EMBEDDINGS OF HAMILTONIAN PATHS IN FAULTY k-ARY 2-CUBES ${ }^{1}$

Shiying Wang and Shurong Zhang
School of Mathematical Sciences
Shanxi University, Taiyuan, Shanxi 030006
Peoples Republic of China
e-mail: shiying@sxu.edu.cn

Abstract

It is well known that the k-ary n-cube has been one of the most efficient interconnection networks for distributed-memory parallel systems. A k-ary n-cube is bipartite if and only if k is even. Let (X, Y) be a bipartition of a k-ary 2-cube (even integer $k \geq 4$). In this paper, we prove that for any two healthy vertices $u \in X, v \in Y$, there exists a hamiltonian path from u to v in the faulty k-ary 2 -cube with one faulty vertex in each part.

Keywords: complex networks, path embeddings, fault-tolerance, k-ary n cubes.
2010 Mathematics Subject Classification: Primary: 05C82, 05C60; Secondary: 68R10, 94C15.

1. Introduction

The k-ary n-cube has many desired properties, such as easy of implementation, low-latency and high-bandwidth interprocessor communication. Therefore, a large number of distributed-memory parallel systems (also known as multicomputers) have been built with a k-ary n-cube forming the underling topology, such as the iWarp [12], the J-machine [11] and the Cray T3D [9]. An interconnection network is often modeled as a graph, in which vertices and edges correspond to nodes and communication links, respectively. The k-ary n-cube, denoted by Q_{n}^{k} ($k \geq 2$ and $n \geq 1$), is a graph consisting of k^{n} vertices, each of which has the form $u=u_{n-1} u_{n-2} \ldots u_{0}$, where $0 \leq u_{i} \leq k-1$ for $0 \leq i \leq n-1$. Two vertices

[^0]$u=u_{n-1} u_{n-2} \ldots u_{0}$ and $v=v_{n-1} v_{n-2} \ldots v_{0}$ are adjacent if and only if there exists an integer $j, 0 \leq j \leq n-1$, such that $u_{j}=v_{j} \pm 1(\bmod k)$ and $u_{i}=v_{i}$, for every $i \in\{1,2, \ldots, n\} \backslash\{j\}$. For clarity of presentation, we omit writing "(mod $k)$ " in similar expressions for the remainder of the paper.

The graph embedding is a technique that maps a guest graph into a host graph. Many graph embeddings take paths and cycles as guest graphs because they are the common structures used to model linear arrays in parallel processing $[2,4,15,16,17]$. In recent years, the problem of path embeddings in an interconnection network has attracted a great deal of attention from the researchers. Since failures are inevitable, fault-tolerant is an important issue in the distributed-memory parallel system. Many works related to embeddings of the longest paths in various faulty interconnection networks have been studied previously, including hypercubes $[3,5,7,10,14,16,19], k$-ary n-cubes $[1,15,17$, $19]$ and stars [6, 13]. In particular, Yang et al. [19] proved that for arbitrary two healthy vertices of Q_{n}^{k} with odd $k \geq 3$, there exists a fault-free hamiltonian path connecting these two vertices if the number of faults is at most $2 n-3$.

The parity of a vertex $u=u_{n-1} u_{n-2} \ldots u_{0}$ of Q_{n}^{k} is defined to be $u_{n-1}+$ $u_{n-2}+\cdots+u_{0}$ modulo 2 . We speak of a vertex as being odd or even according to whether its parity is odd or even. Given any two distinct vertices u and v. Let

$$
e_{u, v}= \begin{cases}1, & \text { if } u \text { and } v \text { have different parities, } \\ 0, & \text { if } u \text { and } v \text { have the same parity. }\end{cases}
$$

For even $k \geq 4$, Stewart and Xiang [15] studied the problem of embedding long paths in the k-ary n-cube with faulty vertices and edges. They presented the following result.
Theorem 1.1 [15]. Let $k \geq 4$ be even and let f_{v} be the number of faulty vertices and f_{e} be the number of faulty edges in Q_{2}^{k} with $0 \leq f_{v}+f_{e} \leq 2$. Given any two healthy vertices u and v of Q_{2}^{k}, then there is a path from u to v of length at least $k^{2}-2 f_{v}-1$ if $e_{u, v}=1$.
Let X be the set of even vertices and Y be the set of odd vertices of a Q_{2}^{k} with even $k \geq 4$. Obviously, (X, Y) is a bipartition of the Q_{2}^{k}. We denote the set of faulty vertices of the Q_{2}^{k} by F_{v}. Let $f_{v}^{\max }=\max \left\{\left|F_{v} \cap X\right|,\left|F_{v} \cap Y\right|\right\}$. In this paper, we prove that there is a path from u to v in the faulty Q_{2}^{k} of length $k^{2}-2 f_{v}^{\max }-1$ if $e_{u, v}=1$. As $\left|F_{v} \cap X\right|+\left|F_{v} \cap Y\right|=f_{v}$, we have $f_{v}^{\max } \leq f_{v}$. Obviously, $k^{2}-2 f_{v}^{\max }-1 \geq k^{2}-2 f_{v}-1$. Therefore, our result improves the result noted above.

The rest of this paper is organized as follows. In the next section, some basic definitions are introduced. In Section 3, we construct a hamiltonian path connecting any two healthy verities in different parts in the faulty k-ary 2 -cube (even $k \geq 4$) with one faulty vertex in each part. Conclusions are covered in Section 4.

2. Basis Definition

Throughout this paper, we restrict our attention to $n=2$ and even $k \geq 4$. For convenience, we write $v_{a, b}$ as the vertex of Q_{2}^{k} with the form $v_{1} v_{0}=a b$, where $0 \leq a, b \leq k-1$. For $0 \leq i \leq j \leq k-1$, Row $(i: j)$ of Q_{2}^{k} is the subgraph of Q_{2}^{k} induced by $\left\{v_{a, b}: i \leq a \leq j, 0 \leq b \leq k-1, \operatorname{Col}(i: j)\right.$ of Q_{2}^{k} is the subgraph of Q_{2}^{k} induced by $\left\{v_{a, b}: 0 \leq a \leq k-1, i \leq b \leq j\right\}$.

Given $1 \leq k_{1}, k_{2} \leq k-1$, the subgraph of Q_{2}^{k} induced by $\left\{v_{a, b}: 0 \leq a \leq\right.$ $\left.k_{1}-1,0 \leq b \leq k_{2}-1\right\}$ is denoted by $\operatorname{Grid}\left(k_{1}, k_{2}\right)$. A vertex of $\operatorname{Grid}\left(k_{1}, k_{2}\right)$ is called a corner vertex if its degree in $\operatorname{Grid}\left(k_{1}, k_{2}\right)$ is 2 . For $0 \leq i \leq j \leq k_{1}-1$, $\operatorname{Row}(i: j)$ of $\operatorname{Grid}\left(k_{1}, k_{2}\right)$ is the subgraph of $\operatorname{Grid}\left(k_{1}, k_{2}\right)$ induced by $\left\{v_{a, b}: i \leq\right.$ $\left.a \leq j, 0 \leq b \leq k_{2}-1\right\}$. For $0 \leq i \leq j \leq k_{2}-1, \operatorname{Col}(i: j)$ of $\operatorname{Grid}\left(k_{1}, k_{2}\right)$ is the subgraph of $\operatorname{Grid}\left(k_{1}, k_{2}\right)$ induced by $\left\{v_{a, b}: 0 \leq a \leq k_{1}-1, i \leq b \leq j\right\}$.

Instead of $\operatorname{Row}(i: i)$ and $\operatorname{Col}(j: j)$ of Q_{2}^{k} (resp. $\left.\operatorname{Grid}\left(k_{1}, k_{2}\right)\right)$ we simply write $\operatorname{Row}(i)$ and $\operatorname{Col}(j)$ of $Q_{2}^{k}\left(\right.$ resp. $\left.\operatorname{Grid}\left(k_{1}, k_{2}\right)\right) . \operatorname{Row}(0: 2)$ of Q_{2}^{4} and $\operatorname{Grid}(2,4)$ are shown in Figure 1 and Figure 2, respectively.

Figure 1. $\operatorname{Row}(0: 2)$ of Q_{2}^{4}

Figure 2. $\operatorname{Grid}(2,4)$

Choose a vertex $u=v_{a, b}(0 \leq a, b \leq k-1)$ in $\operatorname{Row}(a)$ of Q_{2}^{k}. The neighbour of u in $\operatorname{Row}(a-1)$ (resp. $\operatorname{Row}(a+1)$) is denoted by $n^{a-1}(u)$ (resp. $n^{a+1}(u)$), that is, $n^{a-1}(u)=v_{a-1, b}\left(\right.$ resp. $\left.n^{a+1}(u)=v_{a+1, b}\right)$.

3. Path Embeddings in Faulty k-Ary 2-cubes

We start with some useful lemmas.
Lemma 3.1 [8]. Given an integer $n \geq 1$, let u be a corner vertex of $\operatorname{Grid}(2, n)$. For any vertex $v \neq u$ in $\operatorname{Grid}(2, n)$ such that $e_{u, v}=1$, there exists a hamiltonian path of $\operatorname{Grid}(2, n)$ from u to v.

Lemma 3.2[8]. Given even $k_{1}, k_{2} \geq 2$, let u and v be vertices in $\operatorname{Row}(0)$ and $\operatorname{Row}\left(k_{1}-1\right)$ of $\operatorname{Grid}\left(k_{1}, k_{2}\right)$, respectively. If at least one of u and v is a corner vertex of $\operatorname{Grid}\left(k_{1}, k_{2}\right)$ and $e_{u, v}=1$, then there is a hamiltonian path of $\operatorname{Grid}\left(k_{1}, k_{2}\right)$ from u to v.

In [15], Stewart and Xiang constructed the long paths in $\operatorname{Row}(0: p-1)$ of Q_{2}^{k} (even $k \geq 4$), where $2 \leq p \leq k$. They present the following result.

