 1)
and vg 441 is a corner vertex of G2, Lemma 3.2 implies that there is a hamiltonian
path P, of G from v ¢11 to v. As ey, 5 = 1, we have e, ;,, = 0. Combining this
with the fact that e, , = 1 and ¢ is odd, we see that e; ., , = 1 and ey, 4y .4, = 0.
By Lemma 3.4, there is a hamiltonian path P3 of Row(0 : 1) — z from v to
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v1,g+1. Therefore PLUP,UP3+{(v1,0,v2,0), (V1,g+1,V2,4+1)} is @ hamiltonian path
of Row(0:p—1)—z from u to v.

Suppose that u € V(Row(0 : 1)) and v € V(Row(p — 1)). As k > 4, we may
choose a vertex s € V(Row(1)) such that s # u and e, s = 0. Clearly e, s = 1.
By Lemma 3.4, there is a hamiltonian path P; of Row(0 : 1) — z from u to s. As
eu,s = €y = 0 and e p2(5) = 1, we have e,2(,), = 1. By Lemma 3.3, there is a
hamiltonian path P of Row(2 : p—1) from n?(s) to v. Then, P,UP>+{(s,n%(s))}
is a hamiltonian path of Row(0: p — 1) — z from u to v. The proof is complete.

|

Given a graph G, let S and T be two subsets of V(G). An (S,T)-path is a path
which starts at a vertex of S, ends at a vertex of T', and whose internal vertices
belong to neither S nor 7.

Lemma 3.6. Given an even k > 4, let S = {u,v} be a set of two distinct vertices
in Row(0: 1) —wvoo of Q5 and let T = {vo1,v10}. If eun = 1, then there exists
two vertez-disjoint (S,T)-paths in Row(0 : 1) — voo that contain all vertices of
Row(O : 1) — V0,0-

Proof. As e,, = 1, without loss of generality, assume that u is even and v is
odd. We consider the following two cases. In each case, we will construct two
vertex-disjoint (S, T)-paths Py and P, in Row(0 : 1) — vg .

Case 1. v = v10. In this case, v is in G; = Row(0 : 1) N Col(1 : k — 1) which
is isomorphic to Grid(2,k —1). As vg1 is odd and u is even, we have ey, , = 1.
Combining this with the fact that vg i is a corner vertex of G1, Lemma 3.1 implies
that there is a hamiltonian path Py of Gy from u to vo 1. Let P, = v. Clearly, P
and P, are vertex-disjoint (.S, T')-paths in Row(0 : 1) that contain all vertices of
Row(0: 1) — vgp.

Case 2. v # vy 0. In this case, v and v are in Row(0:1)NCol(1: k—1). Let
u=v;; and v = vy j, where 0 < 4,7/ <1 and 1 < j,5/ <k — 1. Without loss of
generality, we may assume that j < j/.

Suppose first that j # j'. Let G; = Row(0: 1)NCol(1 : j) and G2 = Row(0 :
1)NCol(j+1:k—1). Observe that Gy is isomorphic to Grid(2,j) and Gy is
isomorphic to Grid(2,k —j —1). As vg; is a corner vertex of Gy, vy —1 is a
corner vertex of G and ey, w = 1, €y, ,_,» =1, Lemma 3.1 implies that GG1 has
a hamiltonian path P; from u to vg; and Ga has a hamiltonian path P21 from
v to vy p—1. Let P = Pi + {(vik-1,v1,0)}. Then P; and P are vertex-disjoint
(S,T)-paths in Row(0 : 1) — vpo that contain all vertices of Row(0: 1) — vg .

Suppose next that j = 5. If2 < j =7 <k—2,let Gy = Row(0: 1)NCol(1 :
j'—1) and Go = Row(0 : 1)NCol(j+1: k—1). Recall that u = v; ; is even and
v = vy jr is odd. Then Cvo,1vy 1 = 1 and €y p_1viji1 = Lo Observe that G

and G4 are isomorphic to Grid(2,j' — 1) and Grid(2,k — j — 1), respectively. By
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Lemma 3.1, there is a hamiltonian path P} of G; from vy j—1 to vo,1 and there is
a hamiltonian path Pj of Gy from Vi j+1 to vy p—1. Let P = P} +{(v, virj—1)}
and Py = Py + {(u, v j+1), (v1k-1,v10)}. If 5 =7 =1, then u = v11, v =vg;.
Let P, = v and P, = P21 + {(U,’ULQ),(’Ul’k_l,’ULQ)}. If 5 = j, = k — 1, then
U =011, V="1vok-1. Let P = P + {(v,v04-2)} and P, = uvy . Therefore,
P, and P, are as required. [ ]

Lemma 3.7. Let odd v, and odd vy be two distinct vertices in Row(0 : 1)
of Q3 and let S = {v11,v13} and T = {vgy y,v02}. Then there exist two vertez-
disjoint (S,T)-paths in Row(0 : 1) — vy that contain all vertices of Row(0 :
1) — Ua,b-

Proof. We distinguish four cases. In each case, we will construct two vertex-
disjoint (S,T)-paths Py and P in Row(0 : 1) — vgp.

