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Abstract

For any vertex v and any edge e in a non-trivial connected graph G, the
distance sum d(v) of v is d(v) =

∑
u∈V d(v, u), the vertex-to-edge distance

sum d1(v) of v is d1(v) =
∑

e∈E d(v, e), the edge-to-vertex distance sum
d2(e) of e is d2(e) =

∑
v∈V d(e, v) and the edge-to-edge distance sum d3(e)

of e is d3(e) =
∑

f∈E d(e, f). The set M(G) of all vertices v for which d(v)
is minimum is the median of G; the set M1(G) of all vertices v for which
d1(v) is minimum is the vertex-to-edge median of G; the set M2(G) of all
edges e for which d2(e) is minimum is the edge-to-vertex median of G; and
the set M3(G) of all edges e for which d3(e) is minimum is the edge-to-edge
median of G. We determine these medians for some classes of graphs. We
prove that the edge-to-edge median of a graph is the same as the median
of its line graph. It is shown that the center and the median; the vertex-
to-edge center and the vertex-to-edge median; the edge-to-vertex center and
the edge-to-vertex median; and the edge-to-edge center and the edge-to-edge
median of a graph are not only different but can be arbitrarily far apart.

Keywords: median, vertex-to-edge median, edge-to-vertex median, edge-
to-edge median.
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1. Introduction

By a graph G = (V,E), we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and q, re-
spectively. For basic definitions and terminology, we refer to [1,3]. The distance

d(u, v) between two vertices u and v in a connected graph G is the length of a
shortest u− v path in G. A u− v path of length d(u, v) is a u− v geodesic in G.
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It is known that the distance d is a metric on the vertex set V. The eccentricity

e(v) of a vertex v is e(v) =max{d(v, u) : u ∈ V } and the collection of vertices
with minimum eccentricity is called the center of G and is denoted by C(G). A
detailed study of center of a graph is found in [2,5]. The distance sum of a vertex
v is d(v) =

∑
u∈V d(v, u), and the collection of vertices with minimum distance

sum is called the median of G and is denoted by M(G). The line graph of a
given graph G is the graph L(G), whose vertices are the edges of G with two
vertices of L(G) adjacent whenever the corresponding edges of G are adjacent in
G. A block of a graph is a maximal connected subgraph having no cut-vertices.
A graph G with all its blocks complete is called a block graph.

Two areas in which the concept of centrality in graphs and networks is widely
applied are facility location problems and social networks. Many problems of
finding the ”best” site for a facility in a graph or network are in one of the two
categories: (i) minimax location problems and (ii) minisum location problems.
For example, if one is locating an emergency response facility such as fire service
station or police station, then the main problem is to minimize the distance from
the location of the facility to the vertex farthest from it. On the other hand,
if one is locating a service facility such as post office or electricity office, then
the main problem is to minimize the sum of the distances from the location of
the facility to all the vertices of the graph. The minimax location problem and
the minisum location problem refer to the center and the median, respectively,
of a graph. These problems are of the vertex-serves-vertex type, where both
the ”facility” and the ”customer” will be located on vertices. The nature of
facility (such as super highway or railway line) to be constructed could necessitate
selecting a structure (such as path) rather than just a vertex at which to locate
a facility. Similarly, the facility may be required to service structures or areas
within the network, and not just vertices. In view of this Slater [7] extended this
concept of vertex centrality to more structural situations and proposed that four
classes of facility location problems should be considered: (i) vertex-serves-vertex,
(ii) vertex-serves-structure, (iii) structure-serves-vertex, and (iv) structure-serves-
structure. Further, Slater [8] studied in detail the structure-serves-vertex problem
by taking the structure to be a path, leading to the concepts of path center, path

median and path centroid of a graph.

For subsets S, T ⊆ V and any vertex v, let d(v, S) =min {d(v, u) : u ∈ S}
and d(S, T ) =min {d(x, y) : x ∈ S, y ∈ T}. In particular, if f = xy and g = wz

are edges, then d(v, f) = min {d(v, x), d(v, y)} and d(f, g) = min {d(x,w), d(x, z),
d(y, w), d(y, z)}. To define and develop the general problem, Slater [7] introduced
the definition, let C = {Ci : i ∈ I} and S = {Sj : j ∈ J}, where each Ci and each
Sj is a subset of V. Let es(Ci) = max {d(Ci, Sj) : j ∈ J}; Ci is called the (C, S)-
center if es(Ci) ≤ es(Ck) for all k ∈ I. Actually, depending upon the problem,
one may wish to include other conditions. For example, one might also require
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the minimality condition that there does not exist Ch ⊆ Ci with Ch 6= Ci and
es(Ch) = es(Ci), as Slater [8] did for path centers.

