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Abstract

A set S ⊆ V of vertices in a graph G = (V,E) is called a dominating set
if every vertex in V −S is adjacent to a vertex in S. A dominating set which
intersects every maximum independent set in G is called an independent
transversal dominating set. The minimum cardinality of an independent
transversal dominating set is called the independent transversal domination
number of G and is denoted by γit(G). In this paper we begin an investiga-
tion of this parameter.
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1. Introduction

By a graph G = (V,E), we mean a finite, undirected graph with neither loops
nor multiple edges. For graph theoretic terminology we refer to the book by
Chartrand and Lesniak [1]. All graphs in this paper are assumed to be non-
trivial.

One of the fastest growing areas within graph theory is the study of domina-
tion and related subset problems such as independence, covering and matching.
In fact, there are scores of graph theoretic concepts involving domination, cover-
ing and independence. The bibliography in domination maintained by Haynes et
al. [3] currently has over 1200 entries; Hedetniemi and Laskar [5] edited a recent
issue of Discrete Mathematics devoted entirely to domination, and a survey of
advanced topics in domination is given in the book by Haynes et al. [4].
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Nevertheless, despite the many variations possible, we can so far identify only a
limited number of basic domination parameters; “basic” in the sense that they
are defined for every non-trivial connected graph. For instance independent dom-
ination, connected domination, total domination, global domination and acyclic
domination are some basic domination parameters. In this sequence, we introduce
another basic domination parameter namely independent transversal domination
and initiate the study of this new domination parameter.

2. Definitions and Notations

In a graph G = (V,E), the open neighbourhood of a vertex v ∈ V is N(v) =
{x ∈ V : vx ∈ E}, the set of vertices adjacent to v. The closed neighbourhood

is N [v] = N(v) ∪ {v}. A clique in a graph G is a complete subgraph of G. The
maximum order of clique in G is called the clique number and is denoted by ω(G)
and a clique of order ω(G) is called a maximum clique. The subgraph induced
by a set S ⊆ V is denoted 〈S〉. If G is a graph, then G+ is the graph obtained
from G by attaching a pendant edge at every vertex of G.

A set S ⊆ V is a dominating set if every vertex in V −S is adjacent to a vertex
of S and the minimum cardinality of a dominating set is called the domination
number of G and is denoted by γ(G). A minimum dominating set of a graph
G is called a γ-set of G. An independent dominating set S is a dominating set
S such that S is an independent set. The independent domination number i(G)
is the minimum cardinality of an independent dominating set. The maximum
cardinality of an independent set is called the independence number and is denoted
by β0(G). A maximum independent set is called a β0-set. A dominating set S such
that 〈S〉 is connected is called a connected dominating set. A total dominating

set is a dominating set S such that 〈S〉 has no isolates. The minimum cardinality
of a connected (total) dominating set is called the connected (total ) domination

number and is denoted by γc(G)(γt(G)). These two parameters can respectively
be seen in [6] and [2]. A set S ⊆ V which dominates both G and Ḡ is called a
global dominating set and the minimum order of a global dominating set is called
the global domination number, denoted by γg(G).

We need the following theorems.

Theorem 2.1 [3]. If a graph G of order n has no isolated vertices, then γ(G) ≤ n
2 .

Theorem 2.2 [3]. For any graph G with even order n having no isolated vertices

γ(G) = n
2 if and only if the components of G are C4 or H+ for any connected

graph H.
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3. Independent Transversal Domination Number

In this section, we determine the value of independent transversal domination
number for some standard families of graphs such as paths, cycles and wheels.
Also we determine γit(G) for disconnected graphs.

Definition. A dominating set S ⊆ V of a graph G is said to be an independent
transversal dominating set if S intersects every maximum independent set of G.
The minimum cardinality of an independent transversal dominating set of G is
called the independent transversal domination number of G and is denoted by
γit(G). An independent transversal dominating set S of G with |S| = γit(G) is
called a γit-set.

