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Abstract

It is well known that the k-ary n-cube has been one of the most efficient
interconnection networks for distributed-memory parallel systems. A k-ary
n-cube is bipartite if and only if k is even. Let (X,Y ) be a bipartition of a
k-ary 2-cube (even integer k ≥ 4). In this paper, we prove that for any two
healthy vertices u ∈ X, v ∈ Y , there exists a hamiltonian path from u to v

in the faulty k-ary 2-cube with one faulty vertex in each part.
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1. Introduction

The k-ary n-cube has many desired properties, such as easy of implementa-
tion, low-latency and high-bandwidth interprocessor communication. Therefore,
a large number of distributed-memory parallel systems (also known as multicom-
puters) have been built with a k-ary n-cube forming the underling topology, such
as the iWarp [12], the J-machine [11] and the Cray T3D [9]. An interconnection
network is often modeled as a graph, in which vertices and edges correspond to
nodes and communication links, respectively. The k-ary n-cube, denoted by Qk

n

(k ≥ 2 and n ≥ 1), is a graph consisting of kn vertices, each of which has the
form u = un−1un−2 . . . u0, where 0 ≤ ui ≤ k − 1 for 0 ≤ i ≤ n− 1. Two vertices
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u = un−1un−2 . . . u0 and v = vn−1vn−2 . . . v0 are adjacent if and only if there
exists an integer j, 0 ≤ j ≤ n− 1, such that uj = vj ± 1(mod k) and ui = vi, for
every i ∈ {1, 2, . . . , n} \ {j}. For clarity of presentation, we omit writing “(mod
k)” in similar expressions for the remainder of the paper.

The graph embedding is a technique that maps a guest graph into a host
graph. Many graph embeddings take paths and cycles as guest graphs because
they are the common structures used to model linear arrays in parallel pro-
cessing [2, 4, 15, 16, 17]. In recent years, the problem of path embeddings in
an interconnection network has attracted a great deal of attention from the re-
searchers. Since failures are inevitable, fault-tolerant is an important issue in
the distributed-memory parallel system. Many works related to embeddings of
the longest paths in various faulty interconnection networks have been studied
previously, including hypercubes [3, 5, 7, 10, 14, 16, 19], k-ary n-cubes [1, 15, 17,
19] and stars [6, 13]. In particular, Yang et al. [19] proved that for arbitrary two
healthy vertices of Qk

n with odd k ≥ 3, there exists a fault-free hamiltonian path
connecting these two vertices if the number of faults is at most 2n− 3.

The parity of a vertex u = un−1un−2 . . . u0 of Qk
n is defined to be un−1 +

un−2 + · · ·+ u0 modulo 2. We speak of a vertex as being odd or even according
to whether its parity is odd or even. Given any two distinct vertices u and v. Let

eu,v =

{

1, if u and v have different parities,
0, if u and v have the same parity.

For even k ≥ 4, Stewart and Xiang [15] studied the problem of embedding
long paths in the k-ary n-cube with faulty vertices and edges. They presented
the following result.

Theorem 1.1 [15]. Let k ≥ 4 be even and let fv be the number of faulty vertices

and fe be the number of faulty edges in Qk
2 with 0 ≤ fv + fe ≤ 2. Given any two

healthy vertices u and v of Qk
2, then there is a path from u to v of length at least

k2 − 2fv − 1 if eu,v = 1.

Let X be the set of even vertices and Y be the set of odd vertices of a Qk
2 with

even k ≥ 4. Obviously, (X,Y ) is a bipartition of the Qk
2. We denote the set

of faulty vertices of the Qk
2 by Fv. Let fmax

v = max{|Fv ∩ X|, |Fv ∩ Y |}. In
this paper, we prove that there is a path from u to v in the faulty Qk

2 of length
k2 − 2fmax

v − 1 if eu,v = 1. As |Fv ∩ X| + |Fv ∩ Y | = fv, we have fmax
v ≤ fv.

Obviously, k2 − 2fmax
v − 1 ≥ k2 − 2fv − 1. Therefore, our result improves the

result noted above.
The rest of this paper is organized as follows. In the next section, some

basic definitions are introduced. In Section 3, we construct a hamiltonian path
connecting any two healthy verities in different parts in the faulty k-ary 2-cube
(even k ≥ 4) with one faulty vertex in each part. Conclusions are covered in
Section 4.
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2. Basis Definition

Throughout this paper, we restrict our attention to n = 2 and even k ≥ 4. For
convenience, we write va,b as the vertex of Qk

2 with the form v1v0 = ab, where
0 ≤ a, b ≤ k − 1. For 0 ≤ i ≤ j ≤ k − 1, Row(i : j) of Qk

2 is the subgraph of Qk
2

induced by {va,b : i ≤ a ≤ j, 0 ≤ b ≤ k − 1, Col(i : j) of Qk
2 is the subgraph of

Qk
2 induced by {va,b : 0 ≤ a ≤ k − 1, i ≤ b ≤ j}.

Given 1 ≤ k1, k2 ≤ k − 1, the subgraph of Qk
2 induced by {va,b : 0 ≤ a ≤

k1 − 1, 0 ≤ b ≤ k2 − 1} is denoted by Grid(k1, k2). A vertex of Grid(k1, k2) is
called a corner vertex if its degree in Grid(k1, k2) is 2. For 0 ≤ i ≤ j ≤ k1 − 1,
Row(i : j) of Grid(k1, k2) is the subgraph of Grid(k1, k2) induced by {va,b : i ≤
a ≤ j, 0 ≤ b ≤ k2 − 1}. For 0 ≤ i ≤ j ≤ k2 − 1, Col(i : j) of Grid(k1, k2) is the
subgraph of Grid(k1, k2) induced by {va,b : 0 ≤ a ≤ k1 − 1, i ≤ b ≤ j}.

Instead of Row(i : i) and Col(j : j) of Qk
2 (resp. Grid(k1, k2)) we simply write

Row(i) and Col(j) of Qk
2 (resp. Grid(k1, k2)). Row(0 : 2) of Q4

2 and Grid(2, 4)
are shown in Figure 1 and Figure 2, respectively.
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Figure 1. Row(0 : 2) of Q4

2
Figure 2. Grid(2, 4)

Choose a vertex u = va,b (0 ≤ a, b ≤ k − 1) in Row(a) of Qk
2. The neighbour of

u in Row(a− 1) (resp. Row(a+ 1)) is denoted by na−1(u) (resp. na+1(u)), that
is, na−1(u) = va−1,b (resp. n

a+1(u) = va+1,b).

3. Path Embeddings in Faulty k-ary 2-cubes

We start with some useful lemmas.