Lemma 3.3 [15]. Given an even $k \geq 4$, let u and v be any two distinct healthy vertices in $\operatorname{Row}(0: p-1)$ of Q_{2}^{k}, where $2 \leq p \leq k$. If $e_{u, v}=1$, then there exists a hamiltonian path of Row $(0: p-1)$ from u to v that contains at least one healthy edge of Row(0).

According to the proof of Lemma 1 in [15], we have the following lemma.
Lemma 3.4 [15]. Given an even $k \geq 4$, let u and v be any two distinct healthy vertices and x be a faulty vertex in $\operatorname{Row}(0: 1)$ of Q_{2}^{k}. If $e_{x, u}=1$ and $e_{u, v}=0$, then there exists a hamiltonian path of $\operatorname{Row}(0: 1)-x$ from u to v that contains at least one healthy edge of Row(1).

Lemma 3.5. Given an even $k \geq 4$, let x be the only faulty vertex in $\operatorname{Row}(0: 1)$ of Q_{2}^{k} and let u, v be any two distinct healthy vertices in $\operatorname{Row}(0: p-1)$ of Q_{2}^{k} such that $e_{x, u}=1$ and $e_{u, v}=0$, where p is even and $4 \leq p \leq k$. Then there exists a hamiltonian path of Row $(0: p-1)-x$ from u to v if one of the following holds.
(i) $u, v \in V(\operatorname{Row}(0: 1))$.
(ii) $u, v \in V(\operatorname{Row}(p-1))$.
(iii) $u \in V(\operatorname{Row}(0: 1))$ and $v \in V(\operatorname{Row}(p-1))$.

Proof. Suppose that $u, v \in V(\operatorname{Row}(0: 1))$. As $x \in V(\operatorname{Row}(0: 1))$ and $e_{x, u}=$ $1, e_{u, v}=0$, Lemma 3.4 implies that there is a hamiltonian path P_{1} of Row (0: 1) $-x$ from u to v that contains an edge (s, t) of $\operatorname{Row}(1)$. As $e_{n^{2}(s), n^{2}(t)}=1$, by Lemma 3.3, there is a hamiltonian path P_{2} of $\operatorname{Row}(2: p-1)$ from $n^{2}(s)$ to $n^{2}(t)$. Then, $P_{1} \cup P_{2}-\{(s, t)\}+\left\{\left(s, n^{2}(s)\right),\left(t, n^{2}(t)\right)\right\}$ is a hamiltonian path of $\operatorname{Row}(0: p-1)-x$ from u to v.

Suppose that $u, v \in V(\operatorname{Row}(p-1))$. Let $u=v_{p-1, j}, v=v_{p-1, j^{\prime}}$, where $0 \leq j, j^{\prime} \leq k-1$ and $j \neq j^{\prime}$. Without loss of generality, we assume that $j<j^{\prime}$. Let $q \in\left\{j, j+1, j+2, \ldots, j^{\prime}\right\}$ be odd and let $G_{1}=\operatorname{Row}(2: p-1) \cap \operatorname{Col}(0: q)$ and $G_{2}=\operatorname{Row}(2: p-1) \cap \operatorname{Col}(q+1: k-1)$. Obviously, $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. As q is odd, we have $e_{v_{2,0}, v_{2, q}}=e_{v_{2, q+1}, v_{2, k-1}}=1$. Thus one of $e_{u, v_{2,0}}=1$ and $e_{u, v_{2, q}}=1$ holds. Without loss of generality, we may assume that $e_{u, v_{2,0}}=1$. As G_{1} is isomorphic to $\operatorname{Grid}(p-2, q+1)$ and $v_{2,0}$ is a corner vertex of G_{1}, Lemma 3.2 implies that there is a hamiltonian path P_{1} of G_{1} from $v_{2,0}$ to u. As $e_{u, v}=0$, it is easy to see that $e_{v_{2, q+1}, v}=1$. As G_{2} is isomorphic to $\operatorname{Grid}(p-2, k-q-1)$ and $v_{2, q+1}$ is a corner vertex of G_{2}, Lemma 3.2 implies that there is a hamiltonian path P_{2} of G_{2} from $v_{2, q+1}$ to v. As $e_{v_{2,0}, u}=1$, we have $e_{v_{1,0}, u}=0$. Combining this with the fact that $e_{x, u}=1$ and q is odd, we see that $e_{x, v_{1,0}}=1$ and $e_{v_{1,0}, v_{1, q+1}}=0$. By Lemma 3.4, there is a hamiltonian path P_{3} of $\operatorname{Row}(0: 1)-x$ from $v_{1,0}$ to
$v_{1, q+1}$. Therefore $P_{1} \cup P_{2} \cup P_{3}+\left\{\left(v_{1,0}, v_{2,0}\right),\left(v_{1, q+1}, v_{2, q+1}\right)\right\}$ is a hamiltonian path of $\operatorname{Row}(0: p-1)-x$ from u to v.

Suppose that $u \in V(\operatorname{Row}(0: 1))$ and $v \in V(\operatorname{Row}(p-1))$. As $k \geq 4$, we may choose a vertex $s \in V(\operatorname{Row}(1))$ such that $s \neq u$ and $e_{u, s}=0$. Clearly $e_{x, s}=1$. By Lemma 3.4, there is a hamiltonian path P_{1} of $\operatorname{Row}(0: 1)-x$ from u to s. As $e_{u, s}=e_{u, v}=0$ and $e_{s, n^{2}(s)}=1$, we have $e_{n^{2}(s), v}=1$. By Lemma 3.3, there is a hamiltonian path P_{2} of $\operatorname{Row}(2: p-1)$ from $n^{2}(s)$ to v. Then, $P_{1} \cup P_{2}+\left\{\left(s, n^{2}(s)\right)\right\}$ is a hamiltonian path of $\operatorname{Row}(0: p-1)-x$ from u to v. The proof is complete.

Given a graph G, let S and T be two subsets of $V(G)$. An (S, T)-path is a path which starts at a vertex of S, ends at a vertex of T, and whose internal vertices belong to neither S nor T.

Lemma 3.6. Given an even $k \geq 4$, let $S=\{u, v\}$ be a set of two distinct vertices in Row $(0: 1)-v_{0,0}$ of Q_{2}^{k} and let $T=\left\{v_{0,1}, v_{1,0}\right\}$. If $e_{u, v}=1$, then there exists two vertex-disjoint (S, T)-paths in $\operatorname{Row}(0: 1)-v_{0,0}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{0,0}$.

Proof. As $e_{u, v}=1$, without loss of generality, assume that u is even and v is odd. We consider the following two cases. In each case, we will construct two vertex-disjoint (S, T)-paths P_{1} and P_{2} in $\operatorname{Row}(0: 1)-v_{0,0}$.

Case 1. $v=v_{1,0}$. In this case, u is in $G_{1}=\operatorname{Row}(0: 1) \cap \operatorname{Col}(1: k-1)$ which is isomorphic to $\operatorname{Grid}(2, k-1)$. As $v_{0,1}$ is odd and u is even, we have $e_{v_{0,1}, u}=1$. Combining this with the fact that $v_{0,1}$ is a corner vertex of G_{1}, Lemma 3.1 implies that there is a hamiltonian path P_{1} of G_{1} from u to $v_{0,1}$. Let $P_{2}=v$. Clearly, P_{1} and P_{2} are vertex-disjoint (S, T)-paths in $\operatorname{Row}(0: 1)$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{0,0}$.

Case 2. $v \neq v_{1,0}$. In this case, u and v are in $\operatorname{Row}(0: 1) \cap \operatorname{Col}(1: k-1)$. Let $u=v_{i, j}$ and $v=v_{i^{\prime}, j^{\prime}}$, where $0 \leq i, i^{\prime} \leq 1$ and $1 \leq j, j^{\prime} \leq k-1$. Without loss of generality, we may assume that $j \leq j^{\prime}$.

Suppose first that $j \neq j^{\prime}$. Let $G_{1}=\operatorname{Row}(0: 1) \cap \operatorname{Col}(1: j)$ and $G_{2}=\operatorname{Row}(0:$ 1) $\cap \operatorname{Col}(j+1: k-1)$. Observe that G_{1} is isomorphic to $\operatorname{Grid}(2, j)$ and G_{2} is isomorphic to $\operatorname{Grid}(2, k-j-1)$. As $v_{0,1}$ is a corner vertex of $G_{1}, v_{1, k-1}$ is a corner vertex of G_{2} and $e_{v_{0,1}, u}=1, e_{v_{1, k-1}, v}=1$, Lemma 3.1 implies that G_{1} has a hamiltonian path P_{1} from u to $v_{0,1}$ and G_{2} has a hamiltonian path P_{2}^{1} from v to $v_{1, k-1}$. Let $P_{2}=P_{2}^{1}+\left\{\left(v_{1, k-1}, v_{1,0}\right)\right\}$. Then P_{1} and P_{2} are vertex-disjoint (S, T)-paths in $\operatorname{Row}(0: 1)-v_{0,0}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{0,0}$.