Example 3.1. (i) If G is a complete multipartite graph having r maximum
independent sets, then

γit(G) =

{

2 if r = 1,
r otherwise.

In particular, γit(Kn) = n and γit(Km,n) = 2.

(ii) For any star, the value of γit is two and for bistars it is three.

(iii) If G is a connected graph on n vertices, then γit(G
+) = n. For, if V (G) =

{v1, v2, . . . , vn} and ui(1 ≤ i ≤ n) is the pendant vertex in G+ adjacent to vi,
then S = {u1, . . . , un} is a γ-set of G+ and since β0(G

+) = n it follows that S
intersects every β0-set of G

+ so that S is an independent transversal dominating
set of G+ of minimum order.

Theorem 3.2. For any path Pn of order n, we have

γit(Pn) =











2 if n = 2, 3,

3 if n = 6,
⌈

n
3

⌉

otherwise.

Proof. Let Pn = (v1, v2, . . . , vn). Clearly γit(P2) = γ(P3) = 2. Suppose n = 6.
Then S = {v1, v2, v5} is an independent transversal dominating set of P6 so that
γit(P6) ≤ 3. Also, since D = {v2, v5} is the only γ-set of P6 and V − D =
{v1, v3, v6} is a β0-set, it follows that γit(P6) ≥ γ + 1 = 3. Thus γit(P6) = 3.

Assume n /∈ {2, 3, 6}. If n ≡ 0(mod 3), then S = {v3i−1 : 1 ≤ i ≤ n
3 } is the γ-

set of Pn. Further 〈V − S〉 = (
⌊

n−2
3

⌋

)K2∪2K1 and hence every independent set in
V −S contains at most

⌊

n−2
3

⌋

+2 vertices. Now, since
⌊

n−2
3

⌋

+2 <
⌈

n
2

⌉

= β0(Pn),
it follows that V − S contains no β0-set and hence γit(Pn) = γ(Pn) =

⌈

n
3

⌉

.
If n ≡ 1(mod 3), then S = {v3i+1 : 0 ≤ i ≤ n−1

3 } is a γ-set of Pn. Further,
since 〈V − S〉 =

⌊

n
3

⌋

K2 it follows that every γ-set in V −S contains at most
⌊

n
3

⌋

vertices and hence V − S contains no β0-set. Thus γit(pn) = γ(Pn) =
⌈

n
3

⌉

.
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If n ≡ 2(mod 3), then S = {v3i+1 : 0 ≤ i ≤ n−2
3 } is a γ-set of Pn. Further, since

〈V − S〉 = n−2
3 K2 ∪K1, every γ-set in V − S contains at most n+1

3 vertices and
hence V − S contains no β0-set so that γit(Pn) = γ(Pn) =

⌈

n
3

⌉

.

Theorem 3.3. For any cycle Cn of order n, we have

γit(Cn) =

{

3 if n = 3, 5,
⌈

n
3

⌉

otherwise.

Proof. Let Cn = (v1, v2, . . . , vn, v1). Clearly γit(C3) = 3. Suppose n = 5.
Then S = {v1, v2, v3} is an independent transversal dominating set of C5 so that
γit(C5) ≤ 3. Further since for every γ-set D of C5, V −D contains a maximum
independent set it follows that γit(C5) > γ(C5) = 2. Thus γit(C5) = 3.

Assume n /∈ {3, 5}. If n ≡ 0(mod 3), then S = {v3i+1 : 0 ≤ i ≤ n−3
3 } is a γ-set

of Cn. Now, since 〈V − S〉 = (n3 )K2, every independent set in V − S contains at
most n

3 vertices and hence V −S contains no β0-set so that γit(Cn) = γ(Cn) =
n
3 .

If n ≡ 1(mod 3), then S = {v3i+1 : 0 ≤ i ≤ n−1
3 } is a γ-set of Cn and

〈V − S〉 = (n−1
3 )K2. Hence every independent set in V −S contains at most n−1

3
vertices so that V − S contains no β0-set. Thus γit(Cn) = γ(Cn) =

n
3 .