Lemma 3.1 [8]. Given an integer n ≥ 1, let u be a corner vertex of Grid(2, n).
For any vertex v 6= u in Grid(2, n) such that eu,v = 1, there exists a hamiltonian

path of Grid(2, n) from u to v.

Lemma 3.2 [8]. Given even k1, k2 ≥ 2, let u and v be vertices in Row(0) and

Row(k1−1) of Grid(k1, k2), respectively. If at least one of u and v is a corner ver-

tex of Grid(k1, k2) and eu,v = 1, then there is a hamiltonian path of Grid(k1, k2)
from u to v.
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In [15], Stewart and Xiang constructed the long paths in Row(0 : p − 1) of
Qk

2 (even k ≥ 4), where 2 ≤ p ≤ k. They present the following result.

Lemma 3.3 [15]. Given an even k ≥ 4, let u and v be any two distinct healthy

vertices in Row(0 : p− 1) of Qk
2, where 2 ≤ p ≤ k. If eu,v = 1, then there exists a

hamiltonian path of Row(0 : p− 1) from u to v that contains at least one healthy

edge of Row(0).

According to the proof of Lemma 1 in [15], we have the following lemma.

Lemma 3.4 [15]. Given an even k ≥ 4, let u and v be any two distinct healthy

vertices and x be a faulty vertex in Row(0 : 1) of Qk
2. If ex,u = 1 and eu,v = 0,

then there exists a hamiltonian path of Row(0 : 1)− x from u to v that contains

at least one healthy edge of Row(1).

Lemma 3.5. Given an even k ≥ 4, let x be the only faulty vertex in Row(0 : 1)
of Qk

2 and let u, v be any two distinct healthy vertices in Row(0 : p − 1) of Qk
2

such that ex,u = 1 and eu,v = 0, where p is even and 4 ≤ p ≤ k. Then there exists

a hamiltonian path of Row(0 : p−1)−x from u to v if one of the following holds.

(i) u, v ∈ V (Row(0 : 1)).

(ii) u, v ∈ V (Row(p− 1)).

(iii) u ∈ V (Row(0 : 1)) and v ∈ V (Row(p− 1)).

Proof. Suppose that u, v ∈ V (Row(0 : 1)). As x ∈ V (Row(0 : 1)) and ex,u =
1, eu,v = 0, Lemma 3.4 implies that there is a hamiltonian path P1 of Row(0 :
1) − x from u to v that contains an edge (s, t) of Row(1). As en2(s),n2(t) = 1,
by Lemma 3.3, there is a hamiltonian path P2 of Row(2 : p − 1) from n2(s) to
n2(t). Then, P1 ∪ P2 − {(s, t)} + {(s, n2(s)), (t, n2(t))} is a hamiltonian path of
Row(0 : p− 1)− x from u to v.

Suppose that u, v ∈ V (Row(p − 1)). Let u = vp−1,j , v = vp−1,j′ , where
0 ≤ j, j′ ≤ k − 1 and j 6= j′. Without loss of generality, we assume that j < j′.
Let q ∈ {j, j+1, j+2, . . . , j′} be odd and let G1 = Row(2 : p−1)∩Col(0 : q) and
G2 = Row(2 : p− 1) ∩ Col(q + 1 : k − 1). Obviously, u ∈ V (G1) and v ∈ V (G2).
As q is odd, we have ev2,0,v2,q = ev2,q+1,v2,k−1

= 1. Thus one of eu,v2,0 = 1 and
eu,v2,q = 1 holds. Without loss of generality, we may assume that eu,v2,0 = 1. As
G1 is isomorphic to Grid(p− 2, q + 1) and v2,0 is a corner vertex of G1, Lemma
3.2 implies that there is a hamiltonian path P1 of G1 from v2,0 to u. As eu,v = 0,
it is easy to see that ev2,q+1,v = 1. As G2 is isomorphic to Grid(p− 2, k − q − 1)
and v2,q+1 is a corner vertex of G2, Lemma 3.2 implies that there is a hamiltonian
path P2 of G2 from v2,q+1 to v. As ev2,0,u = 1, we have ev1,0,u = 0. Combining this
with the fact that ex,u = 1 and q is odd, we see that ex,v1,0 = 1 and ev1,0,v1,q+1

= 0.
By Lemma 3.4, there is a hamiltonian path P3 of Row(0 : 1) − x from v1,0 to
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v1,q+1. Therefore P1∪P2∪P3+{(v1,0, v2,0), (v1,q+1, v2,q+1)} is a hamiltonian path
of Row(0 : p− 1)− x from u to v.

Suppose that u ∈ V (Row(0 : 1)) and v ∈ V (Row(p− 1)). As k ≥ 4, we may
choose a vertex s ∈ V (Row(1)) such that s 6= u and eu,s = 0. Clearly ex,s = 1.
By Lemma 3.4, there is a hamiltonian path P1 of Row(0 : 1)− x from u to s. As
eu,s = eu,v = 0 and es,n2(s) = 1, we have en2(s),v = 1. By Lemma 3.3, there is a
hamiltonian path P2 of Row(2 : p−1) from n2(s) to v. Then, P1∪P2+{(s, n2(s))}
is a hamiltonian path of Row(0 : p− 1)− x from u to v. The proof is complete.

Given a graph G, let S and T be two subsets of V (G). An (S, T )-path is a path
which starts at a vertex of S, ends at a vertex of T , and whose internal vertices
belong to neither S nor T .

Lemma 3.6. Given an even k ≥ 4, let S = {u, v} be a set of two distinct vertices

in Row(0 : 1) − v0,0 of Qk
2 and let T = {v0,1, v1,0}. If eu,v = 1, then there exists

two vertex-disjoint (S, T )-paths in Row(0 : 1) − v0,0 that contain all vertices of

Row(0 : 1)− v0,0.

Proof. As eu,v = 1, without loss of generality, assume that u is even and v is
odd. We consider the following two cases. In each case, we will construct two
vertex-disjoint (S, T )-paths P1 and P2 in Row(0 : 1)− v0,0.

Case 1. v = v1,0. In this case, u is in G1 = Row(0 : 1)∩Col(1 : k− 1) which
is isomorphic to Grid(2, k − 1). As v0,1 is odd and u is even, we have ev0,1,u = 1.
Combining this with the fact that v0,1 is a corner vertex of G1, Lemma 3.1 implies
that there is a hamiltonian path P1 of G1 from u to v0,1. Let P2 = v. Clearly, P1

and P2 are vertex-disjoint (S, T )-paths in Row(0 : 1) that contain all vertices of
Row(0 : 1)− v0,0.