Case 1. vgp, vy 1y € V(Col(0 : 1)). In this case vgp, Vo py € {v0,1,v10}. Let
Py = vy 1v1,2v0,2. Then P is a path from v1 1 to vg 2. If v, = vo1 and vy = v1 9,
let PQ = v1,370,30,0V1,0- If Va,b = V1,0 and Vo' b = V0,1, let P2 = 71,300,300,0Y0,1-
Then P, is a path from v1 3 to v, . Therefore, there exist two vertex-disjoint
(S,T)-paths in Row(0 : 1) — vgy that contain all vertices of Row(0 : 1) — vgp.

Case 2. Vg p, vy 1y € V(Col(2 : 3)). In this case vgp, Ve € {v0,3,v1,2}. Let
P = V1,1V1,0V0,0V0,10,2- Then P, is a path from v1,1 tO vg 2. If Va,b = V0,3 and
Vo' b = V1,2, let P2 = 11,3V1,2- If Va,b = V1,2 and Vo b = 00,3, let P2 = 71,3Y0,3-
Then P, is a path from v 3 to vy . Therefore, P and P are as required.

Case 3. vy € V(Col(0 : 1)) and vap € V(Col(2 : 3)). In this case vy €
{21071,1)170} and Va,b € {1)073,1)172}. If Vo' by = V0,1, let Pl = 71,1V1,0Y0,0%0,1- If
Vg iy = V1,0, let Py = v1,100,1v0,0v1,0. Then Py is a path from vy 1 to vg . Suppose
first that v, = vo3. Let P = v13v1,200,2. Suppose next that v, = vi12. Let
P, = v1 3v93v0,2. Then P, is a path from vy 3 to vg2. Therefore, P; and P» are
as required.

Case 4. vgp € V(Col(0 : 1)) and vy € V(Col(2 : 3)). In this case vyp €
{’UOJ,’ULO} and Va! b S {U073,U172}. If Va,b = V0,1, let Pll = 71,1V1,0Y0,0v0,3- If
Va b = 01,0, let P} = v1,1v0,1v0,000,3-

Suppose first that vy y = vo3. Let Pp = Pl and let P, = v1,301,2V0,2. Then
Py is a path from v1; to vg3 = vy and P is path from vy 3 to vp2. Suppose
next that vy = vi2. Let Pr = Pl + {(vo3,v02)} and let Py = vy 3v12. Then
Py is a path from vy 1 to vo2 and P is path from vy 3 to v12 = vy . Therefore,
P, and P, are as required. [ ]

Lemma 3.8. Given an even k > 6, let S = {vi1,v1 -1} and let odd vgy and
odd vy be two distinct vertices in Row(0 : 1) of QY. Then there erists a set
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T = {vgp,v0c} (c is even) such that there are two vertex-disjoint (S, T)-paths
in Row(0 : 1) — vgp that contain all vertices of Row(0 : 1) — vgp.

Proof. Without loss of generality, we assume that v, is in Col(0 : g) We
distinguish four cases. In each case, we will construct two vertex-disjoint (S, T)-
paths Py and P in Row(0 : 1) — vgp.

Case 1. vgy € V(Col(0 : 1)) and vy € V(Col(0 : 1)). As both vgyp and
Vg p are odd, we have v p, Vo py € {v0,1,v1,0}. Let vg . = vo2. We will construct
an (S, T)-path P from vy 1 to v and an (S, T)-path P from vy 1 to vy pr. Let
G1 = Row(0:1)NCol(3 : k—1). Observe that G; is isomorphic to Grid(2, k—3).

Let Py = v11v12v0,2. As vy k-1 is a corner vertex of Gy and ey, vy, =1
Lemma 3.1 implies that there is a hamiltonian path P21 of Gy from vy ;1 to
vok—1. Then Py = Py + {(vox—1,v0,0), (V0,0,var 1)} is as required.