If n ≡ 2(mod 3), then S = {v3i+1 : 0 ≤ i ≤ n−2
3 } is a γ-set of Cn and

〈V −S〉 = (n−2
3 )K2∪K1. Hence every independent set in V −S contains at most

n−1
3 +1 vertices so that V −S contains no β0-set. Thus γit(Cn) = γ(Cn) =

n
3 .

Next, we just state the value of γit for wheels without proof being staightforward
to determine.

Theorem 3.4. If Wn is a wheel on n vertices, then

γit(Wn) =











2 if n = 5,

3 if n ≥ 7 and is odd or n = 6,

4 otherwise.

In the following theorem we determine the value of the independent transversal
domination number for disconnected graphs.

Theorem 3.5. If G is a disconnected graph with components G1, G2, . . . , Gr,

then γit(G) = min1≤i≤r{γit(Gi) +
∑r

j=1,j 6=i γ(Gj)}.

Proof. Assume that γit(G1)+
∑r

j=2 γ(Gj)=min1≤i≤r {γit(Gi)+
∑r

j=1,j 6=i γ(Gj)}.
Let D be a γit-set of G1 and let Sj be a γ-set of Gj , for all j ≥ 2. Then
D∪(

⋃r
j=2 Sj) is an independent transversal dominating set of G so that γit(G) ≤

γit(G1) +
∑r

j=2 γ(Gj) = min1≤i≤r {γit(Gi) +
∑r

j=1,j 6=i γ(Gj)}. Conversly, let S
be any independent transversal dominating set of G. Then S must intersect the
vertex set V (Gj) of each component Gj of G and S ∩ V (Gj) is a dominating set
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of Gj for all j ≥ 1. Further, for at least one j, the set S ∩ V (Gj) must be an
independent transversal dominating set of Gj , for otherwise each component Gj

will have a maximum independent set not intersecting the set S ∩ V (Gj) and
hence union of these maximum independent sets form a maximum independent
set of G not intersecting S. Hence |S| ≥ min1≤i≤r {γit(Gi) +

∑r
j=1,j 6=i γ(Gj)}.

Corollary 3.6. If G has an isolated vertex, then γit(G) = γ(G).

In view of the above theorem we can confine ourself to connected graphs at the
study of independent transversal domination. So the graphs are connected in the
rest of this paper if there is no specific explanation.

4. Bounds of γit

In this section, we obtain some bounds for γit(G) in terms of the order of graph,
clique number, vertex covering number and some well-known basic domination
parameters.

4.1. Bounds in terms of order and degree

Theorem 4.1.1. For any graph G, we have 1 ≤ γit(G) ≤ n. Further γit(G) = n
if and only if G = Kn.

Proof. The inequalities are trivial. Suppose γit(G) = 1. Let S = {u} be an
independent transversal dominating set of G. Then deg u = n− 1 and u belongs
to every β0-set of G. Hence {u} is the only β0-set of G so that G = K1.

Now, suppose n ≥ 2 and γit(G) = n. If β0(G) ≥ 2, then V −{v}, where v ∈ V ,
is an independent transversal dominating set of G and hence γit(G) ≤ n−1, which
is a contradiction. Thus β0(G) = 1 so that G = Kn. Also γit(Kn) = n.

Theorem 4.1.2. Let G be a graph on n vertices. Then γit(G) = n − 1 if and

only if G = P3.

Proof. Suppose γit(G) = n − 1. Then it follows from the above theorem that
β0(G) ≥ 2. If there exist two adjacent vertices u and v of degree at least two,
then S = V −{u, v} is an independent transversal dominating set of G and hence
γit(G) ≤ n − 2, which is a contradiction. Hence for any two adjacent vertices
u and v in G either u or v is a pendant vertex so that G = K1,n−1. Since
γit(K1,n−1) = 2, it follows that n = 3 so that G = P3.