Case 2. v 6= v1,0. In this case, u and v are in Row(0 : 1)∩Col(1 : k− 1). Let
u = vi,j and v = vi′,j′ , where 0 ≤ i, i′ ≤ 1 and 1 ≤ j, j′ ≤ k − 1. Without loss of
generality, we may assume that j ≤ j′.

Suppose first that j 6= j′. Let G1 = Row(0 : 1)∩Col(1 : j) and G2 = Row(0 :
1) ∩ Col(j + 1 : k − 1). Observe that G1 is isomorphic to Grid(2, j) and G2 is
isomorphic to Grid(2, k − j − 1). As v0,1 is a corner vertex of G1, v1,k−1 is a
corner vertex of G2 and ev0,1,u = 1, ev1,k−1,v = 1, Lemma 3.1 implies that G1 has
a hamiltonian path P1 from u to v0,1 and G2 has a hamiltonian path P 1

2 from
v to v1,k−1. Let P2 = P 1

2 + {(v1,k−1, v1,0)}. Then P1 and P2 are vertex-disjoint
(S, T )-paths in Row(0 : 1)− v0,0 that contain all vertices of Row(0 : 1)− v0,0.

Suppose next that j = j′. If 2 ≤ j = j′ ≤ k−2, let G1 = Row(0 : 1)∩Col(1 :
j′ − 1) and G2 = Row(0 : 1)∩Col(j +1 : k− 1). Recall that u = vi,j is even and
v = vi′,j′ is odd. Then ev0,1,vi′,j′−1

= 1 and ev1,k−1,vi,j+1
= 1. Observe that G1

and G2 are isomorphic to Grid(2, j′ − 1) and Grid(2, k− j − 1), respectively. By
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Lemma 3.1, there is a hamiltonian path P 1
1 of G1 from vi′,j′−1 to v0,1 and there is

a hamiltonian path P 1
2 of G2 from vi,j+1 to v1,k−1. Let P1 = P 1

1 + {(v, vi′,j′−1)}
and P2 = P 1

2 + {(u, vi,j+1), (v1,k−1, v1,0)}. If j = j′ = 1, then u = v1,1, v = v0,1.
Let P1 = v and P2 = P 1

2 + {(u, v1,2), (v1,k−1, v1,0)}. If j = j′ = k − 1, then
u = v1,k−1, v = v0,k−1. Let P1 = P 1

1 + {(v, v0,k−2)} and P2 = uv1,0. Therefore,
P1 and P2 are as required.

Lemma 3.7. Let odd va,b and odd va′,b′ be two distinct vertices in Row(0 : 1)
of Q4

2 and let S = {v1,1, v1,3} and T = {va′,b′ , v0,2}. Then there exist two vertex-

disjoint (S, T )-paths in Row(0 : 1) − va,b that contain all vertices of Row(0 :
1)− va,b.

Proof. We distinguish four cases. In each case, we will construct two vertex-
disjoint (S, T )-paths P1 and P2 in Row(0 : 1)− va,b.

Case 1. va,b, va′,b′ ∈ V (Col(0 : 1)). In this case va,b, va′,b′ ∈ {v0,1, v1,0}. Let
P1 = v1,1v1,2v0,2. Then P1 is a path from v1,1 to v0,2. If va,b = v0,1 and va′,b′ = v1,0,
let P2 = v1,3v0,3v0,0v1,0. If va,b = v1,0 and va′,b′ = v0,1, let P2 = v1,3v0,3v0,0v0,1.
Then P2 is a path from v1,3 to va′,b′ . Therefore, there exist two vertex-disjoint
(S, T )-paths in Row(0 : 1)− va,b that contain all vertices of Row(0 : 1)− va,b.

Case 2. va,b, va′,b′ ∈ V (Col(2 : 3)). In this case va,b, va′,b′ ∈ {v0,3, v1,2}. Let
P1 = v1,1v1,0v0,0v0,1v0,2. Then P1 is a path from v1,1 to v0,2. If va,b = v0,3 and
va′,b′ = v1,2, let P2 = v1,3v1,2. If va,b = v1,2 and va′,b′ = v0,3, let P2 = v1,3v0,3.
Then P2 is a path from v1,3 to va′,b′ . Therefore, P1 and P2 are as required.

Case 3. va′,b′ ∈ V (Col(0 : 1)) and va,b ∈ V (Col(2 : 3)). In this case va′,b′ ∈
{v0,1, v1,0} and va,b ∈ {v0,3, v1,2}. If va′,b′ = v0,1, let P1 = v1,1v1,0v0,0v0,1. If
va′,b′ = v1,0, let P1 = v1,1v0,1v0,0v1,0. Then P1 is a path from v1,1 to va′,b′ . Suppose
first that va,b = v0,3. Let P2 = v1,3v1,2v0,2. Suppose next that va,b = v1,2. Let
P2 = v1,3v0,3v0,2. Then P2 is a path from v1,3 to v0,2. Therefore, P1 and P2 are
as required.

Case 4. va,b ∈ V (Col(0 : 1)) and va′,b′ ∈ V (Col(2 : 3)). In this case va,b ∈
{v0,1, v1,0} and va′,b′ ∈ {v0,3, v1,2}. If va,b = v0,1, let P 1

1 = v1,1v1,0v0,0v0,3. If
va,b = v1,0, let P

1
1 = v1,1v0,1v0,0v0,3.

Suppose first that va′,b′ = v0,3. Let P1 = P 1
1 and let P2 = v1,3v1,2v0,2. Then

P1 is a path from v1,1 to v0,3 = va′,b′ and P2 is path from v1,3 to v0,2. Suppose
next that va′,b′ = v1,2. Let P1 = P 1

1 + {(v0,3, v0,2)} and let P2 = v1,3v1,2. Then
P1 is a path from v1,1 to v0,2 and P2 is path from v1,3 to v1,2 = va′,b′ . Therefore,
P1 and P2 are as required.

Lemma 3.8. Given an even k ≥ 6, let S = {v1,1, v1,k−1} and let odd va,b and

odd va′,b′ be two distinct vertices in Row(0 : 1) of Qk
2. Then there exists a set
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T = {va′,b′ , v0,c} (c is even) such that there are two vertex-disjoint (S, T )-paths
in Row(0 : 1)− va,b that contain all vertices of Row(0 : 1)− va,b.

Proof. Without loss of generality, we assume that va,b is in Col(0 : k
2 ). We

distinguish four cases. In each case, we will construct two vertex-disjoint (S, T )-
paths P1 and P2 in Row(0 : 1)− va,b.