Case 2. vgp € V(Col(0 : 1)) and vy € V(Col(2 : k —1)). In this case,
let vo. = vop. As the odd v, is in G1 = Row(0 : 1) N Col(0 : 1), we have
va,b S {UO,la'Ul,O}' If Ua,b = 00,1, let P1 = 1,171,0%0,0- If ’UQVb = 01,0, let P1 =
v1,100,1v0,0- Then P; is a hamiltonian path of G1 — v, from vy 1 to vo.. Observe
that Gy = Row(0 : 1)NCol(2 : k— 1) is isomorphic to Grid(2,k —2). Combining
this with the fact that vy ;1 is a corner vertex of G2 and vyt 4 V1 p—1 = 1, there
is a hamiltonian path P of G2 from vy 1 to vy . It can be seen that P, and
P, are vertex-disjoint (S, T")-paths in Row(0 : 1) — vgy that contain all vertices
of Row(0 : 1) — vgp.

Case 3. vgp € V(Col(2 : %)) and vy € V(Col(0 : 1)). As G1 = Row(0 :
1) N Col(0 : 1) is isomorphic to Grid(2,2), v is a corner vertex of Gy and
vy 11 = 1, Lemma 3.1 implies that there is a hamiltonian path P; of G from
v1,1 to vy . Let vg. = vp2. It is enough to construct a hamiltonian path P, of
G2 —vap = Row(0:1)NCol(2: k —1) — vgyp from vy 1 to vo,e = vo2.

Suppose first that v, is in Col(2). Then v, = v1,2. As Row(0:1)NCol(3 :
k—1) is isomorphic to Grid(2, k—3), vo 3 is a corner vertex of Row(0 : 1)NCol(3 :
k—1) and ey 5,0, ,_, = 1, Lemma 3.1 implies that there is a hamiltonian path P}
of Row(0:1)NCol(3: k—1) from vy ,_1 to vg3. Then P, = P} + {(vo,3,v0,2)}
is as required.

Suppose next that v, is not in Col(2). Then Row(0: 1) NCol(2:b—1) is
isomorphic to Grid(2,b — 2) and Row(0 : 1) N Col(b+ 1 : k — 1) is isomorphic
to Grid(2,k —b—1). If a=0thena =1, and if a =1 then @ = 0. As v,y is
odd, it can be seen that both vg,—1 and vg 41 are odd. Thus €v02,vap_1 = 1 and
Cu g 1wapsr = 1 As vg2 is a corner vertex of Row(0 : 1) N Col(2 : b — 1) and
v1,k—1 is a corner vertex of Row(0 : 1) N Col(b+ 1 : k — 1), Lemma 3.1 implies
that there is a hamiltonian path Py of Row(0: 1) N Col(2:b— 1) from vz 1 to
vp,2 and a hamiltonian path P§ in Row(0: 1) N Col(b+1: k — 1) from vy ;1 to

Y



54 S. WAN AND S. ZHANG

vap+1. Combining P} with P§ as well as the edges (vap—1,vap) and (Vap, Vapt1),
we may obtain the required path Ps.

Case 4. vap € V(Col(2: %)) and vy yy € V(Col(2 : k — 1)).

Case 4.1. v,y is in Row(0), that is, vep = vop. Suppose first that ¥ > b.
As b is odd, we have that vy 1 is odd and vgp4q is even. Let vo. = vgps1-
Observe that G1 = Row(0 : 1) N Col(0 : b — 1) is isomorphic to Grid(2,b) and
G2 = Row(0: 1)NCol(b+2: k—1) is isomorphic to Grid(2,k —b—2). As vy
is a corner vertex of G1 and ey, , v, ,_, = 1, there is a hamiltonian path P! of Gy
from v1,1 Y0 V1 p—1. If V! b = U1,b41; let P, = Pll—f-{(vljb_l, Ul,b)7 (Ul,b7 Ul,b+1)}~ As
v1 k-1 is a corner vertex of G and €y, , ;v ,,, = 1, there is a hamiltonian path
P} of Gy from vy 1 to vopr2. Let Py = P} + {(vopr2,vop+1)}. Then P is an
(S, T)-path from vy 1 to vy py and Ps is an (S, T)-path from vy 1 t0 vgp11 = vo,c.
If vy # V1 p41, let P = Pl 4+ {(v1p-1,v1), (V1. V1,041)s (V1,p41,V0p+1)}- Then
Py is an (S, T)-path from v1,1 to vgpr1 = vo. Note that now v,y is in Ga. As
€vy k1,0, = 1, there is a hamiltonian (S,T)-path P, of G from vy —1 to vgr .
Furthermore, it can be seen that P; and P, are vertex-disjoint (S, T)-paths and
contain all vertices of Row(0 : 1) — vgp.

Suppose next that b’ < b. As b is odd, we have vy 41 is odd and vgp—1 is
even. Let vg. = vgp—1. By a similar proof above, we may obtain two required
(S, T)-paths.