Suppose next that $j=j^{\prime}$. If $2 \leq j=j^{\prime} \leq k-2$, let $G_{1}=\operatorname{Row}(0: 1) \cap \operatorname{Col}(1:$ $\left.j^{\prime}-1\right)$ and $G_{2}=\operatorname{Row}(0: 1) \cap \operatorname{Col}(j+1: k-1)$. Recall that $u=v_{i, j}$ is even and $v=v_{i^{\prime}, j^{\prime}}$ is odd. Then $e_{v_{0,1}, v_{i^{\prime}, j^{\prime}-1}}=1$ and $e_{v_{1, k-1}, v_{i, j+1}}=1$. Observe that G_{1} and G_{2} are isomorphic to $\operatorname{Grid}\left(2, j^{\prime}-1\right)$ and $\operatorname{Grid}(2, k-j-1)$, respectively. By

Lemma 3.1, there is a hamiltonian path P_{1}^{1} of G_{1} from $v_{i^{\prime}, j^{\prime}-1}$ to $v_{0,1}$ and there is a hamiltonian path P_{2}^{1} of G_{2} from $v_{i, j+1}$ to $v_{1, k-1}$. Let $P_{1}=P_{1}^{1}+\left\{\left(v, v_{i^{\prime}, j^{\prime}-1}\right)\right\}$ and $P_{2}=P_{2}^{1}+\left\{\left(u, v_{i, j+1}\right),\left(v_{1, k-1}, v_{1,0}\right)\right\}$. If $j=j^{\prime}=1$, then $u=v_{1,1}, v=v_{0,1}$. Let $P_{1}=v$ and $P_{2}=P_{2}^{1}+\left\{\left(u, v_{1,2}\right),\left(v_{1, k-1}, v_{1,0}\right)\right\}$. If $j=j^{\prime}=k-1$, then $u=v_{1, k-1}, v=v_{0, k-1}$. Let $P_{1}=P_{1}^{1}+\left\{\left(v, v_{0, k-2}\right)\right\}$ and $P_{2}=u v_{1,0}$. Therefore, P_{1} and P_{2} are as required.

Lemma 3.7. Let odd $v_{a, b}$ and odd $v_{a^{\prime}, b^{\prime}}$ be two distinct vertices in $\operatorname{Row}(0: 1)$ of Q_{2}^{4} and let $S=\left\{v_{1,1}, v_{1,3}\right\}$ and $T=\left\{v_{a^{\prime}, b^{\prime}}, v_{0,2}\right\}$. Then there exist two vertexdisjoint (S, T)-paths in $\operatorname{Row}(0: 1)-v_{a, b}$ that contain all vertices of $\operatorname{Row}(0$: 1) $-v_{a, b}$.

Proof. We distinguish four cases. In each case, we will construct two vertexdisjoint (S, T)-paths P_{1} and P_{2} in $\operatorname{Row}(0: 1)-v_{a, b}$.

Case 1. $v_{a, b}, v_{a^{\prime}, b^{\prime}} \in V(\operatorname{Col}(0: 1))$. In this case $v_{a, b}, v_{a^{\prime}, b^{\prime}} \in\left\{v_{0,1}, v_{1,0}\right\}$. Let $P_{1}=v_{1,1} v_{1,2} v_{0,2}$. Then P_{1} is a path from $v_{1,1}$ to $v_{0,2}$. If $v_{a, b}=v_{0,1}$ and $v_{a^{\prime}, b^{\prime}}=v_{1,0}$, let $P_{2}=v_{1,3} v_{0,3} v_{0,0} v_{1,0}$. If $v_{a, b}=v_{1,0}$ and $v_{a^{\prime}, b^{\prime}}=v_{0,1}$, let $P_{2}=v_{1,3} v_{0,3} v_{0,0} v_{0,1}$. Then P_{2} is a path from $v_{1,3}$ to $v_{a^{\prime}, b^{\prime}}$. Therefore, there exist two vertex-disjoint (S, T)-paths in $\operatorname{Row}(0: 1)-v_{a, b}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{a, b}$.

Case 2. $v_{a, b}, v_{a^{\prime}, b^{\prime}} \in V(\operatorname{Col}(2: 3))$. In this case $v_{a, b}, v_{a^{\prime}, b^{\prime}} \in\left\{v_{0,3}, v_{1,2}\right\}$. Let $P_{1}=v_{1,1} v_{1,0} v_{0,0} v_{0,1} v_{0,2}$. Then P_{1} is a path from $v_{1,1}$ to $v_{0,2}$. If $v_{a, b}=v_{0,3}$ and $v_{a^{\prime}, b^{\prime}}=v_{1,2}$, let $P_{2}=v_{1,3} v_{1,2}$. If $v_{a, b}=v_{1,2}$ and $v_{a^{\prime}, b^{\prime}}=v_{0,3}$, let $P_{2}=v_{1,3} v_{0,3}$. Then P_{2} is a path from $v_{1,3}$ to $v_{a^{\prime}, b^{\prime}}$. Therefore, P_{1} and P_{2} are as required.
Case 3. $v_{a^{\prime}, b^{\prime}} \in V(\operatorname{Col}(0: 1))$ and $v_{a, b} \in V(\operatorname{Col}(2: 3))$. In this case $v_{a^{\prime}, b^{\prime}} \in$ $\left\{v_{0,1}, v_{1,0}\right\}$ and $v_{a, b} \in\left\{v_{0,3}, v_{1,2}\right\}$. If $v_{a^{\prime}, b^{\prime}}=v_{0,1}$, let $P_{1}=v_{1,1} v_{1,0} v_{0,0} v_{0,1}$. If $v_{a^{\prime}, b^{\prime}}=v_{1,0}$, let $P_{1}=v_{1,1} v_{0,1} v_{0,0} v_{1,0}$. Then P_{1} is a path from $v_{1,1}$ to $v_{a^{\prime}, b^{\prime}}$. Suppose first that $v_{a, b}=v_{0,3}$. Let $P_{2}=v_{1,3} v_{1,2} v_{0,2}$. Suppose next that $v_{a, b}=v_{1,2}$. Let $P_{2}=v_{1,3} v_{0,3} v_{0,2}$. Then P_{2} is a path from $v_{1,3}$ to $v_{0,2}$. Therefore, P_{1} and P_{2} are as required.

Case 4. $v_{a, b} \in V(\operatorname{Col}(0: 1))$ and $v_{a^{\prime}, b^{\prime}} \in V(\operatorname{Col}(2: 3))$. In this case $v_{a, b} \in$ $\left\{v_{0,1}, v_{1,0}\right\}$ and $v_{a^{\prime}, b^{\prime}} \in\left\{v_{0,3}, v_{1,2}\right\}$. If $v_{a, b}=v_{0,1}$, let $P_{1}^{1}=v_{1,1} v_{1,0} v_{0,0} v_{0,3}$. If $v_{a, b}=v_{1,0}$, let $P_{1}^{1}=v_{1,1} v_{0,1} v_{0,0} v_{0,3}$.

Suppose first that $v_{a^{\prime}, b^{\prime}}=v_{0,3}$. Let $P_{1}=P_{1}^{1}$ and let $P_{2}=v_{1,3} v_{1,2} v_{0,2}$. Then P_{1} is a path from $v_{1,1}$ to $v_{0,3}=v_{a^{\prime}, b^{\prime}}$ and P_{2} is path from $v_{1,3}$ to $v_{0,2}$. Suppose next that $v_{a^{\prime}, b^{\prime}}=v_{1,2}$. Let $P_{1}=P_{1}^{1}+\left\{\left(v_{0,3}, v_{0,2}\right)\right\}$ and let $P_{2}=v_{1,3} v_{1,2}$. Then P_{1} is a path from $v_{1,1}$ to $v_{0,2}$ and P_{2} is path from $v_{1,3}$ to $v_{1,2}=v_{a^{\prime}, b^{\prime}}$. Therefore, P_{1} and P_{2} are as required.

Lemma 3.8. Given an even $k \geq 6$, let $S=\left\{v_{1,1}, v_{1, k-1}\right\}$ and let odd $v_{a, b}$ and odd $v_{a^{\prime}, b^{\prime}}$ be two distinct vertices in $\operatorname{Row}(0: 1)$ of Q_{2}^{k}. Then there exists a set
$T=\left\{v_{a^{\prime}, b^{\prime}}, v_{0, c}\right\}$ (c is even) such that there are two vertex-disjoint (S, T)-paths in $\operatorname{Row}(0: 1)-v_{a, b}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{a, b}$.

Proof. Without loss of generality, we assume that $v_{a, b}$ is in $\operatorname{Col}\left(0: \frac{k}{2}\right)$. We distinguish four cases. In each case, we will construct two vertex-disjoint (S, T) paths P_{1} and P_{2} in $\operatorname{Row}(0: 1)-v_{a, b}$.

Case 1. $v_{a, b} \in V(\operatorname{Col}(0: 1))$ and $v_{a^{\prime}, b^{\prime}} \in V(\operatorname{Col}(0: 1))$. As both $v_{a, b}$ and $v_{a^{\prime}, b^{\prime}}$ are odd, we have $v_{a, b}, v_{a^{\prime}, b^{\prime}} \in\left\{v_{0,1}, v_{1,0}\right\}$. Let $v_{0, c}=v_{0,2}$. We will construct an (S, T)-path P_{1} from $v_{1,1}$ to $v_{0, c}$ and an (S, T)-path P_{2} from $v_{1, k-1}$ to $v_{a^{\prime}, b^{\prime}}$. Let $G_{1}=\operatorname{Row}(0: 1) \cap \operatorname{Col}(3: k-1)$. Observe that G_{1} is isomorphic to $\operatorname{Grid}(2, k-3)$.

Let $P_{1}=v_{1,1} v_{1,2} v_{0,2}$. As $v_{1, k-1}$ is a corner vertex of G_{1} and $e_{v_{0, k-1}, v_{1, k-1}}=1$, Lemma 3.1 implies that there is a hamiltonian path P_{2}^{1} of G_{1} from $v_{1, k-1}$ to $v_{0, k-1}$. Then $P_{2}=P_{2}^{1}+\left\{\left(v_{0, k-1}, v_{0,0}\right),\left(v_{0,0}, v_{a^{\prime}, b^{\prime}}\right)\right\}$ is as required.