Case 1. va,b ∈ V (Col(0 : 1)) and va′,b′ ∈ V (Col(0 : 1)). As both va,b and
va′,b′ are odd, we have va,b, va′,b′ ∈ {v0,1, v1,0}. Let v0,c = v0,2. We will construct
an (S, T )-path P1 from v1,1 to v0,c and an (S, T )-path P2 from v1,k−1 to va′,b′ . Let
G1 = Row(0 : 1)∩Col(3 : k−1). Observe that G1 is isomorphic to Grid(2, k−3).

Let P1 = v1,1v1,2v0,2. As v1,k−1 is a corner vertex of G1 and ev0,k−1,v1,k−1
= 1,

Lemma 3.1 implies that there is a hamiltonian path P 1
2 of G1 from v1,k−1 to

v0,k−1. Then P2 = P 1
2 + {(v0,k−1, v0,0), (v0,0, va′,b′)} is as required.

Case 2. va,b ∈ V (Col(0 : 1)) and va′,b′ ∈ V (Col(2 : k − 1)). In this case,
let v0,c = v0,0. As the odd va,b is in G1 = Row(0 : 1) ∩ Col(0 : 1), we have
va,b ∈ {v0,1, v1,0}. If va,b = v0,1, let P1 = v1,1v1,0v0,0. If va,b = v1,0, let P1 =
v1,1v0,1v0,0. Then P1 is a hamiltonian path of G1− va,b from v1,1 to v0,c. Observe
that G2 = Row(0 : 1)∩Col(2 : k− 1) is isomorphic to Grid(2, k− 2). Combining
this with the fact that v1,k−1 is a corner vertex of G2 and eva′,b′ ,v1,k−1

= 1, there
is a hamiltonian path P2 of G2 from v1,k−1 to va′,b′ . It can be seen that P1 and
P2 are vertex-disjoint (S, T )-paths in Row(0 : 1) − va,b that contain all vertices
of Row(0 : 1)− va,b.

Case 3. va,b ∈ V (Col(2 : k
2 )) and va′,b′ ∈ V (Col(0 : 1)). As G1 = Row(0 :

1) ∩ Col(0 : 1) is isomorphic to Grid(2, 2), v1,1 is a corner vertex of G1 and
eva′,b′ ,v1,1 = 1, Lemma 3.1 implies that there is a hamiltonian path P1 of G1 from
v1,1 to va′,b′ . Let v0,c = v0,2. It is enough to construct a hamiltonian path P2 of
G2 − va,b = Row(0 : 1) ∩ Col(2 : k − 1)− va,b from v1,k−1 to v0,c = v0,2.

Suppose first that va,b is in Col(2). Then va,b = v1,2. As Row(0 : 1)∩Col(3 :
k−1) is isomorphic to Grid(2, k−3), v0,3 is a corner vertex of Row(0 : 1)∩Col(3 :
k−1) and ev0,3,v1,k−1

= 1, Lemma 3.1 implies that there is a hamiltonian path P 1
2

of Row(0 : 1) ∩ Col(3 : k − 1) from v1,k−1 to v0,3. Then P2 = P 1
2 + {(v0,3, v0,2)}

is as required.

Suppose next that va,b is not in Col(2). Then Row(0 : 1) ∩ Col(2 : b − 1) is
isomorphic to Grid(2, b − 2) and Row(0 : 1) ∩ Col(b + 1 : k − 1) is isomorphic
to Grid(2, k − b − 1). If a = 0 then ā = 1, and if a = 1 then ā = 0. As va,b is
odd, it can be seen that both vā,b−1 and vā,b+1 are odd. Thus ev0,2,vā,b−1

= 1 and
ev1,k−1,vā,b+1

= 1. As v0,2 is a corner vertex of Row(0 : 1) ∩ Col(2 : b − 1) and
v1,k−1 is a corner vertex of Row(0 : 1) ∩ Col(b + 1 : k − 1), Lemma 3.1 implies
that there is a hamiltonian path P 1

2 of Row(0 : 1) ∩ Col(2 : b− 1) from vā,b−1 to
v0,2 and a hamiltonian path P 2

2 in Row(0 : 1) ∩ Col(b+ 1 : k − 1) from v1,k−1 to
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vā,b+1. Combining P 1
2 with P 2

2 as well as the edges (vā,b−1, vā,b) and (vā,b, vā,b+1),
we may obtain the required path P2.

Case 4. va,b ∈ V (Col(2 : k
2 )) and va′,b′ ∈ V (Col(2 : k − 1)).

Case 4.1. va,b is in Row(0), that is, va,b = v0,b. Suppose first that b′ > b.
As b is odd, we have that v1,b−1 is odd and v0,b+1 is even. Let v0,c = v0,b+1.
Observe that G1 = Row(0 : 1) ∩ Col(0 : b − 1) is isomorphic to Grid(2, b) and
G2 = Row(0 : 1)∩Col(b+2 : k− 1) is isomorphic to Grid(2, k− b− 2). As v1,b−1

is a corner vertex of G1 and ev1,1,v1,b−1
= 1, there is a hamiltonian path P 1

1 of G1

from v1,1 to v1,b−1. If va′,b′ = v1,b+1, let P1 = P 1
1 +{(v1,b−1, v1,b), (v1,b, v1,b+1)}. As

v1,k−1 is a corner vertex of G2 and ev1,k−1,v0,b+2
= 1, there is a hamiltonian path

P 1
2 of G2 from v1,k−1 to v0,b+2. Let P2 = P 1

2 + {(v0,b+2, v0,b+1)}. Then P1 is an
(S, T )-path from v1,1 to va′,b′ and P2 is an (S, T )-path from v1,k−1 to v0,b+1 = v0,c.
If va′,b′ 6= v1,b+1, let P1 = P 1

1 + {(v1,b−1, v1,b), (v1,b, v1,b+1), (v1,b+1, v0,b+1)}. Then
P1 is an (S, T )-path from v1,1 to v0,b+1 = v0,c. Note that now va′,b′ is in G2. As
ev1,k−1,va′,b′

= 1, there is a hamiltonian (S, T )-path P2 of G2 from v1,k−1 to va′,b′ .
Furthermore, it can be seen that P1 and P2 are vertex-disjoint (S, T )-paths and
contain all vertices of Row(0 : 1)− va,b.

Suppose next that b′ < b. As b is odd, we have v1,b+1 is odd and v0,b−1 is
even. Let v0,c = v0,b−1. By a similar proof above, we may obtain two required
(S, T )-paths.

