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Abstract

The choice number of a graph G is the smallest integer k such that for
every assignment of a list L(v) of k colors to each vertex v of G, there is a
proper coloring of G that assigns to each vertex v a color from L(v). We
present upper and lower bounds on the choice number of complete multipar-
tite graphs with partite classes of equal sizes and complete r-partite graphs
with r − 1 partite classes of order two.
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1. Introduction

All graphs considered here are finite, undirected, without loops and multiple
edges. Let G be a graph with the vertex set V (G) and the edge set E(G). A list
assignment to the vertices of a graph G is the assignment of a list L(v) of colors
C to every vertex v ∈ V (G). A k-list assignment is a list assignment such that
|L(v)| ≥ k for every vertex v. An L-coloring of G is a function f : V (G) → C such
that f(v) ∈ L(v) for all v ∈ V (G) and f(v) 6= f(w) for each edge vw ∈ E(G). If
G has an L-coloring, then G is said to be L-colorable. If for any k-list assignment
L there exists an L-coloring, then G is k-choosable. The choice number Ch(G)
of a graph G is the minimum integer k such that G is k-choosable.
The study of choice numbers of graphs was initiated by Vizing [7] and by Erdös,
Rubin and Taylor [3]. For a survey about the list coloring problem we refer to [6]
and [8]. In this paper we focus on the choice numbers of complete multipartite
graphs.
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2. Complete Multipartite Graphs with Partite Classes of

Different Sizes

Let Kn1,n2,...,nr be the complete r-partite graph with the partite classes of order
n1, n2, . . . , nr. A well-known result of Erdös, Rubin and Taylor [3] says that the
choice number of the complete r-partite graph K2,2,...,2 is r. Gravier and Maffray
[4] proved that also Ch(K3,3,2,...,2) = r for r ≥ 3. Enomoto et al. [2] showed
that Ch(K5,2,...,2) = r+1 and the choice number of the complete r-partite graph
K4,2,...,2 is equal to r if r is odd, and r + 1 if r is even.

Motivated by these results we study the value Ch(Kn,2,...,2) for any positive
integer n. In the proof of Theorem 1 we write L(S) for the union

⋃

v∈S L(v)
where S ⊆ V (G). If C is a set of colors, then L\C denotes the list assignment
obtained from L by removing the colors in C from each L(v) where v ∈ V (G).
First, we show that the graph K(t+2)(t+3)/2,2,...,2 is (r + t)-choosable.

Theorem 1. Let t be a positive integer and let G be a complete r-partite graph

with one partite class of order (t+ 2)(t+ 3)/2 and r − 1 partite classes of order

two. Then Ch(G) ≤ r + t.

Proof. Let V1 be the partite class of G of order (t + 2)(t + 3)/2 and let Vi =
{vi, wi}, 2 ≤ i ≤ r, be the partite classes of order two. Let L1 be any (r + t)-list
assignment to the vertices of G. We prove that G is L1-colorable. We distinguish
three cases:

Case 1. t ≥ r − 1.
We can color the vertices of V2, V3, . . . , Vr with 2r − 2 different colors. Since
|L1(v)| ≥ 2r − 1 for every vertex v ∈ V1, we can color the vertices of V1 as well.

Case 2. There exists a color c ∈ L1(vi) ∩ L1(wi) for some i ∈ {2, 3, . . . , r}.
It is easy to show by induction on r that G is L1-colorable. The step r = 1 is
trivial. For the induction step, assign c to both vi and wi, and remove c from
the lists of the remaining vertices. By the induction hypothesis, the remaining
vertices can be colored with colors from the revised lists.

Case 3. t ≤ r − 2 and L1(vi) ∩ L1(wi) = ∅ for every i ∈ {2, 3, . . . , r}.
We prove by contradiction that G is L1-colorable. Assume that G is not L1-
colorable. Let L be an (r+ t)-list assignment such that G is not L-colorable. Let
Xj , j = 1, 2, . . . , t, be the largest subset of V1\(

⋃j−1
l=1 Xl) with

⋂

v∈Xj
L(v) 6= ∅.