Let ds(Ci) =
∑

j∈J d(Ci, Sj); Ci is called the (C, S)-median if ds(Ci) ≤
ds(Ck) for all k ∈ I. In view of this definition, the problem viz. the vertex-serves-
structure, structure-serves-vertex, and structure-serves-structure situations was
studied in [6] for center by taking the structure to be an edge.

Definition [6]. For any vertex v in a connected graph G, the vertex-to-edge
eccentricity e1(v) of v is e1(v) = max {d(v, e) : e ∈ E}. A vertex v for which
e1(v) is minimum is called a vertex-to-edge central vertex of G and the set of all
vertex-to-edge central vertices of G is the vertex-to-edge center C1(G) of G.

Example 1.1 [6]. For the graph G given in Figure 1.1, C(G) = {v3, v4, v5},
C1(G) = {v1, v2, v3, v4, v5, v7}. The eccentricities and the vertex-to-edge eccen-
tricities of the vertices of G in Figure 1.1 are given in Table 1.1.

b

b b
b

b

b b

b

b

b

b

b

b

v1

v2

v3

v4

v5 v6

v7

Figure 1.1. The graph G in Example 1.1 with C(G) 6= C1(G).

Definition [6]. For any edge e in a connected graph G, the edge-to-vertex ec-
centricity e2(e) of e is e2(e) = max {d(e, v) : v ∈ V }. Any edge e for which
e2(e) is minimum is called an edge-to-vertex central edge of G and the set of all
edge-to-vertex central edges of G is the edge-to-vertex center C2(G) of G.

v v1 v2 v3 v4 v5 v6 v7
e(v) 3 3 2 2 2 3 3

e1(v) 2 2 2 2 2 3 2

Table 1.1. The eccentricities and the vertex-to-edge

eccentricities of the graph G in Example 1.1.

Definition [6]. For any edge e in a connected graph G, the edge-to-edge ec-
centricity e3(e) of e is e3(e) = max {d(e, f) : f ∈ E}. Any edge e for which
e3(e) is minimum is called an edge-to-edge central edge of G and the set of all
edge-to-edge central edges of G is the edge-to-edge center C3(G) of G.
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e v1v2 v1v3 v2v3 v2v4 v3v5 v4v5 v4v7 v5v6 v5v7
e2(e) 3 2 2 2 1 2 2 2 2

e3(e) 2 2 1 1 1 1 2 2 2

Table 1.2. The edge-to-vertex and the edge-to-edge

eccentricities of the graph G in Figure 1.1.

Example 1.2 [6]. For the graph G given in Figure 1.1, C2(G) = {v3v5} and
C3(G) = {v2v3, v2v4, v3v5, v4v5}. Both these types of eccentricities of edges of G
in Figure 1.1 are given in Table 1.2.

Centrality concepts have interesting applications in social networks [4,5]. In
a social network, an edge represents two individuals having ”a common interest”
and hence the study of the center or the median of a graph with respect to
edges has interesting applications in social networks. In this paper, we study the
problem viz. the vertex-serves-structure, structure-serves-vertex, and structure-
serves-structure situations for median by taking the structure to be an edge.

We need the following theorem in the sequel.

Theorem 1.3 [9]. The median of a tree consists of either a single vertex or two
adjacent vertices.

2. Median with Respect to an Edge

Definition. For a vertex v in a connected graph G, the vertex-to-edge distance
sum d1(v) of v is d1(v) =

∑
e∈E d(v, e). A vertex v for which d1(v) is minimum

is called a vertex-to-edge median of G and the set of all vertex-to-edge median
vertices of G is the vertex-to-edge median M1(G) of G.
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Figure 2.1. Graphs G and H in Example 2.1

with M(G) 6= M1(G); and M(H) = M1(H).
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Example 2.1. For the graphs G and H given in Figure 2.1, M(G) = {v3, v5},
M1(G) = {v3}, M(H) = {v3} and M1(H) = {v3}. The distance sums and the
vertex-to-edge distance sums of the vertices of G and H in Figure 2.1 are given
in Table 2.1 and Table 2.2, respectively.

v v1 v2 v3 v4 v5 v6 v7 v8
d(v) 22 18 14 18 14 16 20 26

d1(v) 16 12 8 12 9 12 17 24

Table 2.1. M(G) = {v3, v5} and M1(G) = {v3}
for the graph G in Example 2.1.

v v1 v2 v3 v4 v5
d(v) 7 7 5 6 9

d1(v) 4 4 2 4 8

Table 2.2. M(H) = M1(H) = {v3} for
the graph H in Example 2.1.