Case 4.2. va,b is in Row(1), that is, va,b = v1,b. We only consider the case that
b′ > b since the proof for b′ < b is similar. Let G1 = Row(0 : 1) ∩ Col(0 : b − 1)
and G2 = Row(0 : 1) ∩ Col(b + 1 : k − 1). Observe that G1 is isomorphic to
Grid(2, b) and G2 is isomorphic to Grid(2, k − b − 1). As v1,b = va,b is odd, we
have v0,b−1 is odd and v0,b is even. Let v0,c = v0,b. As ev0,b−1,v1,1 = 1 and v0,b−1 is
a corner vertex of G1, Lemma 3.1 implies that there is a hamiltonian path P 1

1 of
G1 from v1,1 to v0,b−1. Let P1 = P 1

1 + {(v0,b−1, v0,b)}. Then P1 is an (S, T )-path
from v1,1 to v0,b = v0,c. As eva′,b′ ,v1,k−1

= 1 and v1,k−1 is a corner vertex of G2,
Lemma 3.1 implies that there is a hamiltonian path P2 of G2 from v1,k−1 to va′,b′ .
It can be seen that P1 and P2 are vertex-disjoint (S, T )-paths in Row(0 : 1)−va,b
that contain all vertices of Row(0 : 1)− va,b.

Lemma 3.9. Let S = {v1,1, v1,5} and let odd v1,b and odd va′,b′ be two distinct

vertices in Row(0 : 1) of Q6
2. Then there exists a set T = {va′,b′ , v0,c} (c = 2 or 4)

such that there are two vertex-disjoint (S, T )-paths in Row(0 : 1) − v1,b that

contain all vertices of Row(0 : 1)− v1,b.

Proof. As v1,b is odd, we have v1,b ∈ {v1,0, v1,2, v1,4}. If v1,b = v1,2 (resp. v1,4),
let v0,c = v0,2 (resp. v0,4). Using similar proofs of Case 3 and Case 4.2 in Lemma
3.8, we may obtain two vertex-disjoint (S, T )-paths in Row(0 : 1) − v1,b that
contain all vertices of Row(0 : 1)− v1,b.
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Suppose that v1,b = v1,0. Let v0,c = v0,2. If va′,b′ ∈ V (Col(1)), then va′,b′ = v0,1.
Similar to Case 1 of Lemma 3.8, we may obtain two vertex-disjoint (S, T )-paths in
Row(0 : 1)−v1,b that contain all vertices of Row(0 : 1)−v1,b. If va′,b′ ∈ V (Col(5)),
then va′,b′ = v0,5, let P1 = v1,1v1,0v0,0v0,5 and P2 = v1,5v1,4v0,4v0,3v1,3v1,2v0,2.
Obviously, P1 and P2 are as required. If va′,b′ ∈ V (Col(2 : 4)), then va′,b′ ∈
{v1,2, v0,3, v1,4}. Let P 1

1 = v0,5v0,0v0,1v0,2 and G = Row(0 : 1) ∩ Col(b′ + 1 : 5).
Observe that G is isomorphic to Grid(2, 5 − b′). As v1,5 is a corner vertex of G
and ev1,5,v0,5 = 1, Lemma 3,1 implies that there is a hamiltonian path P 2

1 of G
from v1,5 to v0,5. Then P1 = P 1

1 ∪ P 2
1 is an (S, T )-path from v1,5 to v0,2 = v0,c.

If va′,b′ = v1,2, then P2 = v1,1v1,2. If va′,b′ = v0,3, then P2 = v1,1v1,2v1,3v0,3. If
va′,b′ = v1,4, then P2 = v1,1v1,2v1,3v0,3v0,4v1,4. Hence P2 is an (S, T )-path from
v1,1 to va′,b′ . Therefore, P1 and P2 are as required.

Lemma 3.10. Given an integer k ∈ {4, 6}, let even u be a vertex in Row(0 :
1) − v0,0 of Qk

2. Let S = {u, v0,k−1} and T = {v1,2, v0,1}. Then there are two

vertex-disjoint (S, T )-paths in Row(0 : 1)−v0,0 that contain all vertices of Row(0 :
1)− v0,0.

Proof. As u 6= v0,0 is even, we have u ∈ V (Col(1 : k−1)). If u ∈ V (Col(1)), then
u = v1,1. Let P1 = Row(1) − {(v1,1, v1,2)} and P2 = Row(0) − v0,0. Obviously,
P1 and P2 are two vertex-disjoint (S, T )-paths in Row(0 : 1) − v0,0 that contain
all vertices of Row(0 : 1) − v0,0. If u ∈ V (Col(k − 1)), then u = v1,k−1. Let
P1 = v1,k−1v1,0v1,1v1,2. If k = 4, let P2 = v0,3v0,2v0,1. If k = 6, let P2 =
v0,5v0,4v1,4v1,3v0,3v0,2v0,1. Then P1 and P2 are as required. If u ∈ V (Col(2 :
k − 2)), let G = Row(0 : 1) ∩ Col(2 : k − 2). Observe that G is isomorphic
to Grid(2, k − 3). As odd v1,2 is a corner vertex of G and u is even, Lemma
3,1 implies that there is a hamiltonian path P1 of G from u to v1,2. Let P2 =
v0,k−1v1,k−1v1,0v1,1v0,1. Clearly, P1 and P2 are as required.

Note that in a Q6
2, Col(1 : 3) and Col(3 : 5) are isomorphic. By a similar proof

above, we have following corollary.

Corollary 3.11. Let even u be a vertex in Row(0 : 1) − v0,0 of Q6
2 and let

S = {u, v0,5}, T = {v1,4, v0,1}. Then there are two vertex-disjoint (S, T )-paths in

Row(0 : 1)− v0,0 that contain all vertices of Row(0 : 1)− v0,0.

We define the following paths in Row(i : i+1) of a Qk
2. Let i ≤ a ≤ i+1, 0 ≤ b,

m ≤ k − 1 and m 6= b. If a = i then ā = i+ 1, and if a = i+ 1 then ā = i.

C+
m(va,b, vā,b) = va,bva,b+1va,b+2 . . . va,m−1va,mvā,mvā,m−1vā,m−2 . . . vā,b+1vā,b.

C−

m(va,b, vā,b) = va,bva,b−1va,b−2 . . . va,m+1va,mvā,mvā,m+1vā,m+2 . . . vā,b−1vā,b.

In addition, if m = b, we define C+
b (va,b, vā,b) = C−

b (va,b, vā,b) = (va,b, vā,b).
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Theorem 3.12. Given an even k ≥ 4, let Fv = {u∗, v∗} be a set of faulty vertices

of Qk
2 such that eu∗,v∗ = 1 and let u and v be any two healthy vertices of Qk

2 such

that eu,v = 1. Then there exists a hamiltonian path of Qk
2 − Fv from u to v.