Set |Xj | = xj and choose a color cj ∈
⋂

v∈Xj
L(v). Define L′ = L\{c1, c2, . . . , ct}

and G′ = G\(
⋃t

l=1Xl). Note that |L′(v)| = r + t for each v ∈ V (G′) ∩ V1 and
|L′(vi)|, |L

′(wi)| ≥ r for any i ∈ {2, 3, . . . , r}. Since G is not L-colorable, G′ is
not L′-colorable. It follows that there exists a set of vertices T ⊆ V (G′) such that
|L′(T )| < |T |, i.e., L′ does not satisfy Hall’s condition. Let S denote a maximal
subset of V (G′) such that |L′(S)| < |S|. We consider two subcases:
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Case 3a. |S ∩ Vi| ≤ 1 for every i ∈ {2, 3, . . . , r}.
Since |L′(vi)|, |L

′(wi)| ≥ r and |S\V1| ≤ r − 1, S\V1 can be colored from the list
L′. Further, |L′(v)| = r+ t for v ∈ S ∩V1, therefore we can also color the vertices
in S ∩ V1.

Let L′′ = L′\L′(S). We show that G′\S is L′′-colorable. If G′\S is not L′′-
colorable, we have a nonempty subset S′ ⊂ V (G′)\S with |L′′(S′)| < |S′|. Then
|L′(S ∪S′)| = |L′(S)|+ |L′′(S′)| < |S|+ |S′|, which contradicts the maximality of
S.

Case 3b. Both vi, wi ∈ S for some i ∈ {2, 3, . . . , r}.
Then |S| > |L′(S)| ≥ |L′(vi)| + |L′(wi)| ≥ 2(r + t) − t. Set |S| = 2r + t + 1 + ǫ
where ǫ ≥ 0. Clearly, |L′(S)| ≤ 2r + t + ǫ. Let S1 = S ∩ V1. We have |S1| ≥
|S| − (2r− 2) = t+3+ ǫ. By the maximality of Xt, every color in L′(S) appears
in the lists of at most xt vertices of S1. It means that

(r + t)|S1| =
∑

v∈S1

|L′(v)| ≤ xt|L
′(S)|.(1)

It is evident that
∑t

l=1 xl + |S1| ≤ |V1| = (t + 2)(t + 3)/2. Hence, txt + |S1| ≤
(t+ 2)(t+ 3)/2, or equivalently

xt ≤ [(t+ 2)(t+ 3)/2− |S1|]/t.(2)

By (1) and (2), we have (r + t)|S1| ≤ [(t + 2)(t + 3)/2 − |S1|]|L
′(S)|/t. Since

|S1| ≥ t + 3 + ǫ and |L′(S)| ≤ 2r + t + ǫ, we have (r + t)(t + 3 + ǫ) ≤ [(t + 2)

(t+3)/2−(t+3+ǫ)](2r+t+ǫ)/t which yields t3

2 +(3+ǫ) t
2

2 +(r− 1
2)ǫt+(2r+ǫ)ǫ ≤ 0,

a contradiction. This finishes the proof.

If t = 1, then Ch(K6,2,...,2) ≤ r + 1. This bound also comes from the result
Ch(K3,3,2,...,2) = r of Gravier and Maffray [4], because the complete r-partite
graph K6,2,...,2 is a subgraph of the complete (r + 1)-partite graph K3,3,2,...,2.
Since the choice number of the complete r-partite graph K5,2,...,2 is equal to r+1,
it is clear that Ch(K6,2,...,2) = r + 1 as well.

Now we present a lower bound on the choice number of complete r-partite
graphs with r − 1 partite classes of order at most two.