Case 4.2. vgy is in Row(1), that is, v, = v1 . We only consider the case that
b’ > b since the proof for v < b is similar. Let G; = Row(0: 1) N Col(0: b —1)
and Gy = Row(0 : 1) N Col(b+ 1 : k—1). Observe that G is isomorphic to
Grid(2,b) and Gy is isomorphic to Grid(2,k —b —1). As vy = v4y is odd, we
have v -1 is odd and vg is even. Let vo. = vop. AS €yyy y 0y, = 1 and vgp—1 is
a corner vertex of G1, Lemma 3.1 implies that there is a hamiltonian path P! of
G from v11 to vop—1. Let P = P} + {(wop—1,v0p)}. Then P; is an (S,T)-path
from vy 1 to vop = vo,c. As vy 11 = 1 and vy 1 is a corner vertex of G,
Lemma 3.1 implies that there is a hamiltonian path P of G from vy ;1 to vy p.
It can be seen that P; and P» are vertex-disjoint (5, T)-paths in Row(0 : 1) —vgy
that contain all vertices of Row(0 : 1) — vgp. |

Lemma 3.9. Let S = {v11,v15} and let odd vi} and odd vy be two distinct
vertices in Row(0 : 1) of QS. Then there exists a set T = {vgr 1y, v0,.} (¢ =2 or 4)
such that there are two wvertex-disjoint (S,T)-paths in Row(0 : 1) — vy that
contain all vertices of Row(0 : 1) — vy 4.

Proof. As vy is odd, we have v1 € {v1,0,v1,2,v14}. If vip = v12 (vesp. vi4),
let vo,. = vo,2 (resp. vp4). Using similar proofs of Case 3 and Case 4.2 in Lemma
3.8, we may obtain two vertex-disjoint (S,7')-paths in Row(0 : 1) — vy, that
contain all vertices of Row(0 : 1) — vy .
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Suppose that vy, = vi0. Let vo = vo2. If vy € V(Col(1)), then vy = vo,1.
Similar to Case 1 of Lemma 3.8, we may obtain two vertex-disjoint (S, T')-paths in
Row(0 : 1)—wvy p that contain all vertices of Row(0 : 1)—wyp. If vy € V(Col(5)),
then vy = vo5, let P = v11v1,0v00v0,5 and Py = w1 501400,4V0,3V1,3V1,2V0,2-
Obviously, Pi and P, are as required. If vy € V(Col(2 : 4)), then vy py €
{2)172,1)073,1)174}. Let Pll = v0,50,0v0,1v0,2 and G = ROU)(O : 1) N COl(b/ +1: 5)
Observe that G is isomorphic to Grid(2,5 — b'). As vy 5 is a corner vertex of G
and €y, ;55 = 1, Lemma 3,1 implies that there is a hamiltonian path P? of G
from vy 5 to vg5. Then P = P} U P} is an (S, T)-path from V15 t0 Vo2 = Vgc.
If Va! b = V1,2, then PQ = V1,1V1,2- If Vo' b = V0,3, then PQ = 01,1V1,2V1,300,3- If
Vg p = V14, then P = vy 101 201,3V0,300,4v1,4. Hence Py is an (S,T)-path from
v1,1 to vg . Therefore, Py and P, are as required. [ ]

Lemma 3.10. Given an integer k € {4,6}, let even u be a vertexr in Row(0 :
1) —voo of Q5. Let S = {u,v0p_1} and T = {vi2,v01}. Then there are two
vertez-disjoint (S, T)-paths in Row(0 : 1)—wvg o that contain all vertices of Row(0 :
1) — V0,0-

Proof. Asu # vg is even, we have u € V(Col(1 : k—1)). If u € V(Col(1)), then
u =wvy1. Let P = Row(l) — {(v1,1,v1,2)} and P» = Row(0) — vp,0. Obviously,
P and P» are two vertex-disjoint (S, T")-paths in Row(0 : 1) — v that contain
all vertices of Row(0 : 1) —vgo. If u € V(Col(k — 1)), then u = vy ;. Let
P1 = V1,k—1V1,0V1,1V1,2- If £ = 4, let P2 = 0,3V0,270,1- If £ = 6, let P2 =
V0,5V0,4V1,4V1 3U0 300 2v0,1. LThen P; and P, are as required. If u € V(Col(2 :
k—2)), let G = Row(0 : 1) N Col(2 : k —2). Observe that G is isomorphic
to Grid(2,k — 3). As odd vy is a corner vertex of G and u is even, Lemma
3,1 implies that there is a hamiltonian path P; of G from u to vi2. Let P, =
V0,k—101,k—1v1,001,1V0,1- Clearly, Py and P, are as required. [ |

Note that in a Q§, Col(1 : 3) and Col(3 : 5) are isomorphic. By a similar proof
above, we have following corollary.