Proof. Without loss of generality, we may assume that u∗ = v0,0. As eu∗,v∗ = 1
and u∗ = v0,0 is even, we see that v∗ is odd. Let v∗ = va,b where 0 ≤ a, b ≤ k− 1.
As Row(1 : k − 1) is isomorphic to Col(1 : k − 1), it is enough to consider v∗ is
in Row(1 : k − 1). Furthermore, we may assume that v∗ is in Row(k2 : k − 1)

because Row(1 : k
2 ) and Row(k2 : k − 1) are isomorphic.

If a is odd, let p = a − 2. If a is even, let p = a − 1. Clearly, p is odd and
v∗ = va,b ∈ V (Row(p + 1 : p + 2)). Let u = vi,j and v = vi′,j′ . We consider the
following five cases.

Case 1. u, v ∈ V (Row(0 : 1)). Let S = {u, v} and T = {v0,1, v1,0}. As
eu,v = 1, Lemma 3.6 implies that there exists two vertex-disjoint (S, T )-paths
P1, P2 in Row(0 : 1) − v0,0 that contain all vertices of Row(0 : 1) − v0,0. Recall
that odd v∗ is in Row(p + 1 : p + 2). As even vp+1,0 and even vk−1,1 are two
distinct vertices in Row(p+1 : k− 1), Lemma 3.4 and Lemma 3.5(iii) imply that
there exists a hamiltonian path P3 of Row(p+1 : k−1)−v∗ from vp+1,0 to vk−1,1.

If p = 1, then P1 ∪P2 ∪P3 + {(v1,0, v2,0), (v0,1, vk−1,1)} is a hamiltonian path
of Qk

2 − Fv from u to v. Suppose that odd p ≥ 3. As ev2,0,vp,0 = 1, Lemma 3.3
implies that there exists a hamiltonian path P4 of Row(2 : p) from v2,0 to vp,0.
Then

⋃4
d=1 Pd + {(v1,0, v2,0), (v0,1, vk−1,1), (vp,0, vp+1,0)} is a hamiltonian path of

Qk
2 − Fv from u to v.

Case 2. u ∈ V (Row(0 : 1)) and v ∈ V (Row(2 : p)). As v ∈ V (Row(2 : p)), it
is easy to see that odd p ≥ 3. Noting that v∗ = va,b ∈ V (Row(p+ 1, p+ 2)), we
see that Row(p+2) exists. Then k−1 ≥ p+2 ≥ 5, and so k ≥ 6. We distinguish
two cases.

Case 2.1. u is even and v is odd. Let G1 = Row(0 : 1) ∩ Col(1 : j).
Observe that G1 is isomorphic to Grid(2, j). As ev0,1,u = 1 and v0,1 is a corner
vertex of G1, Lemma 3.1 implies that there is a hamiltonian path P1 of G1

from u to v0,1. Let P2 = C−

j+1(v0,k−1, v1,k−1) + {(v1,0, v1,k−1)}. Then P1 and
P2 are two vertex-disjoint paths in Row(0 : 1) − v0,0 that contain all vertices of
Row(0 : 1)−v0,0. Noting that v is odd, we have ev2,0,v = 1. By Lemma 3.3, there
is a hamiltonian path P3 of Row(2 : p) from v2,0 to v. As k is even and v∗ is odd,
we have evk−1,1,vk−1,k−1

= 0 and evk−1,1,v
∗ = 1. Combining this with the fact that

v∗ ∈ V (Row(p + 1 : p + 2)), Lemma 3.4 and Lemma 3.5(ii) imply that there is
a hamiltonian path P4 of Row(p+ 1 : k − 1)− v∗ from vk−1,1 to vk−1,k−1. Then
⋃4

d=1 Pd + {(v0,1, vk−1,1), (v1,0, v2,0), (v0,k−1, vk−1,k−1)} is a hamiltonian path of
Qk

2 − Fv from u to v.

Case 2.2. u is odd and v is even. Noting that v is even and p is odd, we
have evp,0,v = 1. By Lemma 3.3, there exists a hamiltonian path P1 of Row(2 : p)
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from vp,0 to v. As k ≥ 6, we may choose a vertex w ∈ V (Row(0)) such that
w 6= u and ew,u = 0. Combining this with the fact that ev0,0,u = 1, Lemma 3.4
implies that there exists a hamiltonian path P2 of Row(0 : 1) − v0,0 from u to
w. By ew,nk−1(w) = 1, we have nk−1(w) is even. Note that vp+1,0 is even and
v∗ ∈ V (Row(p + 1 : p + 2)) is odd. By Lemma 3.4 and Lemma 3.5(iii), there is
a hamiltonian path P3 of Row(p+ 1 : k − 1)− v∗ from nk−1(w) to vp+1,0. Then
P1∪P2∪P3+{(w, nk−1(w)), (vp,0, vp+1,0)} is a hamiltonian path of Qk

2 −Fv from
u to v.

Case 3. u ∈ V (Row(0 : 1)) and v ∈ V (Row(p+ 1 : p+ 2)).

Case 3.1. u is odd and v is even. Suppose first that k = 4. Then Row(p+1 :
p+ 2) = Row(2 : 3). Let v′ be the neighbour of v in Row(0 : 1). It is easy to see
that we may choose an odd u′ in Row(0 : 1) − u such that u′ 6= v′. Denote the
neighbour of u′ in Row(2 : 3) by u′′. As u∗ is even and both u and u′ are odd,
Lemma 3.4 implies that there is a hamiltonian path P1 of Row(0 : 1) − u∗ from
u to u′. Similarly, there is a hamiltonian path P2 of Row(2 : 3) − v∗ from u′′ to
v. Then P1 ∪ P2 + {(u′, u′′)} is a hamiltonian path of Q4

2 − Fv from u to v.
Suppose next that k ≥ 6. As k

2 − 2 ≥ 3 − 2 = 1, we may choose an odd
x in Row(p) such that x 6= u and np+1(x) 6= v. Then ex,u = 0. Note that
eu∗,u = 1 and u∗ ∈ V (Row(0 : 1)). By Lemma 3.4 and Lemma 3.5(iii), there
exists a hamiltonian path P1 in Row(0 : p) − u∗ from u to x. As x is odd, we
have np+1(x) is even. Recalling that v∗ ∈ V (Row(p+ 1 : p+ 2)) is odd and v is
even, Lemma 3.4 and Lemma 3.5(i) imply that there is a hamiltonian path P2 of
Row(p + 1 : k − 1) − v∗ from np+1(x) to v. Then P1 ∪ P2 + {(x, np+1(x))} is a
hamiltonian path of Qk

2 − Fv from u to v.