The converse is obvious.

Theorem 4.1.3. Let G be a non-complete connected graph with β0(G) ≥ n
2 .

Then γit(G) ≤ n
2 .
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Proof. Let S be a β0-set in G. Suppose β0(G) > n
2 . Then D = (V − S) ∪ {u},

where u ∈ S, is a dominating set of G which intersects every β0-set of G. Hence
γit(G) ≤ |D| =

⌊

n
2

⌋

.
Suppose β0(G) = n

2 . If V − S is not independent, then S is an independent
transversal dominating set of G and hence γit(G) ≤ |S| = n

2 . If V −S is indepen-
dent, then G is a bipartite graph with the bipartition (S, V − S). Now, Suppose
δ(G) ≥ 2. Then D = (S−{u})∪{v}, where u ∈ S and v ∈ N(u), is a dominating
set of G. ClearlyD intersects every β0-set of G and hence γit(G) ≤ |D| = |S| = n

2 .
Suppose δ(G) = 1. Let u be a pendant vertex. Assume without loss of generality
that u ∈ S. Let v ∈ N(u). Since G is connected it follows that deg v ≥ 2.
Now, if there exists a pendant vertex w 6= u in S which is adjacent to v, then
[V − (S ∪ {v})] ∪ {u,w} is an independent dominating set of cardinality greater
than n

2 , which is a contradiction and hence every neighbour of v other than u has
degree at least two. Hence D = [V − (S ∪ {v})] ∪ {u} is a dominating set of G.
Now, since deg v ≥ 2, it follows that V −D contains no β0-set of G and hence D
is an independent transversal dominating set of G so that γit(G) ≤ n

2 .

Corollary 4.1.4. If G is bipartite, then γit(G) ≤ n
2 .

Proof. Since β0(G) ≥ n
2 for a bipartite graph G, the result follows from Theorem

4.1.3.

Remark 4.1.5. The bound given in Theorem 4.1.3 is sharp. For the graph
G = H+, where H is a connected graph on n vertices, we have γit(G) = n.
Further, if H is a bipartite graph, then G also is bipartite and thus there is an
infinite family of bipartite graphs with γit being half of their order.

Theorem 4.1.6. Let a and b be two positive integers with b ≥ 2a−1. Then there

exists a graph G on b vertices such that γit(G) = a.

Proof. Let b = 2a+ r, r ≥ −1 and let H be any connected graph on a vertices.
Let V (H) = {v1, v2, . . . , va}. Let G be the graph obtained from H by attaching
r + 1 pendant edges at v1 and one pendant edge at each vi, for i ≥ 2. Let
ui(i ≥ 2) be the pendant vertex in G adjacent to vi. Clearly γ(G) = a and
S = {v1, u2, u3, . . . , ua} is a γ-set of G. Further every maximum independent set
of G intersects S and hence γit(G) = a. Also |V (G)| = b.

We have proved in Theorem 4.1.3 that the value of γit(G) is bounded by n
2 for all

non-complete connected graphs G of order n with independence number at least
n
2 . However, this upper bound for γit(G) is either retained or increased just by
one for all graphs that we have come across, even if we relax the condition being
β0(G) ≥ n

2 in the theorem. For example, for the graph G given in Figure 1, we
have γit(G) = 3 = ⌈n2 ⌉ and β0(G) = 2 < n

2 .
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Figure 1

Motivated by this observation and by Theorem 4.1.6, we take risk of posing the
following conjecture.

Conjecture 4.1.7. If G is a non-complete connected graph on n vertices, then

γit(G) ≤ ⌈n2 ⌉.

Theorem 4.1.8. For any graph G, we have γ(G) ≤ γit(G) ≤ γ(G) + δ(G).