Corollary 3.11. Let even u be a verter in Row(0 : 1) — voo of QS and let
S ={u,vo5}, T ={v14,v0.1}. Then there are two vertez-disjoint (S,T)-paths in
Row(0 : 1) —vo o that contain all vertices of Row(0 : 1) — v .

We define the following paths in Row(i:i+1) ofa Q5. Leti <a<i+1, 0<b,
m<k—land m=#b. fa=ithena=i+1, and if a =4+ 1 then a = i.

C?’TL (Ua,bu U&,b) = Vq,bVa,b+1Va,b+2 - - - Va,m—1Va,mVa,mVam—1Vam—2 - - - Va,b+1Va,b-

C;z (Ua,ba 'U&,b) = Vq,bVa,b—1Va,b—2 - - - Va,m+1Va,mVa,mVa,m+1Va,m+2 - - - Va,b—1Va,b-

In addition, if m = b, we define C’;“(va7b, vap) = Cp (Vabs Vap) = (Vabs Vap)-
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Theorem 3.12. Given an even k > 4, let F, = {u*,v*} be a set of faulty vertices
of Qé such that eyx , = 1 and let u and v be any two healthy vertices of QS such
that ey, = 1. Then there exists a hamiltonian path of QL — F, from u to v.

Proof. Without loss of generality, we may assume that u* = vg . As ey =1
and u* = vg o is even, we see that v* is odd. Let v* = v, where 0 < a,b <k —1.
As Row(1 : k — 1) is isomorphic to Col(1 : k — 1), it is enough to consider v* is
in Row(1 : k — 1). Furthermore, we may assume that v* is in Row(g ck—1)
because Row(1 : %) and Row(% : k — 1) are isomorphic.

If ais odd, let p =a — 2. If a is even, let p = a — 1. Clearly, p is odd and
V' =gy € V(Row(p+1:p+2)). Let u=v;; and v = vy jy. We consider the
following five cases.

Case 1. u,v € V(Row(0 : 1)). Let S = {u,v} and T' = {vg1,v10}. As
euwy = 1, Lemma 3.6 implies that there exists two vertex-disjoint (S,T)-paths
Py, Py in Row(0 : 1) — v that contain all vertices of Row(0 : 1) — vp0. Recall
that odd v* is in Row(p +1 : p+2). As even v,y10 and even v_1 are two
distinct vertices in Row(p+1: k—1), Lemma 3.4 and Lemma 3.5(iii) imply that
there exists a hamiltonian path P3 of Row(p+1 : k—1)—v* from vp41,0 to vgp_11.

If p =1, then Py UPo U Ps+ {(v1,0,v20), (vo,1,Vk—1,1)} is a hamiltonian path
of Q¥ — F, from u to v. Suppose that odd p > 3. As €vy0,0p0 = 1, Lemma 3.3
implies that there exists a hamiltonian path Py of Row(2 : p) from vy to vp.
Then Ufﬂ:l Py + {(v1,0,v20), (v0,1,Vk-1,1), (Up,0, Up+1,0)} is @ hamiltonian path of
Q’g — F, from u to v.

Case 2. v € V(Row(0:1)) and v € V(Row(2 : p)). As v € V(Row(2 : p)), it
is easy to see that odd p > 3. Noting that v* = v, € V(Row(p + 1,p + 2)), we
see that Row(p+2) exists. Then k—1 > p+2 > 5, and so k > 6. We distinguish
two cases.

Case 2.1. w is even and v is odd. Let G; = Row(0 : 1) N Col(1 : j).
Observe that (1 is isomorphic to Grid(2,7). As ey, = 1 and vg; is a corner
vertex of 1, Lemma 3.1 implies that there is a hamiltonian path P, of Gy
from u to vp;. Let Py = C;+1(vo7k,1,vl7k,1) + {(v1,0,v1%-1)}. Then P; and
P, are two vertex-disjoint paths in Row(0 : 1) — v that contain all vertices of
Row(0 : 1) —vp 0. Noting that v is odd, we have e,, ,, = 1. By Lemma 3.3, there
is a hamiltonian path P; of Row(2 : p) from vy to v. As k is even and v* is odd,
we have ey, 1 vy, =0 and ey, » = 1. Combining this with the fact that
v* € V(Row(p+1:p+2)), Lemma 3.4 and Lemma 3.5(ii) imply that there is
a hamiltonian path Py of Row(p+1:k —1) —v* from vi_;1 1 to vg—_1 ,—1. Then
Ué:l P; + {(U071,Uk_171), (U170,vg70), (U07k_1, Uk—l,k—l)} is a hamiltonian path of
QL — F, from u to v.