Remark 2.2. The subgraph induced by the median M(G) or the subgraph in-
duced by the vertex-to-edge median M1(G) of a connected graph G need not be
connected. For the graph G given in Figure 2.2, M(G) = M1(G) = {v2, v4}.
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Figure 2.2. A connected graph with its median

or vertex-to-edge median disconnected.

First we present some graphs G for which M(G) = M1(G).

Theorem 2.3. If T is a tree with p vertices, then d1(v) = d(v)−(p−1) for every
vertex v in T .
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Proof. We prove the result by induction on p. For p = 1 or 2, the result is
obvious. Assume the result is true for every tree of order p− 1, where p ≥ 3. Let
T1 = T − u, where u is an end vertex of T . It follows by induction hypothesis
that D1(v) = D(v) − (p − 2) for every vertex v of T1, where D(v) and D1(v)
denote respectively, the distance sum and the vertex-to-edge distance sum of v
in T1. Since D(v) = d(v) − d(v, u) and D1(v) = d1(v) − (d(v, u) − 1), it follows
that d1(v) = d(v)− (p− 1). Hence the proof is complete by induction.

Corollary 2.4. For any tree T , M(T ) = M1(T ).

Corollary 2.5. For any tree T , M1(T ) consists of a single vertex or two adjacent
vertices.

Proof. This follows from Theorem 1.3 and Corollary 2.4.

Proposition 2.6. If G is the complete graph or a cycle, then M(G) = M1(G) =
V .

Proof. Since both the graphs are symmetric, the result follows from the fact
that the value of d(v) (and d1(v)) is equal for every vertex v of G.

Proposition 2.7. For the complete bipartite graph G = Km,n, M(G) = M1(G).

Proof. Let X and Y be the partite sets of G with |X| = m and |Y | = n. If
m = n, then d(x) = d(y) = n+2(n−1) = 3n−2; and d1(x) = d1(y) = n(n−1) for
x ∈ X and y ∈ Y . ThusM(G) = M1(G) = V . Ifm < n, then d(x) = n+2(m−1);
d(y) = m + 2(n − 1); d1(x) = n(m − 1) and d1(y) = m(n − 1) for x ∈ X and
y ∈ Y . It follows that M(G) = M1(G) = X. If m > n, it follows similarly that
M(G) = M1(G) = Y .

Remark 2.8. For a bipartite graph G, M(G) need not be equal to M1(G). For
the graph G in Figure 2.1, M(G) = {v3, v5} and M1(G) = {v3}.

Theorem 2.9. If G is a non-complete graph with ∆(G) = p− 1, then M(G) =
M1(G).

Proof. Let S = {v ∈ V : deg v = p − 1}. Then it is clear that d(v) = p − 1 for
v ∈ S and d(v) ≥ p for v ∈ V −S. Thus M(G) = S. Also, for v ∈ S, deg v = p−1
and there are q−p+1 edges not incident at v. Hence d1(v) = q−p+1. If v ∈ V −S,
let deg v = k < p−1. Then there are q−k > q−p+1 edges which are not incident
at v. Since d(v, e) ≥ 1 for each edge e not incident at v (in fact d(v, e) = 1 or 2
for such e), it follows that d1(v) > q − p+ 1. Hence M1(G) = S.

Corollary 2.10. Let G = (Kn1
∪ Kn2

∪ · · · ∪ Knr
∪ kK1) + v be a block graph

of order p ≥ 4, ni ≥ 2 (1 ≤ i ≤ r) and n1 + n2 + · · · + nr + k = p − 1. Then
M(G) = M1(G).
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Problem 2.11. Characterize graphs G for which M(G) = M1(G).

Definition. A graph G is a self median graph if M(G) = V and a self vertex-to-
edge median graph if M1(G) = V .

Example 2.12. Complete graphs and cycles are self vertex-to-edge median
graphs (Proposition 2.6). A complete bipartite graph Km,n is self vertex-to-edge
median graph if and only if m = n (Proposition 2.7). A non-trivial tree T is self
vertex-to-edge median if and only if T = K2 (Corollary 2.5).

We leave the following problem as an open question.

Problem 2.13. Characterize self vertex-to-edge median graphs.

3. Edge-to-Vertex Median and Edge-to-Edge Median

Definition. For an edge e in a connected graph G, the edge-to-vertex distance
sum d2(e) of e is d2(e) =

∑
v∈V d(e, v). An edge e for which d2(e) is minimum

is called an edge-to-vertex median of G and the set of all edge-to-vertex median
edges of G is the edge-to-vertex median M2(G) of G.