Theorem 2. Let s, r, t be integers such that 0 ≤ s < r and t > 0. Let G

be a complete r-partite graph consisting of one partite class of order
(

2t+s
t

)2
,

r − s − 1 partite classes of order two, and s partite classes of order one. Then

Ch(G) > ⌊ r+t−1
2t+s ⌋(2t+ s).

Proof. Let n =
(

2t+s
t

)2
andm = r+t−1

2t+s . LetG be a complete r-partite graph with
the partite classes V1, Vi = {vi, wi}, Vj = {vj}, where |V1| = n; i = 2, 3, . . . , r − s
and j = r − s + 1, r − s + 2, . . . , r. Let A1, A2, . . . , A2t+s, B1, B2, . . . , B2t+s be
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disjoint color sets of order ⌊m⌋ such that
⋃2t+s

i=1 Ai = A,
⋃2t+s

i=1 Bi = B. We define
a list assignment L to V (G) by the following way:

L(vj) = A, j = 2, 3, . . . , r,

L(wi) = B, i = 2, 3, . . . , r − s.

The lists of colors given to the vertices of V1 consist of 2t + s different sets
Ax1

, Ax2
, . . . , Axt+s , By1 , By2 , . . . , Byt , where x1, x2, . . . , xt+s,

y1, y2, . . . , yt ∈ {1, 2, . . . , 2t + s}. Since the number of vertices in V1 is n =
(

2t+s
t+s

)(

2t+s
t

)

, we are able to assign to any two vertices in V1 different lists.
We show by contradiction that G cannot be colored from the list L. Suppose

that G can be colored from L. We use r − 1 different colors of A to color the
vertices v2, v3, . . . , vr and r− s− 1 different colors of B to color w2, w3, . . . , wr−s.
Since |A| = |B| = ⌊m⌋(2t + s) ≤ r + t − 1, the number of colors in A (in
B) not used to color V2, V3, . . . , Vr is at most t (at most t + s). It follows
that there are at most 2t + s sets Ax′

1
, Ax′

2
, . . . , Ax′

t
, By′

1
, By′

2
, . . . , By′t+s

, where

x′1, x
′
2, . . . , x

′
t, y

′
1, y

′
2, . . . , y

′
t+s ∈ {1, 2, . . . 2t + s} containing colors that were not

employed in coloring V2, V3, . . . , Vr. Try to color V1 with these colors. Accord-
ing to the assignment of color sets to the vertices of V1, there exists a vertex
v ∈ V1 having none of the sets Ax′

1
, Ax′

2
, . . . , Ax′

t
, By′

1
, By′

2
, . . . , By′t+s

in its list, a
contradiction. Hence, G is not L-colorable.

Note that we get the bound Ch(K
(2tt )

2
,2,...,2

) ≥ r + t if s = 0 and r = pt + 1 for

some odd integer p.

3. Complete Multipartite Graphs with Partite Classes of Equal

Sizes

Let Kn∗r denote the complete multipartite graph with r partite classes of order n.
The problem is to determine the value of the choice number Ch(Kn∗r). If n = 1,
then Kn∗r is a clique on r vertices and hence, obviously, Ch(K1∗r) = r. In the
previous section we mentioned that Ch(K2∗r) = r as well. Alon [1] established
the general bounds c1r log n ≤ Ch(Kn∗r) ≤ c2r log n for every r, n ≥ 2, where
c1, c2 are two positive constants. Later, Kierstead [5] solved the problem in the
case n = 3. He showed that Ch(K3∗r) = ⌈4r−1

3 ⌉. Yang [9] studied the value of
Ch(K4∗r) and obtained the bounds ⌊32r⌋ ≤ Ch(K4∗r) ≤ ⌈74r⌉. We present results
giving exact bounds on Ch(Kn∗r) for large n. In the proof of Theorem 3 we use
the following lemma proved in [5].