Case 2. $v_{a, b} \in V(\operatorname{Col}(0: 1))$ and $v_{a^{\prime}, b^{\prime}} \in V(\operatorname{Col}(2: k-1))$. In this case, let $v_{0, c}=v_{0,0}$. As the odd $v_{a, b}$ is in $G_{1}=\operatorname{Row}(0: 1) \cap \operatorname{Col}(0: 1)$, we have $v_{a, b} \in\left\{v_{0,1}, v_{1,0}\right\}$. If $v_{a, b}=v_{0,1}$, let $P_{1}=v_{1,1} v_{1,0} v_{0,0}$. If $v_{a, b}=v_{1,0}$, let $P_{1}=$ $v_{1,1} v_{0,1} v_{0,0}$. Then P_{1} is a hamiltonian path of $G_{1}-v_{a, b}$ from $v_{1,1}$ to $v_{0, c}$. Observe that $G_{2}=\operatorname{Row}(0: 1) \cap \operatorname{Col}(2: k-1)$ is isomorphic to $\operatorname{Grid}(2, k-2)$. Combining this with the fact that $v_{1, k-1}$ is a corner vertex of G_{2} and $e_{v_{a^{\prime}, b^{\prime}, v_{1, k-1}}}=1$, there is a hamiltonian path P_{2} of G_{2} from $v_{1, k-1}$ to $v_{a^{\prime}, b^{\prime}}$. It can be seen that P_{1} and P_{2} are vertex-disjoint (S, T)-paths in $\operatorname{Row}(0: 1)-v_{a, b}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{a, b}$.

Case 3. $v_{a, b} \in V\left(\operatorname{Col}\left(2: \frac{k}{2}\right)\right)$ and $v_{a^{\prime}, b^{\prime}} \in V(\operatorname{Col}(0: 1))$. As $G_{1}=\operatorname{Row}(0:$ 1) $\cap \operatorname{Col}(0: 1)$ is isomorphic to $\operatorname{Grid}(2,2), v_{1,1}$ is a corner vertex of G_{1} and $e_{v_{a^{\prime}, b^{\prime}, v_{1,1}}}=1$, Lemma 3.1 implies that there is a hamiltonian path P_{1} of G_{1} from $v_{1,1}$ to $v_{a^{\prime}, b^{\prime}}$. Let $v_{0, c}=v_{0,2}$. It is enough to construct a hamiltonian path P_{2} of $G_{2}-v_{a, b}=\operatorname{Row}(0: 1) \cap \operatorname{Col}(2: k-1)-v_{a, b}$ from $v_{1, k-1}$ to $v_{0, c}=v_{0,2}$.

Suppose first that $v_{a, b}$ is in $\operatorname{Col}(2)$. Then $v_{a, b}=v_{1,2}$. As $\operatorname{Row}(0: 1) \cap \operatorname{Col}(3:$ $k-1)$ is isomorphic to $\operatorname{Grid}(2, k-3), v_{0,3}$ is a corner vertex of $\operatorname{Row}(0: 1) \cap \operatorname{Col}(3:$ $k-1)$ and $e_{v_{0,3}, v_{1, k-1}}=1$, Lemma 3.1 implies that there is a hamiltonian path P_{2}^{1} of $\operatorname{Row}(0: 1) \cap \operatorname{Col}(3: k-1)$ from $v_{1, k-1}$ to $v_{0,3}$. Then $P_{2}=P_{2}^{1}+\left\{\left(v_{0,3}, v_{0,2}\right)\right\}$ is as required.

Suppose next that $v_{a, b}$ is not in $\operatorname{Col}(2)$. Then $\operatorname{Row}(0: 1) \cap \operatorname{Col}(2: b-1)$ is isomorphic to $\operatorname{Grid}(2, b-2)$ and $\operatorname{Row}(0: 1) \cap \operatorname{Col}(b+1: k-1)$ is isomorphic to $\operatorname{Grid}(2, k-b-1)$. If $a=0$ then $\bar{a}=1$, and if $a=1$ then $\bar{a}=0$. As $v_{a, b}$ is odd, it can be seen that both $v_{\bar{a}, b-1}$ and $v_{\bar{a}, b+1}$ are odd. Thus $e_{v_{0,2}, v_{\bar{a}, b-1}}=1$ and $e_{v_{1, k-1}, v_{\bar{a}, b+1}}=1$. As $v_{0,2}$ is a corner vertex of $\operatorname{Row}(0: 1) \cap \operatorname{Col}(2: b-1)$ and $v_{1, k-1}$ is a corner vertex of $\operatorname{Row}(0: 1) \cap \operatorname{Col}(b+1: k-1)$, Lemma 3.1 implies that there is a hamiltonian path P_{2}^{1} of $\operatorname{Row}(0: 1) \cap \operatorname{Col}(2: b-1)$ from $v_{\bar{a}, b-1}$ to $v_{0,2}$ and a hamiltonian path P_{2}^{2} in $\operatorname{Row}(0: 1) \cap \operatorname{Col}(b+1: k-1)$ from $v_{1, k-1}$ to
$v_{\bar{a}, b+1}$. Combining P_{2}^{1} with P_{2}^{2} as well as the edges $\left(v_{\bar{a}, b-1}, v_{\bar{a}, b}\right)$ and $\left(v_{\bar{a}, b}, v_{\bar{a}, b+1}\right)$, we may obtain the required path P_{2}.

Case 4. $v_{a, b} \in V\left(\operatorname{Col}\left(2: \frac{k}{2}\right)\right)$ and $v_{a^{\prime}, b^{\prime}} \in V(\operatorname{Col}(2: k-1))$.
Case 4.1. $v_{a, b}$ is in $\operatorname{Row}(0)$, that is, $v_{a, b}=v_{0, b}$. Suppose first that $b^{\prime}>b$. As b is odd, we have that $v_{1, b-1}$ is odd and $v_{0, b+1}$ is even. Let $v_{0, c}=v_{0, b+1}$. Observe that $G_{1}=\operatorname{Row}(0: 1) \cap \operatorname{Col}(0: b-1)$ is isomorphic to $\operatorname{Grid}(2, b)$ and $G_{2}=\operatorname{Row}(0: 1) \cap \operatorname{Col}(b+2: k-1)$ is isomorphic to $\operatorname{Grid}(2, k-b-2)$. As $v_{1, b-1}$ is a corner vertex of G_{1} and $e_{v_{1,1}, v_{1, b-1}}=1$, there is a hamiltonian path P_{1}^{1} of G_{1} from $v_{1,1}$ to $v_{1, b-1}$. If $v_{a^{\prime}, b^{\prime}}=v_{1, b+1}$, let $P_{1}=P_{1}^{1}+\left\{\left(v_{1, b-1}, v_{1, b}\right),\left(v_{1, b}, v_{1, b+1}\right)\right\}$. As $v_{1, k-1}$ is a corner vertex of G_{2} and $e_{v_{1, k-1}, v_{0, b+2}}=1$, there is a hamiltonian path P_{2}^{1} of G_{2} from $v_{1, k-1}$ to $v_{0, b+2}$. Let $P_{2}=P_{2}^{1}+\left\{\left(v_{0, b+2}, v_{0, b+1}\right)\right\}$. Then P_{1} is an (S, T)-path from $v_{1,1}$ to $v_{a^{\prime}, b^{\prime}}$ and P_{2} is an (S, T)-path from $v_{1, k-1}$ to $v_{0, b+1}=v_{0, c}$. If $v_{a^{\prime}, b^{\prime}} \neq v_{1, b+1}$, let $P_{1}=P_{1}^{1}+\left\{\left(v_{1, b-1}, v_{1, b}\right),\left(v_{1, b}, v_{1, b+1}\right),\left(v_{1, b+1}, v_{0, b+1}\right)\right\}$. Then P_{1} is an (S, T)-path from $v_{1,1}$ to $v_{0, b+1}=v_{0, c}$. Note that now $v_{a^{\prime}, b^{\prime}}$ is in G_{2}. As $e_{v_{1, k-1}, v_{a^{\prime}, b^{\prime}}}=1$, there is a hamiltonian (S, T)-path P_{2} of G_{2} from $v_{1, k-1}$ to $v_{a^{\prime}, b^{\prime}}$. Furthermore, it can be seen that P_{1} and P_{2} are vertex-disjoint (S, T)-paths and contain all vertices of $\operatorname{Row}(0: 1)-v_{a, b}$.

Suppose next that $b^{\prime}<b$. As b is odd, we have $v_{1, b+1}$ is odd and $v_{0, b-1}$ is even. Let $v_{0, c}=v_{0, b-1}$. By a similar proof above, we may obtain two required (S, T)-paths.

Case 4.2. $v_{a, b}$ is in $\operatorname{Row}(1)$, that is, $v_{a, b}=v_{1, b}$. We only consider the case that $b^{\prime}>b$ since the proof for $b^{\prime}<b$ is similar. Let $G_{1}=\operatorname{Row}(0: 1) \cap \operatorname{Col}(0: b-1)$ and $G_{2}=\operatorname{Row}(0: 1) \cap \operatorname{Col}(b+1: k-1)$. Observe that G_{1} is isomorphic to $\operatorname{Grid}(2, b)$ and G_{2} is isomorphic to $\operatorname{Grid}(2, k-b-1)$. As $v_{1, b}=v_{a, b}$ is odd, we have $v_{0, b-1}$ is odd and $v_{0, b}$ is even. Let $v_{0, c}=v_{0, b}$. As $e_{v_{0, b-1}, v_{1,1}}=1$ and $v_{0, b-1}$ is a corner vertex of G_{1}, Lemma 3.1 implies that there is a hamiltonian path P_{1}^{1} of G_{1} from $v_{1,1}$ to $v_{0, b-1}$. Let $P_{1}=P_{1}^{1}+\left\{\left(v_{0, b-1}, v_{0, b}\right)\right\}$. Then P_{1} is an (S, T)-path from $v_{1,1}$ to $v_{0, b}=v_{0, c}$. As $e_{v_{a^{\prime}, b^{\prime}, v_{1, k-1}}}=1$ and $v_{1, k-1}$ is a corner vertex of G_{2}, Lemma 3.1 implies that there is a hamiltonian path P_{2} of G_{2} from $v_{1, k-1}$ to $v_{a^{\prime}, b^{\prime}}$. It can be seen that P_{1} and P_{2} are vertex-disjoint (S, T)-paths in $\operatorname{Row}(0: 1)-v_{a, b}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{a, b}$.