Case 3.2. u is even and v is odd.

Case 3.2.1. k = 4. In this case, Row(p + 1 : p + 2) = Row(2 : 3). Let
S = {u, v0,3} and T = {v1,2, v0,1}. By Lemma 3.10, there exist a uv1,2-path
P1 and a v0,3v0,1-path P2 in Row(0 : 1) − v0,0. Moreover, P1 and P2 are two
vertex-disjoint (S, T )-paths that contain all vertices of Row(0 : 1)− v0,0.

Let S = {v3,1, v3,3} and T = {v, v2,2}. Recall that both v and v∗ are
odd. By Lemma 3.7, there are two vertex-disjoint (S, T )-paths P3 and P4 in
Row(2 : 3) − v∗ that contain all vertices of Row(2 : 3) − v∗. Then

⋃4
d=1 Pd +

{(v0,1, v3,1), (v0,3, v3,3), (v1,2, v2,2)} is a hamiltonian path of Q4
2 − Fv from u to v.

Case 3.2.2. k ≥ 6. If p = 1, then v∗ = va,b ∈ V (Row(2 : 3)) and so 2 ≤ a ≤ 3.
Recall that v∗ = va,b is in Row(k2 : k − 1) and k ≥ 6. Therefore a ≥ k

2 ≥ 3. So
a = 3 and k = 2 × 3 = 6. Let S = {v3,1, v3,5} and T = {v, v2,c}(c = 2 or 4). By
Lemma 3.9, there are two vertex-disjoint (S, T )-paths P1, P2 in Row(2 : 3) − v∗

that contain all vertices of Row(2 : 3) − v∗. As v1,c ∈ {v1,2, v1,4} and even u

is in Row(0 : 1) − v0,0, Lemma 3.10 and Corollary 3.11 imply that there exist
a path P3 from u to v1,c and a path P4 from v0,5 to v0,1. Moreover, P1 and
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P2 are two vertex-disjoint paths in Row(0 : 1) − v0,0 that contain all vertices of
Row(0 : 1)− v0,0.

Let P5 = C−

0 (v4,1, v5,1) and P6 = C−

2 (v4,5, v5,5). Clearly, P5 and P6 are
vertex-disjoint paths in Row(4 : 5) that contain all vertices of Row(4 : 5). Then
⋃6

d=1 Pd + {(v1,c, v2,c), (v0,5, v5,5), (v0,1, v5,1), (v3,5, v4,5), (v3,1, v4,1)} is a hamilto-
nian path of Q6

2 − Fv from u to v.

Suppose that p ≥ 3. We will choose an odd u′ ∈ V (Row(1)) and construct
a uu′-path P1 and a v0,k−1v0,1-path P2 in Row(0 : 1) − v0,0. Suppose first that
u ∈ V (Row(0)). As u = v0,j is even, we have u′ = v1,j is odd. Let P1 = uu′

and P2 = C+
j−1(v1,1, v0,1)∪C−

j+1(v1,k−1, v0,k−1)+{(v1,1, v1,0), (v1,0, v1,k−1)}. Then
P1 is a path from u to u′ and P2 is a path from v0,k−1 to v0,1. Obviously, P1

and P2 are vertex-disjoint paths that contain all vertices of Row(0 : 1) − v0,0.
Suppose next that u ∈ V (Row(1)). As u = v1,j is even, we have u′ = v1,j−1 ∈
V (Row(1)) is odd, where 1 ≤ j ≤ k − 1. Let P1 = Row(1)− {(v1,j−1, v1,j)} and
P2 = v0,k−1v0,k−2v0,k−3 . . . v0,1. Then P1 is a path from u to u′ and P2 is a path
from v0,k−1 to v0,1. Clearly, P1 and P2 are vertex-disjoint paths that contain all
vertices of Row(0 : 1)− v0,0.

Noting that p is odd and k is even, we have both vp+2,1 and vp+2,k−1 are
even. Let S = {vp+2,1, vp+2,k−1}. As odd v∗, v ∈ V (Row(p+ 1 : p+ 2)), Lemma
3.8 implies that there exists a set T = {x, v} (x ∈ V (Row(p+ 1)) is even), such
that there are two vertex-disjoint (S, T )-paths P3, P4 in Row(p+ 1 : p+ 2)− v∗

that contain all vertices of Row(p+ 1 : p+ 2)− v∗.

Note that x ∈ V (Row(p+1)) and u′ ∈ V (Row(1)). As x is even and u′ is odd,
it is easy to see that enp(x),n2(u′) = 1. By Lemma 3.3, there exists a hamiltonian
path P5 of Row(2 : p) from n2(u′) to np(x).

We will construct a hamiltonian path of Qk
2−Fv from u to v in the following.

Noting that p + 2 is odd, we consider the following two cases. If p + 2 = k − 1,
then

⋃5
d=1 Pd+{(u′, n2(u′)), (v0,1, vp+2,1), (v0,k−1, vp+2,k−1), (n

p(x), x)} is a hamil-
tonian path of Qk

2 − Fv from u to v. If p + 2 ≤ k − 3, let G1 = Row(p + 3 :
k−1)∩Col(0 : 1) and G2 = Row(p+3 : k−1)∩Col(2 : k−1). Observe that G1 is
isomorphic to Grid(k−p−3, 2) and G2 is isomorphic to Grid(k−p−3, k−2). As
p is odd and k is even, we have evp+3,1,vk−1,1

= evp+3,k−1,vk−1,k−1
= 1. As vp+3,1 and

vp+3,k−1 are corner vertices of G1 and G2, respectively, Lemma 3.2 implies that
there are a hamiltonian path P6 ofG1 from vp+3,1 to vk−1,1 and a hamiltonian path
P7 of G2 from vp+3,k−1 to vk−1,k−1. Then

⋃7
d=1 Pd + {(u′, n2(u′)), (v0,1, vk−1,1),

(v0,k−1, vk−1,k−1), (n
p(x), x), (vp+2,1, vp+3,1), (vp+2,k−1, vp+3,k−1)} is a hamilto-

nian path of Qk
2 − Fv from u to v.

Case 4. u, v ∈ V (Row(2 : p)). As u, v ∈ V (Row(2 : p)), it is easy to see that
odd p ≥ 3. Noting that v∗ = va,b ∈ V (Row(p+1, p+2)), we see that Row(p+2)
exists. Then k − 1 ≥ p+ 2 ≥ 5, and so k ≥ 6. As eu,v = 1, by Lemma 3.3, there
exists a hamiltonian path P1 of Row(2 : p) from u to v that contains an edge
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(s, t) of Row(2). As en1(s),n1(t) = 1, without loss of generality, we may assume
that n1(s) is odd and n1(t) is even. Let n1(s) = v1,m and n1(t) = v1,m+1.