Case 2.2. u is odd and v is even. Noting that v is even and p is odd, we
have e,, ,,» = 1. By Lemma 3.3, there exists a hamiltonian path P of Row(2 : p)
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from v,y to v. As k > 6, we may choose a vertex w € V(Row(0)) such that
w # u and ey, = 0. Combining this with the fact that ey, ., = 1, Lemma 3.4
implies that there exists a hamiltonian path P, of Row(0 : 1) — vgg from u to
w. By €, pk-1(,) = 1, we have nk~1(w) is even. Note that v,;1 is even and
v* € V(Row(p+1:p+2))is odd. By Lemma 3.4 and Lemma 3.5(iii), there is
a hamiltonian path P; of Row(p+1:k — 1) — v* from n*~1(w) to v,410. Then
PLUPUPs+{(w,n*"Y(w)), (vp.o, vp+1,0)} is @ hamiltonian path of Q% — F,, from
u to v.

Case 3. w € V(Row(0: 1)) and v € V(Row(p+1:p+2)).

Case 3.1. u is odd and v is even. Suppose first that £ = 4. Then Row(p+1 :
p+2) = Row(2: 3). Let v/ be the neighbour of v in Row(0 : 1). It is easy to see
that we may choose an odd v’ in Row(0 : 1) — u such that v’ # v’. Denote the
neighbour of v/ in Row(2 : 3) by u”. As u* is even and both u and u' are odd,
Lemma 3.4 implies that there is a hamiltonian path P; of Row(0 : 1) — u* from
u to u/. Similarly, there is a hamiltonian path P» of Row(2 : 3) — v* from u” to
v. Then Py U Py + {(u/,u”)} is a hamiltonian path of Q3 — F, from u to v.

Suppose next that k& > 6. As % —2>3—-2 =1, we may choose an odd
x in Row(p) such that  # w and nP™'(x) # v. Then e;, = 0. Note that
ewryw = 1 and u* € V(Row(0 : 1)). By Lemma 3.4 and Lemma 3.5(iii), there
exists a hamiltonian path P; in Row(0 : p) — u* from u to . As z is odd, we
have nP*1(z) is even. Recalling that v* € V(Row(p+1:p+ 2)) is odd and v is
even, Lemma 3.4 and Lemma 3.5(i) imply that there is a hamiltonian path P, of
Row(p+1:k—1)—v* from nP*!(x) to v. Then P, U P, + {(z,n?*1(x))} is a
hamiltonian path of Q’g — F, from u to v.

Case 3.2. u is even and v is odd.

Case 3.2.1. k = 4. In this case, Row(p+ 1 : p+2) = Row(2 : 3). Let
S = {u,vo3} and T" = {v12,v91}. By Lemma 3.10, there exist a uv;2-path
Py and a wvg3vgi-path Py in Row(0 : 1) — vg9. Moreover, P; and P, are two
vertex-disjoint (S, T)-paths that contain all vertices of Row(0 : 1) — vg .

Let S = {vs31,v33} and T" = {v,v22}. Recall that both v and v* are
odd. By Lemma 3.7, there are two vertex-disjoint (S,7T)-paths Ps and Py in
Row(2 : 3) — v* that contain all vertices of Row(2 : 3) — v*. Then U?z:l P;+
{(vo.1,v31), (v0,3,v33), (v1.2,v22)} is a hamiltonian path of Q3 — F, from u to v.

Case3.2.2. k> 6. If p=1, then v* = v,3 € V(Row(2 :3)) andso 2 < a < 3.
Recall that v* = v, is in Row(% :k—1) and k > 6. Therefore a > % > 3. So
a=3and k=2x3=6. Let S ={v31,v35} and T' = {v,v2.}(c = 2 or 4). By
Lemma 3.9, there are two vertex-disjoint (S5, T")-paths P;, P in Row(2 : 3) — v*
that contain all vertices of Row(2 : 3) — v*. As v1,. € {vi2,v14} and even u
is in Row(0 : 1) — v, Lemma 3.10 and Corollary 3.11 imply that there exist

a path P3 from u to vi. and a path P, from vgs to vg1. Moreover, P; and
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P, are two vertex-disjoint paths in Row(0 : 1) — v that contain all vertices of
Row(0: 1) —vgp.

Let Ps = Cj (va1,v51) and Ps = C5 (vas,v55). Clearly, Ps and Ps are
vertex-disjoint paths in Row(4 : 5) that contain all vertices of Row(4 : 5). Then
WSy Pa 4 {(v16,v9¢), (V05,055), (V0.1,05,1), (V35,0a5), (v31,v41)} is a hamilto-
nian path of Q$ — F, from u to v.