Lemma 3.9. Let $S=\left\{v_{1,1}, v_{1,5}\right\}$ and let odd $v_{1, b}$ and odd $v_{a^{\prime}, b^{\prime}}$ be two distinct vertices in $\operatorname{Row}(0: 1)$ of Q_{2}^{6}. Then there exists a set $T=\left\{v_{a^{\prime}, b^{\prime}}, v_{0, c}\right\}(c=2$ or 4$)$ such that there are two vertex-disjoint (S, T)-paths in $\operatorname{Row}(0: 1)-v_{1, b}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{1, b}$.

Proof. As $v_{1, b}$ is odd, we have $v_{1, b} \in\left\{v_{1,0}, v_{1,2}, v_{1,4}\right\}$. If $v_{1, b}=v_{1,2}$ (resp. $v_{1,4}$), let $v_{0, c}=v_{0,2}$ (resp. $v_{0,4}$). Using similar proofs of Case 3 and Case 4.2 in Lemma 3.8, we may obtain two vertex-disjoint (S, T)-paths in $\operatorname{Row}(0: 1)-v_{1, b}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{1, b}$.

Suppose that $v_{1, b}=v_{1,0}$. Let $v_{0, c}=v_{0,2}$. If $v_{a^{\prime}, b^{\prime}} \in V(\operatorname{Col}(1))$, then $v_{a^{\prime}, b^{\prime}}=v_{0,1}$. Similar to Case 1 of Lemma 3.8, we may obtain two vertex-disjoint (S, T)-paths in $\operatorname{Row}(0: 1)-v_{1, b}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{1, b}$. If $v_{a^{\prime}, b^{\prime}} \in V(\operatorname{Col}(5))$, then $v_{a^{\prime}, b^{\prime}}=v_{0,5}$, let $P_{1}=v_{1,1} v_{1,0} v_{0,0} v_{0,5}$ and $P_{2}=v_{1,5} v_{1,4} v_{0,4} v_{0,3} v_{1,3} v_{1,2} v_{0,2}$. Obviously, P_{1} and P_{2} are as required. If $v_{a^{\prime}, b^{\prime}} \in V(\operatorname{Col}(2: 4))$, then $v_{a^{\prime}, b^{\prime}} \in$ $\left\{v_{1,2}, v_{0,3}, v_{1,4}\right\}$. Let $P_{1}^{1}=v_{0,5} v_{0,0} v_{0,1} v_{0,2}$ and $G=\operatorname{Row}(0: 1) \cap \operatorname{Col}\left(b^{\prime}+1: 5\right)$. Observe that G is isomorphic to $\operatorname{Grid}\left(2,5-b^{\prime}\right)$. As $v_{1,5}$ is a corner vertex of G and $e_{v_{1,5}, v_{0,5}}=1$, Lemma 3,1 implies that there is a hamiltonian path P_{1}^{2} of G from $v_{1,5}$ to $v_{0,5}$. Then $P_{1}=P_{1}^{1} \cup P_{1}^{2}$ is an (S, T)-path from $v_{1,5}$ to $v_{0,2}=v_{0, c}$. If $v_{a^{\prime}, b^{\prime}}=v_{1,2}$, then $P_{2}=v_{1,1} v_{1,2}$. If $v_{a^{\prime}, b^{\prime}}=v_{0,3}$, then $P_{2}=v_{1,1} v_{1,2} v_{1,3} v_{0,3}$. If $v_{a^{\prime}, b^{\prime}}=v_{1,4}$, then $P_{2}=v_{1,1} v_{1,2} v_{1,3} v_{0,3} v_{0,4} v_{1,4}$. Hence P_{2} is an (S, T)-path from $v_{1,1}$ to $v_{a^{\prime}, b^{\prime}}$. Therefore, P_{1} and P_{2} are as required.

Lemma 3.10. Given an integer $k \in\{4,6\}$, let even u be a vertex in Row(0 : $1)-v_{0,0}$ of Q_{2}^{k}. Let $S=\left\{u, v_{0, k-1}\right\}$ and $T=\left\{v_{1,2}, v_{0,1}\right\}$. Then there are two vertex-disjoint (S, T)-paths in $\operatorname{Row}(0: 1)-v_{0,0}$ that contain all vertices of $\operatorname{Row}(0$: 1) $-v_{0,0}$.

Proof. As $u \neq v_{0,0}$ is even, we have $u \in V(\operatorname{Col}(1: k-1))$. If $u \in V(\operatorname{Col}(1))$, then $u=v_{1,1}$. Let $P_{1}=\operatorname{Row}(1)-\left\{\left(v_{1,1}, v_{1,2}\right)\right\}$ and $P_{2}=\operatorname{Row}(0)-v_{0,0}$. Obviously, P_{1} and P_{2} are two vertex-disjoint (S, T)-paths in $\operatorname{Row}(0: 1)-v_{0,0}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{0,0}$. If $u \in V(\operatorname{Col}(k-1))$, then $u=v_{1, k-1}$. Let $P_{1}=v_{1, k-1} v_{1,0} v_{1,1} v_{1,2}$. If $k=4$, let $P_{2}=v_{0,3} v_{0,2} v_{0,1}$. If $k=6$, let $P_{2}=$ $v_{0,5} v_{0,4} v_{1,4} v_{1,3} v_{0,3} v_{0,2} v_{0,1}$. Then P_{1} and P_{2} are as required. If $u \in V(\operatorname{Col}(2:$ $k-2)$), let $G=\operatorname{Row}(0: 1) \cap \operatorname{Col}(2: k-2)$. Observe that G is isomorphic to $\operatorname{Grid}(2, k-3)$. As odd $v_{1,2}$ is a corner vertex of G and u is even, Lemma 3,1 implies that there is a hamiltonian path P_{1} of G from u to $v_{1,2}$. Let $P_{2}=$ $v_{0, k-1} v_{1, k-1} v_{1,0} v_{1,1} v_{0,1}$. Clearly, P_{1} and P_{2} are as required.

Note that in a $Q_{2}^{6}, \operatorname{Col}(1: 3)$ and $\operatorname{Col}(3: 5)$ are isomorphic. By a similar proof above, we have following corollary.

Corollary 3.11. Let even u be a vertex in $\operatorname{Row}(0: 1)-v_{0,0}$ of Q_{2}^{6} and let $S=\left\{u, v_{0,5}\right\}, T=\left\{v_{1,4}, v_{0,1}\right\}$. Then there are two vertex-disjoint (S, T)-paths in $\operatorname{Row}(0: 1)-v_{0,0}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{0,0}$.

We define the following paths in $\operatorname{Row}(i: i+1)$ of a Q_{2}^{k}. Let $i \leq a \leq i+1,0 \leq b$, $m \leq k-1$ and $m \neq b$. If $a=i$ then $\bar{a}=i+1$, and if $a=i+1$ then $\bar{a}=i$.
$C_{m}^{+}\left(v_{a, b}, v_{\bar{a}, b}\right)=v_{a, b} v_{a, b+1} v_{a, b+2} \ldots v_{a, m-1} v_{a, m} v_{\bar{a}, m} v_{\bar{a}, m-1} v_{\bar{a}, m-2} \ldots v_{\bar{a}, b+1} v_{\bar{a}, b}$.
$C_{m}^{-}\left(v_{a, b}, v_{\bar{a}, b}\right)=v_{a, b} v_{a, b-1} v_{a, b-2} \ldots v_{a, m+1} v_{a, m} v_{\bar{a}, m} v_{\bar{a}, m+1} v_{\bar{a}, m+2} \ldots v_{\bar{a}, b-1} v_{\bar{a}, b}$.
In addition, if $m=b$, we define $C_{b}^{+}\left(v_{a, b}, v_{\bar{a}, b}\right)=C_{b}^{-}\left(v_{a, b}, v_{\bar{a}, b}\right)=\left(v_{a, b}, v_{\bar{a}, b}\right)$.

Theorem 3.12. Given an even $k \geq 4$, let $F_{v}=\left\{u^{*}, v^{*}\right\}$ be a set of faulty vertices of Q_{2}^{k} such that $e_{u^{*}, v^{*}}=1$ and let u and v be any two healthy vertices of Q_{2}^{k} such that $e_{u, v}=1$. Then there exists a hamiltonian path of $Q_{2}^{k}-F_{v}$ from u to v.
Proof. Without loss of generality, we may assume that $u^{*}=v_{0,0}$. As $e_{u^{*}, v^{*}}=1$ and $u^{*}=v_{0,0}$ is even, we see that v^{*} is odd. Let $v^{*}=v_{a, b}$ where $0 \leq a, b \leq k-1$. As $\operatorname{Row}(1: k-1)$ is isomorphic to $\operatorname{Col}(1: k-1)$, it is enough to consider v^{*} is in $\operatorname{Row}(1: k-1)$. Furthermore, we may assume that v^{*} is in $\operatorname{Row}\left(\frac{k}{2}: k-1\right)$ because $\operatorname{Row}\left(1: \frac{k}{2}\right)$ and $\operatorname{Row}\left(\frac{k}{2}: k-1\right)$ are isomorphic.

If a is odd, let $p=a-2$. If a is even, let $p=a-1$. Clearly, p is odd and $v^{*}=v_{a, b} \in V(\operatorname{Row}(p+1: p+2))$. Let $u=v_{i, j}$ and $v=v_{i^{\prime}, j^{\prime}}$. We consider the following five cases.

Case 1. $u, v \in V(\operatorname{Row}(0: 1))$. Let $S=\{u, v\}$ and $T=\left\{v_{0,1}, v_{1,0}\right\}$. As $e_{u, v}=1$, Lemma 3.6 implies that there exists two vertex-disjoint (S, T)-paths P_{1}, P_{2} in $\operatorname{Row}(0: 1)-v_{0,0}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{0,0}$. Recall that odd v^{*} is in $\operatorname{Row}(p+1: p+2)$. As even $v_{p+1,0}$ and even $v_{k-1,1}$ are two distinct vertices in $\operatorname{Row}(p+1: k-1)$, Lemma 3.4 and Lemma 3.5(iii) imply that there exists a hamiltonian path P_{3} of $\operatorname{Row}(p+1: k-1)-v^{*}$ from $v_{p+1,0}$ to $v_{k-1,1}$.