If m = 0, then n1(s) = v1,0 and n1(t) = v1,1. Let P2 = v1,0v1,k−1v0,k−1

and P3 = C+
k−2(v1,1, v0,1). If m 6= 0, let P2 = v1,mv0,mv0,m+1 . . . v0,k−1, P

1
3 =

v1,m+1vm+2vm+4 . . . v1,k−1v1,0v1,1 and P3 = P 1
3 ∪ C+

m−1(v1,1, v0,1). Then P2 is a
path from n1(s) to v0,k−1 and P3 is a path from n1(t) to v0,1. Obviously, P2

and P3 are vertex-disjoint paths in Row(0 : 1) − v0,0 that contain all vertices of
Row(0 : 1)− v0,0.

As vk−1,1, vk−1,k−1 ∈ V (Row(k − 1)) are even and v∗ ∈ V (Row(p + 1 :
p + 2)) is odd, Lemma 3.4 and Lemma 3.5(ii) imply that there is a hamiltonian
path P4 of Row(p + 1 : k − 1) − v∗ from vk−1,1 to vk−1,k−1. Then

⋃4
d=1 Pd −

{(s, t)} + {(s, n1(s)), (t, n1(t)), (v0,1, vk−1,1), (v0,k−1, vk−1,k−1)} is a hamiltonian
path of Qk

2 − Fv from u to v.

Case 5. u ∈ V (Row(2 : p)) and v ∈ V (Row(p+3 : k−1)). As u ∈ V (Row(2 :
p)), it is easy to see that odd p ≥ 3. Noting that v ∈ V (Row(p+ 3 : k − 1)), we
have k−1 ≥ p+3 and so k ≥ p+4 ≥ 7. As k is even, we have k ≥ 8. Recall that
v = vi′,j′ . If i′ is odd, let q = i′ − 1. If i′ is even, let q = i′. Clearly, q ≥ p+ 3 is
even and v ∈ V (Row(q : q + 1)). Now we consider the following two cases.

Case 5.1. v ∈ V (Row(q)). As eu,v = 1, without loss of generality, we assume
that u is even and v is odd. Choose an odd w ∈ V (Row(p)). Then eu,w = 1.
By Lemma 3.3, there is a hamiltonian path P1 of Row(2 : p) from u to w that
contains an edge (s, t) of Row(2). Similar to Case 4, there exist an n1(s)v0,k−1-
path P2 and an n1(t)v0,1-path P3 in Row(0 : 1)− v0,0. Moreover, P2 and P3 are
vertex-disjoint paths that contain all vertices of Row(0 : 1)− v0,0.

As vk−1,1, vk−1,k−1 ∈ V (Row(k − 1)) are even and v ∈ V (Row(q)) is odd,
Lemma 3.4 and Lemma 3.5(ii) imply that there is a hamiltonian path P4 of
Row(q : k − 1) − v from vk−1,1 to vk−1,k−1. As both w and v are odd, we have
both np+1(w) and nq−1(v) are even. Note that the odd v∗ is in Row(p+1 : p+2).
By Lemma 3.4 and Lemma 3.5(iii), there is a hamiltonian path P5 of Row(p+1 :
q − 1)− v∗ from np+1(w) to nq−1(v).

Then
⋃5

d=1 Pd − {(s, t)}+ {(s, n1(s)), (t, n1(t)), (v0,1, vk−1,1), (v0,k−1, vk−1,k−1),
(w, np+1(w)), (v, nq−1(v))} is a hamiltonian path of Qk

2 − Fv from u to v.

Case 5.2. v ∈ V (Row(q + 1)). As eu,v = 1, without loss of generality, we
assume that u is odd and v is even. Choose an even w 6= v in Row(q + 1). As
ew,v = 0 and ev,v∗ = 1, Lemma 3.5(ii) implies that there is a hamiltonian path
P1 of Row(p + 1 : q + 1) − v∗ from w to v. Choose an odd x ∈ V (Row(1)) and
an odd y ∈ V (Row(0)). Then n2(x) is even. Noting that u is odd, we have
eu,n2(x) = 1. By Lemma 3.3, there is a hamiltonian path P2 of Row(2 : p) from u

to n2(x). Note that u∗ is even and both x and y are odd. By Lemma 3.4, there
is a hamiltonian path P3 of Row(0 : 1)− u∗ from x to y.
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We will construct a hamiltonian path of Qk
2 − Fv from u to v in the following.

Noting that q + 1 is odd, we consider the following two cases. Suppose first
that q + 1 = k − 1. As w is even, we have n0(w) is odd. Let y = n0(w).
Then P1 ∪ P2 ∪ P3 + {(w, n0(w)), (x, n2(x))} is a hamiltonian path of Qk

2 − Fv

from u to v. Suppose next that q + 1 ≤ k − 3. As w is even and y is odd,
we have nq+2(w) is odd and nk−1(y) is even. By Lemma 3.3, there exists a
hamiltonian path P4 of Row(q + 2 : k − 1) from nq+2(w) to nk−1(y). Then
⋃4

d=1 Pd+{(y, nk−1(y)), (x, n2(x)), (w, nq+2(w))} is a hamiltonian path of Qk
2−Fv

from u to v. The proof of this theorem is complete.

Given an even k ≥ 4, let Fv be the set of faulty vertices of a Qk
2. Recall that

fmax
v = max{|Fv ∩X|, |Fv ∩ Y |}, where X be the set of even vertices and Y be
the set of odd vertices of the Qk

2. The following result is a direct consequence of
Theorem 1.1 and 3.12.

Corollary 3.13. Let k ≥ 4 be even and let fv be the number of faulty vertices

and fe be the number of faulty edges in Qk
2 with 0 ≤ fv + fe ≤ 2. Given any

two healthy vertices u and v of Qk
2, then there is a path from u to v of length

k2 − 2fmax
v − 1 if eu,v = 1.

4. Conclusions

In this paper, we investigate the problem of embedding hamiltonian paths into
faulty k-ary 2-cubes, where k ≥ 4 is even. For any two healthy vertices u, v

with eu,v = 1, we proved that the faulty k-ary n-cube admits a path of length
k2 − 2fmax

v − 1 if fv + fe ≤ 2. The above result show that the fault-tolerant
capability of the k-ary 2-cube is nice in terms of the path embeddings. The
work will help engineers to develop corresponding applications on the distributed-
memory parallel system that employs the k-ary 2-cube as the interconnection
network.
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