Lemma 1. A graph G is k-choosable if G is L-colorable for every k-list assign-
ment L such that |

⋃

v∈V (G) L(v)| < |V (G)|.
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Let us derive an upper bound on the choice number of complete multipartite
graphs with partite classes of equal sizes.

Theorem 3. Let 0 < α < n and let xj = ⌊(α− α
n

∑j−1
l=1 xl)⌋+1, j = 1, 2, . . . , ⌊α⌋.

If n ≤
∑⌊α⌋

l=1 xl, then Ch(Kn∗r) ≤ ⌈αr⌉.

Proof. Let Vi, i = 1, 2, . . . , r, be the i-th partite class of Kn∗r. We prove the
result by induction on r. The case r = 1 is trivial. For the induction step consider

an ⌈αr⌉-list assignment L to the vertices of Kn∗r. We prove that if n ≤
∑⌊α⌋

l=1 xl,
then any partite class Vi can be colored with at most ⌊α⌋ colors.

Assume that n =
∑⌊α⌋

l=1 xl. In this paragraph we show by induction on j
(j = 1, 2, . . . , ⌊α⌋), that there exists a color cj which can be used for coloring xj
vertices of Vi that have not been colored by c1, c2, . . . , cj−1 yet. Note that cl, c

′
l,

where l, l′ ∈ {1, 2, . . . , ⌊α⌋}, l 6= l′, do not have to be different.

If j = 1, we have x1 = ⌊α⌋+ 1. Since
∑

v∈Vi
|L(v)| = ⌈αr⌉n and by Lemma

1, |
⋃

v∈V (Kn∗r)
L(v)| < rn, there exists a color c1 which appears in the lists of

at least ⌊α⌋ + 1 vertices of Vi. Color these vertices with c1. Suppose j ≥ 2. We
can color

∑j−1
l=1 xl vertices with c1, c2, . . . , cj−1. The sum of the numbers of colors

in the lists of the remaining n −
∑j−1

l=1 xl vertices of Vi is (n −
∑j−1

l=1 xl)⌈αr⌉.
Since |

⋃

v∈Vi
L(v)| < rn, there is a color cj that appears in the lists of other

⌊(n −
∑j−1

l=1 xl)
α
n⌋ + 1 = xj vertices. Hence, we can color these vertices with cj .

It follows that it is possible to color n =
∑⌊α⌋

l=1 xl vertices of Vi with at most ⌊α⌋
different colors.

Clearly, if n <
∑⌊α⌋

l=1 xl, all the vertices of Vi can be colored with at most
⌊α⌋ colors too. Let us remove the colors that were employed in coloring Vi from
the lists given to the vertices in V (Kn∗r)\Vi. We have at least ⌈αr⌉− ⌊α⌋ colors.
Since ⌈αr⌉−⌊α⌋ ≥ ⌈α(r−1)⌉, by applying the induction hypothesis, r−1 partite
classes can be colored with ⌈α(r − 1)⌉ colors, i.e., there exists a proper coloring
of the vertices in V (Kn∗r)\Vi with colors from the revised lists.

Unfortunately, the result presented in Theorem 3 cannot be bounded from above
by crlog n, where c is a constant. Theorem 3, for example, yields the upper
bounds Ch(K5∗r) ≤ ⌈52r⌉, Ch(K15∗r) ≤ 5r, Ch(K40∗r) ≤ 10r, Ch(K75∗r) ≤ 15r
and Ch(K121∗r) ≤ 20r. One can check that 10r ≈ 6.24r log 40, 15r ≈ 8r log 75
and 20r ≈ 9.6r log 121.

The following result gives a lower bound on Ch(Kn∗r).

Theorem 4. Let x, t, r, n be integers such that x, t, r ≥ 2, x ≥ t and n =
(

x
x−t+1

)

.

Then Ch(Kn∗r) > (x− t+ 1)⌊ tr−1
x ⌋.