If $p=1$, then $P_{1} \cup P_{2} \cup P_{3}+\left\{\left(v_{1,0}, v_{2,0}\right),\left(v_{0,1}, v_{k-1,1}\right)\right\}$ is a hamiltonian path of $Q_{2}^{k}-F_{v}$ from u to v. Suppose that odd $p \geq 3$. As $e_{v_{2,0}, v_{p, 0}}=1$, Lemma 3.3 implies that there exists a hamiltonian path P_{4} of $\operatorname{Row}(2: p)$ from $v_{2,0}$ to $v_{p, 0}$. Then $\bigcup_{d=1}^{4} P_{d}+\left\{\left(v_{1,0}, v_{2,0}\right),\left(v_{0,1}, v_{k-1,1}\right),\left(v_{p, 0}, v_{p+1,0}\right)\right\}$ is a hamiltonian path of $Q_{2}^{k}-F_{v}$ from u to v.
Case 2. $u \in V(\operatorname{Row}(0: 1))$ and $v \in V(\operatorname{Row}(2: p))$. As $v \in V(\operatorname{Row}(2: p))$, it is easy to see that odd $p \geq 3$. Noting that $v^{*}=v_{a, b} \in V(\operatorname{Row}(p+1, p+2))$, we see that $\operatorname{Row}(p+2)$ exists. Then $k-1 \geq p+2 \geq 5$, and so $k \geq 6$. We distinguish two cases.

Case 2.1. u is even and v is odd. Let $G_{1}=\operatorname{Row}(0: 1) \cap \operatorname{Col}(1: j)$. Observe that G_{1} is isomorphic to $\operatorname{Grid}(2, j)$. As $e_{v_{0,1, u}}=1$ and $v_{0,1}$ is a corner vertex of G_{1}, Lemma 3.1 implies that there is a hamiltonian path P_{1} of G_{1} from u to $v_{0,1}$. Let $P_{2}=C_{j+1}^{-}\left(v_{0, k-1}, v_{1, k-1}\right)+\left\{\left(v_{1,0}, v_{1, k-1}\right)\right\}$. Then P_{1} and P_{2} are two vertex-disjoint paths in $\operatorname{Row}(0: 1)-v_{0,0}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{0,0}$. Noting that v is odd, we have $e_{v_{2,0}, v}=1$. By Lemma 3.3, there is a hamiltonian path P_{3} of $\operatorname{Row}(2: p)$ from $v_{2,0}$ to v. As k is even and v^{*} is odd, we have $e_{v_{k-1,1}, v_{k-1, k-1}}=0$ and $e_{v_{k-1,1}, v^{*}}=1$. Combining this with the fact that $v^{*} \in V(\operatorname{Row}(p+1: p+2))$, Lemma 3.4 and Lemma 3.5(ii) imply that there is a hamiltonian path P_{4} of $\operatorname{Row}(p+1: k-1)-v^{*}$ from $v_{k-1,1}$ to $v_{k-1, k-1}$. Then $\bigcup_{d=1}^{4} P_{d}+\left\{\left(v_{0,1}, v_{k-1,1}\right),\left(v_{1,0}, v_{2,0}\right),\left(v_{0, k-1}, v_{k-1, k-1}\right)\right\}$ is a hamiltonian path of $Q_{2}^{k}-F_{v}$ from u to v.

Case 2.2. u is odd and v is even. Noting that v is even and p is odd, we have $e_{v_{p, 0}, v}=1$. By Lemma 3.3, there exists a hamiltonian path P_{1} of $\operatorname{Row}(2: p)$
from $v_{p, 0}$ to v. As $k \geq 6$, we may choose a vertex $w \in V(\operatorname{Row}(0))$ such that $w \neq u$ and $e_{w, u}=0$. Combining this with the fact that $e_{v_{0,0}, u}=1$, Lemma 3.4 implies that there exists a hamiltonian path P_{2} of $\operatorname{Row}(0: 1)-v_{0,0}$ from u to w. By $e_{w, n^{k-1}(w)}=1$, we have $n^{k-1}(w)$ is even. Note that $v_{p+1,0}$ is even and $v^{*} \in V(\operatorname{Row}(p+1: p+2))$ is odd. By Lemma 3.4 and Lemma 3.5(iii), there is a hamiltonian path P_{3} of $\operatorname{Row}(p+1: k-1)-v^{*}$ from $n^{k-1}(w)$ to $v_{p+1,0}$. Then $P_{1} \cup P_{2} \cup P_{3}+\left\{\left(w, n^{k-1}(w)\right),\left(v_{p, 0}, v_{p+1,0}\right)\right\}$ is a hamiltonian path of $Q_{2}^{k}-F_{v}$ from u to v.
Case 3. $u \in V(\operatorname{Row}(0: 1))$ and $v \in V(\operatorname{Row}(p+1: p+2))$.
Case 3.1. u is odd and v is even. Suppose first that $k=4$. Then $\operatorname{Row}(p+1$: $p+2)=\operatorname{Row}(2: 3)$. Let v^{\prime} be the neighbour of v in $\operatorname{Row}(0: 1)$. It is easy to see that we may choose an odd u^{\prime} in $\operatorname{Row}(0: 1)-u$ such that $u^{\prime} \neq v^{\prime}$. Denote the neighbour of u^{\prime} in $\operatorname{Row}(2: 3)$ by $u^{\prime \prime}$. As u^{*} is even and both u and u^{\prime} are odd, Lemma 3.4 implies that there is a hamiltonian path P_{1} of $\operatorname{Row}(0: 1)-u^{*}$ from u to u^{\prime}. Similarly, there is a hamiltonian path P_{2} of $\operatorname{Row}(2: 3)-v^{*}$ from $u^{\prime \prime}$ to v. Then $P_{1} \cup P_{2}+\left\{\left(u^{\prime}, u^{\prime \prime}\right)\right\}$ is a hamiltonian path of $Q_{2}^{4}-F_{v}$ from u to v.

Suppose next that $k \geq 6$. As $\frac{k}{2}-2 \geq 3-2=1$, we may choose an odd x in $\operatorname{Row}(p)$ such that $x \neq u$ and $n^{p+1}(x) \neq v$. Then $e_{x, u}=0$. Note that $e_{u^{*}, u}=1$ and $u^{*} \in V(\operatorname{Row}(0: 1))$. By Lemma 3.4 and Lemma 3.5(iii), there exists a hamiltonian path P_{1} in $\operatorname{Row}(0: p)-u^{*}$ from u to x. As x is odd, we have $n^{p+1}(x)$ is even. Recalling that $v^{*} \in V(\operatorname{Row}(p+1: p+2))$ is odd and v is even, Lemma 3.4 and Lemma 3.5(i) imply that there is a hamiltonian path P_{2} of $\operatorname{Row}(p+1: k-1)-v^{*}$ from $n^{p+1}(x)$ to v. Then $P_{1} \cup P_{2}+\left\{\left(x, n^{p+1}(x)\right)\right\}$ is a hamiltonian path of $Q_{2}^{k}-F_{v}$ from u to v.

Case 3.2. u is even and v is odd.
Case 3.2.1. $k=4$. In this case, $\operatorname{Row}(p+1: p+2)=\operatorname{Row}(2: 3)$. Let $S=\left\{u, v_{0,3}\right\}$ and $T=\left\{v_{1,2}, v_{0,1}\right\}$. By Lemma 3.10, there exist a $u v_{1,2}$-path P_{1} and a $v_{0,3} v_{0,1}$-path P_{2} in $\operatorname{Row}(0: 1)-v_{0,0}$. Moreover, P_{1} and P_{2} are two vertex-disjoint (S, T)-paths that contain all vertices of $\operatorname{Row}(0: 1)-v_{0,0}$.

Let $S=\left\{v_{3,1}, v_{3,3}\right\}$ and $T=\left\{v, v_{2,2}\right\}$. Recall that both v and v^{*} are odd. By Lemma 3.7, there are two vertex-disjoint (S, T)-paths P_{3} and P_{4} in $\operatorname{Row}(2: 3)-v^{*}$ that contain all vertices of $\operatorname{Row}(2: 3)-v^{*}$. Then $\bigcup_{d=1}^{4} P_{d}+$ $\left\{\left(v_{0,1}, v_{3,1}\right),\left(v_{0,3}, v_{3,3}\right),\left(v_{1,2}, v_{2,2}\right)\right\}$ is a hamiltonian path of $Q_{2}^{4}-F_{v}$ from u to v.

Case 3.2.2. $k \geq 6$. If $p=1$, then $v^{*}=v_{a, b} \in V(\operatorname{Row}(2: 3))$ and so $2 \leq a \leq 3$. Recall that $v^{*}=v_{a, b}$ is in $\operatorname{Row}\left(\frac{k}{2}: k-1\right)$ and $k \geq 6$. Therefore $a \geq \frac{k}{2} \geq 3$. So $a=3$ and $k=2 \times 3=6$. Let $S=\left\{v_{3,1}, v_{3,5}\right\}$ and $T=\left\{v, v_{2, c}\right\}(c=2$ or 4$)$. By Lemma 3.9, there are two vertex-disjoint (S, T)-paths P_{1}, P_{2} in $\operatorname{Row}(2: 3)-v^{*}$ that contain all vertices of $\operatorname{Row}(2: 3)-v^{*}$. As $v_{1, c} \in\left\{v_{1,2}, v_{1,4}\right\}$ and even u is in $\operatorname{Row}(0: 1)-v_{0,0}$, Lemma 3.10 and Corollary 3.11 imply that there exist a path P_{3} from u to $v_{1, c}$ and a path P_{4} from $v_{0,5}$ to $v_{0,1}$. Moreover, P_{1} and
P_{2} are two vertex-disjoint paths in $\operatorname{Row}(0: 1)-v_{0,0}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{0,0}$.