Suppose that p > 3. We will choose an odd v’ € V(Row(1)) and construct
a wu'-path Py and a vg —1v0,1-path P» in Row(0 : 1) — vp . Suppose first that
u € V(Row(0)). As u = vp; is even, we have v’ = vy ; is odd. Let P, = uv/
and Py = C;r_l(vl,h v0,1)UC 1 (V1 k-1, v0,k—1) +{(v1,1,v10), (v1,0,v1,6-1)}. Then
Py is a path from u to v’ and P» is a path from vg;_; to vgi. Obviously, P
and P, are vertex-disjoint paths that contain all vertices of Row(0 : 1) — vg.
Suppose next that v € V(Row(1)). As u = vy is even, we have v/ = v ;1 €
V(Row(1)) is odd, where 1 < j < k — 1. Let P, = Row(1) — {(v1,j-1,v1,;)} and
Py = 00 —1V0 k—200,k—3 - - - V0,1. Then Py is a path from u to v’ and P> is a path
from vg z—1 to vp,1. Clearly, P; and P, are vertex-disjoint paths that contain all
vertices of Row(0: 1) — vg .

Noting that p is odd and k is even, we have both v,y21 and v,495_1 are
even. Let S = {vpt2.1,Vpt24-1}. As odd v*,v € V(Row(p+1:p+2)), Lemma
3.8 implies that there exists a set T = {z,v} (z € V(Row(p + 1)) is even), such
that there are two vertex-disjoint (S,T)-paths P3, Py in Row(p+1:p+2) — v*
that contain all vertices of Row(p + 1 : p+ 2) — v*.

Note that z € V(Row(p+1)) and v’ € V(Row(1)). As z is even and v’ is odd,
it is easy to see that e, () n2(w) = 1. By Lemma 3.3, there exists a hamiltonian
path P5 of Row(2 : p) from n*(u’) to nP(x).

We will construct a hamiltonian path of Q’g — F, from u to v in the following.
Noting that p + 2 is odd, we consider the following two cases. If p+2 =k — 1,
then (J_, Pat+{ (v, n?(@")), (vo.1, vp12.1)s (Vok—1,Vprak 1), (nP(x),2)} is a hamil-
tonian path of Q5 — F, from u to v. If p+2 < k — 3, let G; = Row(p + 3 :
k—1)NCol(0: 1) and G2 = Row(p+3: k—1)NCol(2: k—1). Observe that Gy is
isomorphic to Grid(k—p—3,2) and G is isomorphic to Grid(k—p—3,k—2). As
pisodd and k is even, we have €y, 4 1 v 17 = €vy 54 1,00 151 = 1+ ASUpt31 and
vp43k—1 are corner vertices of G and G, respectively, Lemma 3.2 implies that
there are a hamiltonian path Ps of G from v,431 to v4—1,1 and a hamiltonian path
Pr of Gy from vpy3 51 to vg—1k—1. Then U;:l Py + {(u/,n*()), (vo,1,vk—11)s
(V0,k—1, Vk—1k-1), (PP (@), ), (Vp+21,Vp+3.1)s (Vp42k—1, Ups3k—1)} is a hamilto-
nian path of Q’g — F, from u to v.

Case 4. u,v € V(Row(2 : p)). As u,v € V(Row(2 : p)), it is easy to see that
odd p > 3. Noting that v* = v, € V(Row(p+1,p+2)), we see that Row(p+ 2)
exists. Then K —1>p+2>5, and so k > 6. As e,, = 1, by Lemma 3.3, there
exists a hamiltonian path P; of Row(2 : p) from u to v that contains an edge
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(s,t) of Row(2). As epi(s) 1) = 1, without loss of generality, we may assume
that nl(s) is odd and n!(t) is even. Let n'(s) = vy, and nt(t) = vi mi1.

If m = 0, then n'(s) = vip and n'(t) = vi1. Let Py = 1001 5-100 k-1
and Py = C;_2(U171,UQ71). Ifm # 0, let P, = V1,mV0,mY0,m+1 - - - V0,k—1, P31 =
V1,m+1Vm+2Vm+4 - - - V1 k—1V1,0V1,1 and P3 = P31 U 0:1_1(1/1’1,’00,1). Then P, is a
path from n'(s) to vgx_1 and P3 is a path from n'(t) to vo;. Obviously, P»
and Pj are vertex-disjoint paths in Row(0 : 1) — v, that contain all vertices of
RO'UJ(O : 1) — V0,0-

As vp_11,05—15-1 € V(Row(k — 1)) are even and v* € V(Row(p + 1 :
p+2)) is odd, Lemma 3.4 and Lemma 3.5(ii) imply that there is a hamiltonian
path Py of Row(p +1: k—1) —v* from vp_11 to vg_1,—1. Then U§:1 Py —
{(s,t)} + {(s,n'(s)), (t,n (1)), (vo.1, Vk—11), (Vok—1,Vk—1,—1)} is & hamiltonian
path of Q’g — F, from u to v.