Proof. Let x, t, r ≥ 2, x ≥ t, n =
(

x
x−t+1

)

and let k = (x− t+1)⌊ tr−1
x ⌋. We show

that there exists a k-list assignment L of Kn∗r such that Kn∗r is not L-colorable.
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Let Vi, i = 1, 2, . . . , r, be the i-th partite class of Kn∗r. Let A1, A2, . . . , Ax be a
family of disjoint color sets such that |Aj | = |A1| or |Aj | = |A1|+1, j = 2, 3, . . . , x,
and |

⋃x
j=1Aj | = tr − 1. Obviously, |Aj | ≥ ⌊ tr−1

x ⌋ for any j ∈ {1, 2, . . . , x}.

Define a list assignment L as follows: Let the lists given to the n vertices
of every partite class Vi consist of x − t + 1 different sets Ay1 , Ay2 , . . . , Ayx−t+1

,
y1, y2, . . . , yx−t+1 ∈ {1, 2, . . . , x}, where any two vertices in the same part have
different lists. Note that |L(v)| ≥ (x− t+ 1)⌊ tr−1

x ⌋ for each vertex v ∈ V (Kn∗r).
Then for any partite class Vi and any t − 1 colors aj ∈ Ay′j

, j = 1, 2, . . . , t − 1;

y′j ∈ {1, 2, . . . , x} there is a vertex v ∈ Vi having none of the sets Ay′j
in its list.

Therefore, in any coloring from these lists, we must use at least t colors on each
partite class. Since the number of colors in

⋃x
j=1Aj is less than tr, Kn∗r is not

L-colorable.

Theorem 4 says that if, for instance t = 2, then n = x and Ch(Kn∗r) > (n −
1)⌊2r−1

n ⌋. In particular, for n = 5 we have Ch(K5∗r) > 4⌊2r−1
5 ⌋. If t = 3, then

Ch(Kn∗r) > (x − 2)⌊3r−1
x ⌋. For example, in the case x = 6 we get Ch(K15∗r) >

4⌊3r−1
6 ⌋ = 4⌊ r−1

2 ⌋.

Finally, we present a corollary of Theorem 4 which yields a lower bound in
the form cr log n.

Corollary 1. Let r ≥ 2 and n =
(

x
⌈x/2⌉

)

where x ≥ 5. Then

Ch(Kn∗r) > ⌊ r2⌋⌈
log2.1n

2 ⌉.

Proof. For x, t, r ≥ 2, x ≥ t and n =
(

x
x−t+1

)

, we have Ch(Kn∗r) > (x −

t + 1)⌊ tr−1
x ⌋. Let t = ⌊x2 ⌋ + 1. Then Ch(Kn∗r) > ⌈x2 ⌉⌊

⌊x/2⌋r+r−1
x ⌋ ≥ ⌈x2 ⌉⌊

r
2⌋.

It is well-known that xx

ex−1 ≤ x! ≤ (x+1)x+1

ex for any x. For x ≥ 5, the fol-

lowing inequalities also hold: 2xx

ex−1 < x! < 6xx+1

5ex . Then n = x!
⌊x/2⌋!⌈x/2⌉! <

6xx+1/(5ex)

4⌊x/2⌋⌊x/2⌋⌈x/2⌉⌈x/2⌉/ex−2
≤ 3xx+1

10⌊x/2⌋xe2
≤ 3xxx2x

10(x−1)xe2
. Since x2x < 7.6(2.1)x for

any x (note that 7.5(2.1)x < x2x for 19 ≤ x ≤ 22) and ( x
x−1)

x < 3.1 for any

x ≥ 5, we have n < 7.068(2.1)x

e2
< (2.1)x. Consequently, log2.1n < x, hence

Ch(Kn∗r) > ⌊ r2⌋⌈
log2.1n

2 ⌉ for any n =
(

x
⌈x/2⌉

)

where x ≥ 5.
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