Proof. Since an independent transversal dominating set of G is a dominating
set, it follows that γ(G) ≤ γit(G). Now, let u be a vertex in G with deg u = δ(G)
and let S be a γ-set in G. Then every maximum independent set of G contains
a vertex of N [u] so that S ∪ N [u] is an independent transversal dominating set
of G. Also, since S intersects N [u], it follows that |S ∪N [u]| ≤ γ(G) + δ(G) and
hence the right inequality follows.

Corollary 4.1.9. The Conjecture 4.1.7 is true for all connected graphs with

δ(G) = 1.

Proof. If G is a connected graph with δ(G) = 1, then it follows from Theorem
4.1.8 that γit(G) ≤ γ(G) + 1. Also, by Theorem 2.1, we have
γ(G) ≤ n

2 . So, obviously γit(G) ≤ ⌈n2 ⌉ when γ(G) < n
2 . If γ(G) = n

2 , by
Theorem 2.2, G is either C4 or H+ for any connected graph H; in either case
γit(G) = n

2 .

Corollary 4.1.10. If T is a tree, then γit(T ) is either γ(T ) or γ(T ) + 1.

In view of Corollary 4.1.10 we can split the family of all trees into two classes.
Let us say a tree T is of class 1 or class 2 according as γit(T ) is γ(T ) or γ(T )+1.
For example, stars are of class 2 and subdivision graph of stars are of class 1 so
that both classes of trees are non-empty and thus we have the following problem.

Problem 4.1.11. Characterize the class 1 trees.

Theorem 4.1.12. If G is a graph with diam G = 2, then γit(G) ≤ δ(G) + 1.
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Proof. Let u be a vertex with deg u = δ(G). Then N [u] is a dominating set
of G, because diam G = 2. Now, it follows from the fact that every maximum
independent set contains a vertex of N [u], this closed neighbourhood itself is an
independent transversal dominating set so that γit(G) ≤ δ(G) + 1.

4.2. Bounds in terms of covering and cliques

We now establish an upper bound for γit(G) in terms of the vertex covering
number α0(G) and the clique number ω(G).

Theorem 4.2.1. If G has no isolates, then γit(G) ≤ α0(G) + 1 and the bound

is sharp.

Proof. Let S be a minimum vertex cover of G. Then S is a dominating set and
V − S is a maximum independent set. Hence S ∪ {u}, where u ∈ V − S is an
independent transversal dominating set of G so that γit(G) ≤ α0(G) + 1. The
bound is attained for complete graphs and stars.

Corollary 4.2.2. Let G be a graph on n vertices without isolates. Then γ(G) +
γit(G) ≤ n+ 1 and i(G) + γit(G) ≤ n+ 1.

Proof. Since α0(G)+β0(G) = n and γ(G) ≤ i(G) ≤ β0(G), the corollary follows.

Theorem 4.2.3. For any non-complete graph G with δ(G) ≥ 2, we have γit(G) ≤
α0(G).

Proof. Let S be a β0-set of G. Then V − S is a dominating set of G. Since
G 6= K2 and δ(G) ≥ 2, there exists a vertex v in V −S such that |N(v)∩S| ≥ 2.
Let u and w be two neighbours of v in S. Since δ(G) ≥ 2, it follows that every
neighbour of v in S is adjacent to at least one vertex other than v in V − S and
hence D = (V − S) − {v} is a dominating set of G − {v}. Then D ∪ {w} is an
independent transversal dominating set of G. This is because (S − {w}) ∪ {v} is
the only set in the complement of D∪{w}, which is not an independent set, and
hence γit(G) ≤ n− β0(G) = α0(G).

Corollary 4.2.4. If G is a non-complete graph with γit(G) = α0(G) + 1, then
γ(G) = α0(G).

Proof. Suppose γit(G) = α0(G)+1. It follows from Theorem 4.2.3 and Theorem
4.1.8 that γit(G) ≤ γ(G) + 1 and hence α0(G) ≤ γ(G). Also, since it is always
true that γ(G) ≤ α0(G), we have γ(G) = α0(G).