Let $P_{5}=C_{0}^{-}\left(v_{4,1}, v_{5,1}\right)$ and $P_{6}=C_{2}^{-}\left(v_{4,5}, v_{5,5}\right)$. Clearly, P_{5} and P_{6} are vertex-disjoint paths in $\operatorname{Row}(4: 5)$ that contain all vertices of $\operatorname{Row}(4: 5)$. Then $\bigcup_{d=1}^{6} P_{d}+\left\{\left(v_{1, c}, v_{2, c}\right),\left(v_{0,5}, v_{5,5}\right),\left(v_{0,1}, v_{5,1}\right),\left(v_{3,5}, v_{4,5}\right),\left(v_{3,1}, v_{4,1}\right)\right\}$ is a hamiltonian path of $Q_{2}^{6}-F_{v}$ from u to v.

Suppose that $p \geq 3$. We will choose an odd $u^{\prime} \in V(\operatorname{Row}(1))$ and construct a $u u^{\prime}$-path P_{1} and a $v_{0, k-1} v_{0,1}$-path P_{2} in $\operatorname{Row}(0: 1)-v_{0,0}$. Suppose first that $u \in V(\operatorname{Row}(0))$. As $u=v_{0, j}$ is even, we have $u^{\prime}=v_{1, j}$ is odd. Let $P_{1}=u u^{\prime}$ and $P_{2}=C_{j-1}^{+}\left(v_{1,1}, v_{0,1}\right) \cup C_{j+1}^{-}\left(v_{1, k-1}, v_{0, k-1}\right)+\left\{\left(v_{1,1}, v_{1,0}\right),\left(v_{1,0}, v_{1, k-1}\right)\right\}$. Then P_{1} is a path from u to u^{\prime} and P_{2} is a path from $v_{0, k-1}$ to $v_{0,1}$. Obviously, P_{1} and P_{2} are vertex-disjoint paths that contain all vertices of $\operatorname{Row}(0: 1)-v_{0,0}$. Suppose next that $u \in V(\operatorname{Row}(1))$. As $u=v_{1, j}$ is even, we have $u^{\prime}=v_{1, j-1} \in$ $V(\operatorname{Row}(1))$ is odd, where $1 \leq j \leq k-1$. Let $P_{1}=\operatorname{Row}(1)-\left\{\left(v_{1, j-1}, v_{1, j}\right)\right\}$ and $P_{2}=v_{0, k-1} v_{0, k-2} v_{0, k-3} \ldots v_{0,1}$. Then P_{1} is a path from u to u^{\prime} and P_{2} is a path from $v_{0, k-1}$ to $v_{0,1}$. Clearly, P_{1} and P_{2} are vertex-disjoint paths that contain all vertices of $\operatorname{Row}(0: 1)-v_{0,0}$.

Noting that p is odd and k is even, we have both $v_{p+2,1}$ and $v_{p+2, k-1}$ are even. Let $S=\left\{v_{p+2,1}, v_{p+2, k-1}\right\}$. As odd $v^{*}, v \in V(\operatorname{Row}(p+1: p+2))$, Lemma 3.8 implies that there exists a set $T=\{x, v\}(x \in V(\operatorname{Row}(p+1))$ is even $)$, such that there are two vertex-disjoint (S, T)-paths P_{3}, P_{4} in $\operatorname{Row}(p+1: p+2)-v^{*}$ that contain all vertices of $\operatorname{Row}(p+1: p+2)-v^{*}$.

Note that $x \in V(\operatorname{Row}(p+1))$ and $u^{\prime} \in V(\operatorname{Row}(1))$. As x is even and u^{\prime} is odd, it is easy to see that $e_{n^{p}(x), n^{2}\left(u^{\prime}\right)}=1$. By Lemma 3.3, there exists a hamiltonian path P_{5} of $\operatorname{Row}(2: p)$ from $n^{2}\left(u^{\prime}\right)$ to $n^{p}(x)$.

We will construct a hamiltonian path of $Q_{2}^{k}-F_{v}$ from u to v in the following. Noting that $p+2$ is odd, we consider the following two cases. If $p+2=k-1$, then $\bigcup_{d=1}^{5} P_{d}+\left\{\left(u^{\prime}, n^{2}\left(u^{\prime}\right)\right),\left(v_{0,1}, v_{p+2,1}\right),\left(v_{0, k-1}, v_{p+2, k-1}\right),\left(n^{p}(x), x\right)\right\}$ is a hamiltonian path of $Q_{2}^{k}-F_{v}$ from u to v. If $p+2 \leq k-3$, let $G_{1}=\operatorname{Row}(p+3$: $k-1) \cap \operatorname{Col}(0: 1)$ and $G_{2}=\operatorname{Row}(p+3: k-1) \cap \operatorname{Col}(2: k-1)$. Observe that G_{1} is isomorphic to $\operatorname{Grid}(k-p-3,2)$ and G_{2} is isomorphic to $\operatorname{Grid}(k-p-3, k-2)$. As p is odd and k is even, we have $e_{v_{p+3,1}, v_{k-1,1}}=e_{v_{p+3, k-1}, v_{k-1, k-1}}=1$. As $v_{p+3,1}$ and $v_{p+3, k-1}$ are corner vertices of G_{1} and G_{2}, respectively, Lemma 3.2 implies that there are a hamiltonian path P_{6} of G_{1} from $v_{p+3,1}$ to $v_{k-1,1}$ and a hamiltonian path P_{7} of G_{2} from $v_{p+3, k-1}$ to $v_{k-1, k-1}$. Then $\bigcup_{d=1}^{7} P_{d}+\left\{\left(u^{\prime}, n^{2}\left(u^{\prime}\right)\right),\left(v_{0,1}, v_{k-1,1}\right)\right.$, $\left.\left(v_{0, k-1}, v_{k-1, k-1}\right),\left(n^{p}(x), x\right),\left(v_{p+2,1}, v_{p+3,1}\right),\left(v_{p+2, k-1}, v_{p+3, k-1}\right)\right\}$ is a hamiltonian path of $Q_{2}^{k}-F_{v}$ from u to v.

Case 4. $u, v \in V(\operatorname{Row}(2: p))$. As $u, v \in V(\operatorname{Row}(2: p))$, it is easy to see that odd $p \geq 3$. Noting that $v^{*}=v_{a, b} \in V(\operatorname{Row}(p+1, p+2))$, we see that $\operatorname{Row}(p+2)$ exists. Then $k-1 \geq p+2 \geq 5$, and so $k \geq 6$. As $e_{u, v}=1$, by Lemma 3.3, there exists a hamiltonian path P_{1} of $\operatorname{Row}(2: p)$ from u to v that contains an edge
(s,t) of $\operatorname{Row}(2)$. As $e_{n^{1}(s), n^{1}(t)}=1$, without loss of generality, we may assume that $n^{1}(s)$ is odd and $n^{1}(t)$ is even. Let $n^{1}(s)=v_{1, m}$ and $n^{1}(t)=v_{1, m+1}$.

If $m=0$, then $n^{1}(s)=v_{1,0}$ and $n^{1}(t)=v_{1,1}$. Let $P_{2}=v_{1,0} v_{1, k-1} v_{0, k-1}$ and $P_{3}=C_{k-2}^{+}\left(v_{1,1}, v_{0,1}\right)$. If $m \neq 0$, let $P_{2}=v_{1, m} v_{0, m} v_{0, m+1} \ldots v_{0, k-1}, P_{3}^{1}=$ $v_{1, m+1} v_{m+2} v_{m+4} \ldots v_{1, k-1} v_{1,0} v_{1,1}$ and $P_{3}=P_{3}^{1} \cup C_{m-1}^{+}\left(v_{1,1}, v_{0,1}\right)$. Then P_{2} is a path from $n^{1}(s)$ to $v_{0, k-1}$ and P_{3} is a path from $n^{1}(t)$ to $v_{0,1}$. Obviously, P_{2} and P_{3} are vertex-disjoint paths in $\operatorname{Row}(0: 1)-v_{0,0}$ that contain all vertices of $\operatorname{Row}(0: 1)-v_{0,0}$.

As $v_{k-1,1}, v_{k-1, k-1} \in V(\operatorname{Row}(k-1))$ are even and $v^{*} \in V(\operatorname{Row}(p+1$: $p+2)$) is odd, Lemma 3.4 and Lemma 3.5(ii) imply that there is a hamiltonian path P_{4} of $\operatorname{Row}(p+1: k-1)-v^{*}$ from $v_{k-1,1}$ to $v_{k-1, k-1}$. Then $\bigcup_{d=1}^{4} P_{d}-$ $\{(s, t)\}+\left\{\left(s, n^{1}(s)\right),\left(t, n^{1}(t)\right),\left(v_{0,1}, v_{k-1,1}\right),\left(v_{0, k-1}, v_{k-1, k-1}\right)\right\}$ is a hamiltonian path of $Q_{2}^{k}-F_{v}$ from u to v.
Case 5. $u \in V(\operatorname{Row}(2: p))$ and $v \in V(\operatorname{Row}(p+3: k-1))$. As $u \in V(\operatorname{Row}(2:$ $p)$), it is easy to see that odd $p \geq 3$. Noting that $v \in V(\operatorname{Row}(p+3: k-1))$, we have $k-1 \geq p+3$ and so $k \geq p+4 \geq 7$. As k is even, we have $k \geq 8$. Recall that $v=v_{i^{\prime}, j^{\prime}}$. If i^{\prime} is odd, let $q=i^{\prime}-1$. If i^{\prime} is even, let $q=i^{\prime}$. Clearly, $q \geq p+3$ is even and $v \in V(\operatorname{Row}(q: q+1))$. Now we consider the following two cases.