Definition. For an edge e in a connected graph G, the edge-to-edge distance
sum d3(e) of e is d3(e) =

∑
f∈E d(e, f). An edge e for which d3(e) is minimum is

called an edge-to-edge median of G and the set of all edge-to-edge median edges
of G is the edge-to-edge median M3(G) of G.

Example 3.1. For the graph G given in Figure 3.1(a), M2(G) = {v2v3, v3v4}
and M3(G) = {v2v3, v3v4, v3v5, v3v6} so that M2(G) ( M3(G); and for the graph
G given in Figure 3.1(b), M2(G) = {v3v5, v5v6} and M3(G) = {v3v5} so that
M3(G) ( M2(G). The Tables 3.1(a) and 3.1(b) show the two types of distance
sums of the graphs in Figures 3.1(a) and 3.1(b) respectively.

b

b b

b

b

b

b b

b b
b

b
b

b
b

v1 v2

v4 v3

v5

v6

Figure 3.1(a)

v1 v2

v3
v4

v5
v6

v7
v8
v9

Figure 3.1(b)

Graphs G in Example 3.1 with M2(G) ( M3(G) or M3(G) ( M2(G).
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e v1v2 v1v4 v2v3 v3v4 v3v5 v3v6 v5v6
d2(e) 6 6 4 4 5 5 8

d3(e) 5 5 2 2 2 2 6

Table 3.1(a). The edge-to-vertex and the edge-to-edge

distance sums of the edges of the graph in Figure 3.1(a).

e v1v2 v1v4 v2v3 v3v4 v3v5 v5v6 v6v7 v7v8 v8v9
d2(e) 22 22 17 17 14 14 16 20 26

d3(e) 16 16 11 11 8 9 12 17 24

Table 3.1(b). The edge-to-vertex and the edge-to-edge

distance sums of the edges of the graph in Figure 3.1(b).

Theorem 3.2. If T is a nontrivial tree with p vertices, then d3(e) = d2(e)−(p−2)
for every edge e in T .

Proof. We prove the theorem by induction on p. Let p = 2. Then T = K2 and
so d2(e) = d3(e) = 0 for every edge e in T . Thus d3(e) = d2(e) − (p − 2). Let
p ≥ 3 and assume that the theorem is true for all trees with p − 1 vertices. Let
T1 = T − u, where u is an end vertex of T . By induction hypothesis, we have
D3(e) = D2(e) − (p − 3) for every edge e in T1, where D2(e) and D3(e) denote
respectively, the edge-to-vertex distance sum and the edge-to-edge distance sum
of an edge e in T1. Now, for any edge e in T1, D2(e) = d2(e) − d(e, u) and
D3(e) = d3(e) − d(e, f) = d3(e) − (d(e, u) − 1), where f is the unique edge of
T incident at u. Hence it follows that d3(e) = d2(e) − (p − 2) and the proof is
complete by induction.

Corollary 3.3. For any nontrivial tree T , M2(T ) = M3(T ).

Proposition 3.4. If G is the complete graph of order at least 2 or a cycle, then
M2(G) = M3(G) = E.

Proof. Let G = Kp. Then for any edge e of G, there are p− 2 vertices that are
adjacent to the ends of e and so d2(e) = p − 2. Hence M2(G) = E. Also, the
number of edges incident with the ends of e is (p − 1) + (p − 1) − 1 = 2p − 3
and so the number of edges which are not incident with any of the ends of e is
p(p−1)

2 − (2p− 3) = p2−5p+6
2 . Hence it follows that d3(e) =

p2−5p+6
2 for every edge

e of G and so M3(G) = E.
It is easy to see that for an even cycle C2n, d2(e) = n(n − 1) and d3(e) =

(n− 1)2; and for an odd cycle C2n+1(n ≥ 2), d2(e) = n2 and d3(e) = n(n− 1) for
any edge e in G. Thus M2(G) = M3(G) = E for a cycle G.
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Proposition 3.5. For the complete bipartite graph G = Km,n,
M2(G) = M3(G) = E.

Proof. It is easy to see that d2(e) = m + n − 2 and d3(e) = (m − 1)(n − 1) for
every edge e of G and the result follows.

Remark 3.6. For a bipartite graph G, it is not true that M2(G) = M3(G). For
the graph G given in Figure 3.1(b), M2(G) 6= M3(G).

Problem 3.7. Characterize graphs G for which M2(G) = M3(G).