In the following we present an upper bound for γit(G) involving the clique number
ω(G) and characterize the graphs attaining the bound.
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Theorem 4.2.5. For any non-complete graph G with clique number ω, γit(G) ≤
n− ω + 1. Further equality holds if and only if the following are satisfied.

(i) β0(G) = 2.

(ii) If S is a dominating set such that 〈V −S〉 is complete, then |V −S| ≤ ω−1.

Proof. Let H be a maximum clique in G. Let u ∈ V (H). Then S = V (G) −
V (H−u) is a dominating set of G. Since β0(G) ≥ 2 and H is a maximum clique,
it follows that every maximum independent set of G intersects S. Hence S is an
independent transversal dominating set so that γit(G) ≤ n− ω + 1.

Suppose γit(G) = n − ω + 1. Let H be a maximum clique in G. Let u and
v be two adjacent vertices such that u ∈ V (H) and v ∈ V (G) − V (H). Then
D = {u} ∪ [V (G)− V (H ∪ {u}] is a dominating set of G with |D| = n−ω. Since
γit(G) = n − ω + 1, there exists a β0-set S in G such that D ∩ S = ∅. Hence S
consists of the vertex u and a vertex w 6= u in H so that β0(G) = 2.

Suppose (ii) is not true. Then there exists a dominating set S such that
〈VS〉 is a clique of size ω. Since β0(G) = 2, every β0-set intersects S so that
γit(G) ≤ n− ω, which is a contradiction. Hence (ii) is true.

Conversely suppose (i) and (ii) hold. Let S be an independent transversal
dominating set of G. Since β0(G) = 2 we have 〈V − S〉 is a clique in G. Hence it
follows from (ii) that |V −S| < ω so that |S| ≥ n−ω +1. Thus γit(G) = n−ω+1.

4.3. γit for bipartite graphs

It would be of some interest discussing the parameter γit for bipartite graphs; we
begin with a small observation.

Observation 4.3.1. Let G be a bipartite graph. If S is a γ-set of G, then any

two (three ) β0-sets of G in V − S intersect.

Proof. Suppose G is a bipartite graph with the bipartition (X,Y ) such that
|X| ≤ |Y | and S is a γ-set of G. If there exist two disjoint β0-sets of G in V − S,
then 2β0(G) + γ(G) ≤ |X| + |Y | so that γ(G) ≤ |X| + |Y | − 2β0(G) and since
β0(G) ≥ |Y |, we have γ(G) ≤ |X| − |Y | ≤ 0, which is absurd and hence any two
β0-sets of G in V − S intersect.

Now, suppose there exist three β0-sets of G, say D1, D2 and D3, in V − S
such that D1 ∩D2 ∩D3 = ∅. As discussed above, any two of these sets intersect,
and let D1 ∩ D2 = S1, D1 ∩ D3 = S2 and D2 ∩ D3 = S3. Then |X| + |Y | ≥
γ(G)+ |D1|+ |D2|− |S1|+ |D3|− |S2|− |S3| = γ(G)+3β0(G)− (|S1|+ |S2|+ |S3|).
Obviously, S1∪S2∪S3 is an independent set and hence |S1|+ |S2|+ |S3| ≤ β0(G)
so that |X| + |Y | ≥ γ(G) + 2β0(G) ≥ γ(G) + 2|Y |, which is absurd. Thus any
three β0-sets of G in V − S intersect.
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It follows from Observation 4.3.1 that, if G is a bipartite graph with a γ-set S
such that there exist at most three β0-sets not intersecting S, then we can have
an independent transversal dominating set of G by adjoining S with a vertex in
the intersection of those β0-sets and thus γit(G) is at most γ(G) + 1. But we do
not know that whether this can be extended for any bipartite graph even when it
has more than three β0-sets outside S. However, we have a feeling that whether
or not all the β0-sets of a bipartite graph G outside S intersect, the value of
γit(G) is bounded by γ(G) + 1. Also, see that Corollary 4.1.10 supports this and
thus we are forced to pose the following conjecture.