Case 5.1. $v \in V(\operatorname{Row}(q))$. As $e_{u, v}=1$, without loss of generality, we assume that u is even and v is odd. Choose an odd $w \in V(\operatorname{Row}(p))$. Then $e_{u, w}=1$. By Lemma 3.3, there is a hamiltonian path P_{1} of $\operatorname{Row}(2: p)$ from u to w that contains an edge (s, t) of Row(2). Similar to Case 4, there exist an $n^{1}(s) v_{0, k-1^{-}}$ path P_{2} and an $n^{1}(t) v_{0,1}$-path P_{3} in $\operatorname{Row}(0: 1)-v_{0,0}$. Moreover, P_{2} and P_{3} are vertex-disjoint paths that contain all vertices of $\operatorname{Row}(0: 1)-v_{0,0}$.

As $v_{k-1,1}, v_{k-1, k-1} \in V(\operatorname{Row}(k-1))$ are even and $v \in V(\operatorname{Row}(q))$ is odd, Lemma 3.4 and Lemma 3.5(ii) imply that there is a hamiltonian path P_{4} of $\operatorname{Row}(q: k-1)-v$ from $v_{k-1,1}$ to $v_{k-1, k-1}$. As both w and v are odd, we have both $n^{p+1}(w)$ and $n^{q-1}(v)$ are even. Note that the odd v^{*} is in $\operatorname{Row}(p+1: p+2)$. By Lemma 3.4 and Lemma 3.5(iii), there is a hamiltonian path P_{5} of $\operatorname{Row}(p+1$: $q-1)-v^{*}$ from $n^{p+1}(w)$ to $n^{q-1}(v)$.
Then $\bigcup_{d=1}^{5} P_{d}-\{(s, t)\}+\left\{\left(s, n^{1}(s)\right),\left(t, n^{1}(t)\right),\left(v_{0,1}, v_{k-1,1}\right),\left(v_{0, k-1}, v_{k-1, k-1}\right)\right.$, $\left.\left(w, n^{p+1}(w)\right),\left(v, n^{q-1}(v)\right)\right\}$ is a hamiltonian path of $Q_{2}^{k}-F_{v}$ from u to v.

Case 5.2. $v \in V(\operatorname{Row}(q+1))$. As $e_{u, v}=1$, without loss of generality, we assume that u is odd and v is even. Choose an even $w \neq v$ in $\operatorname{Row}(q+1)$. As $e_{w, v}=0$ and $e_{v, v^{*}}=1$, Lemma 3.5(ii) implies that there is a hamiltonian path P_{1} of $\operatorname{Row}(p+1: q+1)-v^{*}$ from w to v. Choose an odd $x \in V(\operatorname{Row}(1))$ and an odd $y \in V(\operatorname{Row}(0))$. Then $n^{2}(x)$ is even. Noting that u is odd, we have $e_{u, n^{2}(x)}=1$. By Lemma 3.3, there is a hamiltonian path P_{2} of $\operatorname{Row}(2: p)$ from u to $n^{2}(x)$. Note that u^{*} is even and both x and y are odd. By Lemma 3.4, there is a hamiltonian path P_{3} of $\operatorname{Row}(0: 1)-u^{*}$ from x to y.

We will construct a hamiltonian path of $Q_{2}^{k}-F_{v}$ from u to v in the following. Noting that $q+1$ is odd, we consider the following two cases. Suppose first that $q+1=k-1$. As w is even, we have $n^{0}(w)$ is odd. Let $y=n^{0}(w)$. Then $P_{1} \cup P_{2} \cup P_{3}+\left\{\left(w, n^{0}(w)\right),\left(x, n^{2}(x)\right)\right\}$ is a hamiltonian path of $Q_{2}^{k}-F_{v}$ from u to v. Suppose next that $q+1 \leq k-3$. As w is even and y is odd, we have $n^{q+2}(w)$ is odd and $n^{k-1}(y)$ is even. By Lemma 3.3, there exists a hamiltonian path P_{4} of $\operatorname{Row}(q+2: k-1)$ from $n^{q+2}(w)$ to $n^{k-1}(y)$. Then $\bigcup_{d=1}^{4} P_{d}+\left\{\left(y, n^{k-1}(y)\right),\left(x, n^{2}(x)\right),\left(w, n^{q+2}(w)\right)\right\}$ is a hamiltonian path of $Q_{2}^{k}-F_{v}$ from u to v. The proof of this theorem is complete.

Given an even $k \geq 4$, let F_{v} be the set of faulty vertices of a Q_{2}^{k}. Recall that $f_{v}^{\max }=\max \left\{\left|F_{v} \cap X\right|,\left|F_{v} \cap Y\right|\right\}$, where X be the set of even vertices and Y be the set of odd vertices of the Q_{2}^{k}. The following result is a direct consequence of Theorem 1.1 and 3.12.

Corollary 3.13. Let $k \geq 4$ be even and let f_{v} be the number of faulty vertices and f_{e} be the number of faulty edges in Q_{2}^{k} with $0 \leq f_{v}+f_{e} \leq 2$. Given any two healthy vertices u and v of Q_{2}^{k}, then there is a path from u to v of length $k^{2}-2 f_{v}^{\max }-1$ if $e_{u, v}=1$.

4. Conclusions

In this paper, we investigate the problem of embedding hamiltonian paths into faulty k-ary 2 -cubes, where $k \geq 4$ is even. For any two healthy vertices u, v with $e_{u, v}=1$, we proved that the faulty k-ary n-cube admits a path of length $k^{2}-2 f_{v}^{\max }-1$ if $f_{v}+f_{e} \leq 2$. The above result show that the fault-tolerant capability of the k-ary 2 -cube is nice in terms of the path embeddings. The work will help engineers to develop corresponding applications on the distributedmemory parallel system that employs the k-ary 2 -cube as the interconnection network.

Acknowledgements

The authors thank the anonymous referee for several helpful comments.

References

[1] Y.A. Ashir and I.A. Stewart, Fault-tolerant embeddings of hamiltonian circuits in k-ary n-cubes, SIAM J. Discrete Math. 15 (2002) 317-328.
[2] S.-Y. Hsieh and Y.-R. Cian, Conditional edge-fault hamiltonicity of augmented cubes, Inform. Sciences 180 (2010) 2596-2617.
[3] S.-Y. Hsieh and C.-N. Kuo, Hamilton-connectivity and strongly Hamiltonianlaceability of folded hypercubes, Comput. Math. Appl. 53 (2007) 1040-1044.
[4] S.-Y. Hsieh and C.-W. Lee, Conditional edge-fault hamiltonicity of matching composition networks, IEEE Trans. Parallel Distrib. Syst. 20 (2009) 581-592.
[5] S.-Y. Hsieh and C.-W. Lee, Pancyclicity of restricted hypercube-like networks under the conditional fault model, SIAM J. Discrete Math. 23 (2010) 2100-2119.
[6] S.-Y. Hsieh and C.-D. Wu, Optimal fault-tolerant hamiltonicity of star graphs with conditional edge faults, J. Supercomput. 49 (2009) 354-372.
[7] T.-L. Kueng, C.-K. Lin, T. Liang, J.J.M. Tan and Lih-Hsing Hsu, Embedding paths of variable lengths into hypercubes with conditional link-faults, Parallel Comput. 35 (2009) 441-454.
[8] H.-C. Kim and J.-H. Park Fault hamiltonicity of two-dimensional torus networks, Proceedings of Workshop on Algorithms and Computation WAAC'00, Tokyo, Japan, (2000), 110-117.
[9] R.E. Kessler and J.L. Schwarzmeier, Cray T3D: a new dimension for Cray Research, Proceedings of the 38th IEEE Computer Society International Conference, Compcon Spring'93, San Francisco, CA (1993), 176-182.
[10] T.-K. Li, C.-H. Tsai, J.J.M. Tan and L.-H. Hsu, Bipanconnectivity and edge-faulttolerant bipancyclicity of hypercubes, Inform. Process. Lett. 87 (2003) 107-110.
[11] M. Noakes and W.J. Dally, System design of the J-machine, Proceedings of the sixth MIT Conference on Advanced Research in VLSI, (MIT Press, Cambridge, MA, 1990) 179-194.
[12] C. Peterson, J. Sutton and P. Wiley, iWarp: a 100-MOPS, LIW microprocessor for multicomputers, IEEE Micro 11(3)(1991) 26-29, 81-87.
[13] Y. Rouskov, S. Latifi and P.K. Srimani, Conditional fault diameter of star graph networks, J. Parallel Distr. Com. 33 (1996) 91-97.
[14] L.-M. Shih, J.J.M. Tan and L.-H. Hsu, Edge-bipancyclicity of conditional faulty hypercubes, Inform. Process. Lett. 105 (2007) 20-25.
[15] I.A. Stewart and Y. Xiang, Embedding long paths in k-ary n-cubes with faulty nodes and links, IEEE Trans. Parallel Distrib. Syst. 19 (2008) 1071-1085.
[16] C.-H. Tsai, Linear array and ring embeddings in conditional faulty hypercubes, Theor. Comput. Sci. 314 (2004) 431-443.
[17] S. Wang and S. Lin, Path embeddings in faulty 3-ary n-cubes, Inform. Sciences 180 (2010) 191-197.
[18] H.-L. Wang, J.-W. Wang and J.-M. Xu, Edge-fault-tolerant bipanconnectivity of hypercubes, Inform. Sciences 179 (2009) 404-409.
[19] M.-C. Yang, J.J.M. Tan and L.-H. Hsu, Hamiltonian circuit and linear array embeddings in faulty k-ary n-cubes, J. Parallel Distr. Com. 67 (2007) 362-368.

Received 31 May 2010
Revised 22 January 2011
Accepted 24 January 2011

[^0]: ${ }^{1}$ This work is supported by the National Natural Science Foundation of China (61070229) and the Natural Science Foundation of Shanxi Province (2008011010).