Case 5. u € V(Row(2:p)) and v € V(Row(p+3:k—1)). Asu € V(Row(2 :
p)), it is easy to see that odd p > 3. Noting that v € V(Row(p + 3 : k — 1)), we
have k—1>p+3andsok >p+4 > 7. As k is even, we have k > 8. Recall that
v=uvy . Ifi'is odd, let ¢ =4 — 1. If i’ is even, let ¢ = ¢’. Clearly, ¢ > p+ 3 is
even and v € V(Row(q : ¢+ 1)). Now we consider the following two cases.

Case 5.1. v € V(Row(q)). As ey, = 1, without loss of generality, we assume
that u is even and v is odd. Choose an odd w € V(Row(p)). Then e, , = 1.
By Lemma 3.3, there is a hamiltonian path P, of Row(2 : p) from u to w that
contains an edge (s,t) of Row(2). Similar to Case 4, there exist an n!(s)vgx_1-
path P and an n'(t)vg1-path Py in Row(0 : 1) — vg 9. Moreover, P» and Ps are
vertex-disjoint paths that contain all vertices of Row(0 : 1) — vg .

As vp_11,v6—14-1 € V(Row(k — 1)) are even and v € V(Row(q)) is odd,
Lemma 3.4 and Lemma 3.5(ii) imply that there is a hamiltonian path Pj of
Row(q : k —1) — v from vg_1 1 to vg_1k—1. As both w and v are odd, we have
both nP1(w) and n?~1(v) are even. Note that the odd v* is in Row(p+1 : p+2).
By Lemma 3.4 and Lemma 3.5(iii), there is a hamiltonian path Ps of Row(p+1 :
q—1) —v* from nP*(w) to n?1(v).

Then U3:1 Pq— {(87 t)} + {(37 nl(s))a (tv n! (t))7 (2}0717 Uk—1,1)7 (UO,k—h Uk—l,k—1)7
(w,nPT(w)), (v,n9"1(v))} is a hamiltonian path of Q5 — F, from u to v.

Case 5.2. v € V(Row(q+ 1)). As e,, = 1, without loss of generality, we
assume that u is odd and v is even. Choose an even w # v in Row(q + 1). As
ewpy = 0 and e, ,» = 1, Lemma 3.5(ii) implies that there is a hamiltonian path
P of Row(p+1:qg+1)—v* from w to v. Choose an odd x € V(Row(1)) and
an odd y € V(Row(0)). Then n?(z) is even. Noting that u is odd, we have
€un2(z) = 1. By Lemma 3.3, there is a hamiltonian path P, of Row(2 : p) from u
to n%(z). Note that u* is even and both x and y are odd. By Lemma 3.4, there
is a hamiltonian path P3 of Row(0 : 1) — u* from z to y.
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We will construct a hamiltonian path of Q% — F, from u to v in the following.
Noting that g + 1 is odd, we consider the following two cases. Suppose first
that g +1 = k — 1. As w is even, we have n’(w) is odd. Let y = n°(w).
Then P U Py U Ps + {(w,n°(w)), (z,n?(x))} is a hamiltonian path of Q5 — F,
from u to v. Suppose next that ¢ +1 < k — 3. As w is even and y is odd,
we have n9+2(w) is odd and n*~!(y) is even. By Lemma 3.3, there exists a
hamiltonian path P of Row(q + 2 : k — 1) from n9T2(w) to n*~'(y). Then
U=, Pat{(y,n* (), (z,n?(x)), (w,n9"2(w))} is a hamiltonian path of Q§ — F,
from u to v. The proof of this theorem is complete. [

Given an even k > 4, let F, be the set of faulty vertices of a QS. Recall that
finar = max{|F, N X|,|F, N Y|}, where X be the set of even vertices and Y be
the set of odd vertices of the QS. The following result is a direct consequence of
Theorem 1.1 and 3.12.

Corollary 3.13. Let k > 4 be even and let f, be the number of faulty vertices
and f. be the number of faulty edges in Q% with 0 < f, + fo < 2. Given any

two healthy vertices u and v of Q’Q“, then there is a path from u to v of length
k% —2fmat — 1 if ey, = 1.

4. CONCLUSIONS

In this paper, we investigate the problem of embedding hamiltonian paths into
faulty k-ary 2-cubes, where &k > 4 is even. For any two healthy vertices u,v
with ey, = 1, we proved that the faulty k-ary m-cube admits a path of length
k? —2fmar 1 if f, 4+ f. < 2. The above result show that the fault-tolerant
capability of the k-ary 2-cube is nice in terms of the path embeddings. The
work will help engineers to develop corresponding applications on the distributed-
memory parallel system that employs the k-ary 2-cube as the interconnection
network.
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