Conjecture 4.3.2. If G is a connected bipartite graph, then γit(G) is either

γ(G) or γ(G) + 1.

Obviously, Conjecture 4.3.2 is true for a bipartite graph with the bipartition
(X,Y ) such that |X| ≤ |Y | and γ(G) = |X|. We now characterize such bipartite
graphs for which γit(G) = γ(G) + 1.

Theorem 4.3.3. Let G be a bipartite graph with bipartition (X,Y ) such that

|X| ≤ |Y | and γ(G) = |X|. Then γit(G) = γ(G) + 1 if and only if every vertex

in X is adjacent to at least two pendant vertices.

Proof. We first claim that δ(G) = 1. Suppose δ(G) ≥ 2. Since γ(G) = |X|, X
is a γ-set. Also, since γit(G) = γ(G) + 1 it follows that β0(G) = |Y |. Now, let
u ∈ X and v ∈ N(u). Since δ(G) ≥ 2, it follows that S = (X − {u}) ∪ {v} is a
dominating set of G. Now since β0(G) = |Y | and δ(G) ≥ 2, every β0- set contains
either the vertex v or a vertex w 6= u in X. Hence S intersects every β0- set so
that γit(G) = |X| = γ(G), which is a contradiction. Thus δ(G) = 1.

Further suppose there exists a vertex u in X such that N(u) contains at most
one pendant vertex. Then S = (X−{u})∪{v}, where v ∈ N(u), and v is chosen to
be a pendant vertex if it exists, is a dominating set of G. Also since β0(G) = |Y |,
it follows that S intersects every β0-set of G and hence γit(G) ≤ |X| = γ(G),
which is a contradiction. Thus every vertex in X is adjacent to at least two
pendant vertices.
Conversely, if every vertex in X is adjacent to at least two pendant vertices, then
X is the only γ-set of G so that γit(G) = γ(G) + 1.

4.4. Relationship with other parameters

In this section we establish relations connecting the parameter γit and some
domination parameters.

Remark 4.4.1. We have observed in Theorem 4.1.8 that γ(G) ≤ γit(G) for any
graph G. Furtehr, the difference between the parameters γit and γ can be made
arbitrarily large as γit(Kn) = n and γ(Kn) = 1. Moreover, these parameters
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can assume arbitrary values. That is, if a and b are given positive integers with
1 ≤ a ≤ b, there exists a graph G such that γ(G) = a and γit(G) = b. For, if
a = b, let G = H+ for some connected graph H of order a and if b ≥ a+1, let G
be the graph obtained from a path P = (v1, v2, . . . , va) on a vertices by attaching
a copy of Kb−a+1 at v1 and a copy of Kb at each other vertex vi of the path P .
Then in either of the cases γ(G) = a and γit(G) = b.

Theorem 4.4.2. If G is a graph with χ(G) = k = n
β0(G) , then γg(G) ≤ γit(G).

Proof. Let {V1, V2, . . . , Vk} be a k-coloring of G. Then Vi, 1 ≤ i ≤ k, is a
maximum independent set of G. Let S be a γit-set of G. Then S ∩ Vi 6= ∅,
for all i = 1, 2, . . . , k. Since 〈 Vi〉 , 1 ≤ i ≤ k, is a clique in G it follows that
S is a dominating set of G. Hence S is a global dominating set of G. Thus
γg(G) ≤ γit(G).

Remark 4.4.3. Let S be a minimum independent transversal dominating set of
G. Then 〈S〉 is connected in G or G. Hence S is a connected dominating set of
G or G. Thus for any graph G, either γc(G) ≤ γit(G) or γc(G) ≤ γit(G).

Remark 4.4.4. For the complete graph Kn (n ≥ 2), γit(Kn) = n and β0(Kn) =
1. For the complete bipartite graph Km,n with m ≤ n and n ≥ 3, γit(Km,n) = 2
and β0(Km,n) = n. For the corona G+ of a graph G on n vertices, γit(G

+) =
β0(G

+) = n. Hence there is no relation between γit and β0.