Definition. A graph G is a self edge-to-vertex median graph if M2(G) = E and
a self edge-to-edge median graph if M3(G) = E.

Example 3.8. Complete graphs, cycles and complete bipartite graphs are both
self edge-to-vertex and self edge-to-edge median graphs (Propositions 3.4 and
3.5).

Theorem 3.9. Let G be any connected graph and L its line graph. Let dL denote
the distance metric on L. Then d3(e) = dL(e)− q + 1 for every edge e of G and
M3(G) = M(L).

Proof. Let e = xy and f = zw be two distinct edges of G such that d(e, f) = n.
Let P : x = u0, u1, . . . , un = z be a shortest e − f path in G. Then y and w do
not lie on P . Let ei = ui−1ui (1 ≤ i ≤ n). Since P is a shortest path in G, it
follows that the edges e, e1, e2, . . . , en, f all are distinct and Q : e, e1, e2, . . . , en, f
is a e− f shortest path in L. Hence dL(e, f) = n+1 = d(e, f)+1 and so d3(e) =∑

f∈E d(e, f) =
∑

f∈L,f 6=e(dL(e, f) − 1) =
∑

f∈L,f 6=e dL(e, f) −
∑

f∈L,f 6=e 1 =
dL(e)− (q − 1) = dL(e)− q + 1. It follows that M3(G) = M(L).

Corollary 3.10. A graph G is self edge-to-edge median if and only if its line
graph is self-median.

The next theorem shows that the center and the median; the vertex-to-edge center
and the vertex-to-edge median; the edge-to-vertex center and the edge-to-vertex
median; and the edge-to-edge center and the edge-to-edge median of a graph are
not only different but can be arbitrarily far apart.

Theorem 3.11. For any positive integer k, there is a connected graph G such
that
(i) d(C(G),M(G)) = k,

(ii) d(C1(G),M1(G)) = k,

(iii) d(C2(G),M2(G)) = k,

(iv) d(C3(G),M3(G)) = k.
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Proof. (i) Let G be the tree of order 4k+3 given in Figure 3.2. Then e(x) = k+1
and e(z) > k+1 for all x 6= z so that C(G) = {x}. Also, d(y) = (1+2+3+ · · ·+
k + (k + 1) + · · ·+ (2k + 1)) + (2k + 1) = 2k2 + 5k + 2 and d(z) > 2k2 + 5k + 2
for all z 6= y so that M(G) = {y}. Hence d(C(G),M(G)) = k.

(ii) First we prove that C1(G) = C(G) for any tree G. Let v be a vertex of G.
Then it is clear that the eccentricity e1(v) is attained at a pendant edge e = xy

of G with y the end vertex of G. Hence e1(v) = d(v, x) and e(v) = d(v, y) =
d(v, x) + 1 = e1(v) + 1. Thus e1(v) = e(v) − 1 for every vertex v of G and so
C1(G) = C(G). Now, the result follows from Corollary 2.4 and Theorem 3.11(i)
for the tree G given in Figure 3.2.
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b
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b b b b b b
b

b

bxk+1xk xk−1 x2 x1 x y1 y2 y3 yk−1 y

z1
z2
z3

z2k
z2k+1

Figure 3.2. The graph G in the proof of Theorem 3.11 (i) and (ii).

(iii) Let G be the tree of order 4k + 8 given in Figure 3.3. It is clear that
e2(e) = k + 2 and e2(f) > k + 2 for the edge e = xy1 and for any f 6= e. Hence
C2(G) = {e}. Also, it is clear that d2(g) = (1+2+3+ · · ·+(2k+3))+(2k+3) =
2k2 + 9k + 9 for g = yk+1y and d2(h) > 2k2 + 9k + 9 for any edge h 6= g so that
M2(G) = {g}. Hence d(C2(G),M2(G)) = k.

(iv) First we prove that C2(G) = C3(G). Let f be an edge of G. Then it is
clear that the eccentricity e3(f) is attained at a pendant edge h = ab of G with
b the end vertex of h. Hence e3(f) = d(f, h) = d(f, a) and e2(f) = d(f, b) =
d(f, a) + 1 = e3(f) + 1. Thus e3(f) = e2(f) − 1 for any edge f of G and so
C3(G) = C2(G). Now the result follows from Corollary 3.3 and Theorem 3.11(iii)
for the tree G given in Figure 3.3.

b b b b b b b b b b b

b
b
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b

b b b b b b
b

b

bxk+2xk+1 x2 x1 x y1 y2 y3 yk yk+1 y

z1
z2
z3

z2k+3

Figure 3.3. The graph G in the proof of Theorem 3.11 (iii) and (iv).
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