Remark 4.4.5. If G has a unique maximum independent set, then γit(G) ≤
γ(G)+1. For if S is a γ-set and D is the maximum independent set then S∪{u},
where u ∈ D, is an independent transversal dominating set. However, a graph G
with γit(G) ≤ γ(G)+ 1 can have more than one maximum independent sets. For
example, for the graphsG1 andG2 given in Figure 2, we have γit(G1) = γ(G1) and
γit(G2) = γ(G2)+1. However each of G1 and G2 has two maximum independent
sets.

G G
1 2

Figure 2
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Conclusion and Scope

Theory of domination is an important as well as fastest growing area in graph
theory. A number of variations of domination have been introduced by several
authors. In this sequence we have introduced a new variation in domination
namely, independent transversal domination. In this paper we have just initiated
a study of this parameter. However, there is a wide scope for further research on
this parameter and we here list some of them.

(A) The following are some interesting open problems.

1. Characterize non-complete connected graphs G on n vertices with
β0(G) ≥ n

2 for which γit(G) = n
2 . In particular, characterizing bipartite

graphs G for which γit(G) = n
2 is worthy trying.

2. Characterize graphs for which (i) γit(G) = γ(G), (ii) γit(G) = γ(G) + δ(G),
(iii) γit(G) = α0(G) + 1.

3. Characterize graphs of diameter two for which γit(G) = δ(G) + 1.

4. Characterize graphs G on n vertices for which (i) γ(G) + γit(G) = n+ 1,
(ii) i(G) + γit(G) = n+ 1, (iii) γit(G) = γc(G).

5. Given three positive integers a, b and c with a ≤ b ≤ a+ c, does there exist
a graph G such that γ(G) = a, γit(G) = b and δ(G) = c?

(B) For any graph theoretic parameter the effect of removal of a vertex or an
edge on the parameters is of practical importance. As far as our parameter γit
is concerned, removal of either a vertex or an edge may increase or decrease the
value of γit or may remain unchanged. For example, for the star K1,n−1(n ≥ 4),
we have γit(K1,n−1) = 2, whereas γit(K1,n−1 − u) = 2 where u is any pendant
vertex of the star. Also γit(W7) = 3, whereas γit(W7 − v) = 2, where v is the
centre vertex of the wheel. Hence it is possible to partition V into the sets V0, V+

and V−, where

V0 = {v ∈ V : γit(G− v) = γit(G)},

V+ = {v ∈ V : γit(G− v) > γit(G)},

V− = {v ∈ V : γit(G− v) < γit(G)}.

Similarly, one can partition the edge set E into the sets E0, E+ and E−. Now,
we can start investigating the properties of these sets.

(C) Since the value of γit for the complete graph Kn and the totally disconnected
graph Kn on n vertices is n, it is always possible for a graph G to increase the
value of γit(G) by adding edges from the complement or by deleting the edges
of G. Hence one can naturally ask for the minimum number of edges to be
deleted (added) in order to increase the value of γit(G); let us call the earlier
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as independent transversal dombondage number and the later one as independent
transversal domination reinforcement number and denote them by bit(G) and
rit(G) respectively. One can initiate a study of these parameters.

(D) Partitioning the vertex set V of a graph G into subsets of V having certain
property is one direction of research in graph theory. For instance, one such
partition is domatic partition which is a partition of V into dominating sets.
Analogously, we can demand each set in the partition of V to have the property
being independent transversal domination instead of just domination and call
this partition an independent transversal domatic partition. Further, since V (G)
is always an independent transversal dominating set of G, such partition exists
for all graphs so that asking the maximum order of such partition is reasonable;
let us call this maximum order as the independent transversal domatic number

and denote it by dit(G). Now, begin investigating the parameter dit.
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