
Discussiones Mathematicae

Graph Theory 31 (2011) 791–820

ON MONOCHROMATIC PATHS AND BICOLORED

SUBDIGRAPHS IN ARC-COLORED TOURNAMENTS

Pietra Delgado-Escalante1

and

Hortensia Galeana-Sánchez

Instituto de Matemáticas
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Abstract

Consider an arc-colored digraph. A set of vertices N is a kernel
by monochromatic paths if all pairs of distinct vertices of N have no
monochromatic directed path between them and if for every vertex
v not in N there exists n ∈ N such that there is a monochromatic
directed path from v to n.

In this paper we prove different sufficient conditions which im-
ply that an arc-colored tournament has a kernel by monochromatic
paths. Our conditions concerns to some subdigraphs of T and its
quasimonochromatic and bicolor coloration. We also prove that our
conditions are not mutually implied and that they are not implied by
those known previously. Besides some open problems are proposed.
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1. Introduction

While not every arc-colored digraph has a kernel by monochromatic paths
(e.g. a directed cycle colored with three colors), Sands et al. [30] proved

1Research of Delgado-Escalante supported by CoNaCyT grant No.170157.
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that every 2-colored digraph certaintly does. Later Shen Minggang [26] and
Galeana-Sánchez [12] proved the same for arc colored tournaments if certain
subdigraphs are colored in a special way: Shen Minggang proved it provided
that every directed triangle (that is, a transitive tournament of order 3 or
a directed cycle of length 3) is colored with at most two colors and he also
proved that this hypothesis is tight when the tournament is colored with at
least 5 colors (Galeana Sánchez and Rojas-Monroy proved this for 4 colors,
see [17]), meanwhile Galeana-Sánchez proved it for every directed cycle with
length at most 4 being a quasimonochromatic cycle (i.e., a cycle such that
with at most one exception every arc is colored alike).

In this paper we also propose sufficient conditions for an arc-colored
digraph to have a kernel by monochromatic paths and such conditions arise
from searching subdigraphs different from cycles and triangles (as in the
Shen Minggang conditions and the Galeana conditions) with lucky col-
orations such that every tournament with those subdigraphs has a kernel by
monochromatic paths.

What we found is stated in two sections, one for each new subdigraph
in the tournament, Tk and Sk: the first one is devoted to a condition which
asks for the quasimonochromaticity of every Tk for some k ≥ 4, and also
the at most bicolor coloration of every cycle with length less than k. In the
second section we assemble three different conditions related with the Sk

subdigraphs: One consists in the bicolor coloration of every cycle of length
3 and 4, and the quasimonochromatic coloration of every S4; we also prove
that if we forbid the existence of a certain subdivision of a 3-colored C3 and
ask for the non polychromatic coloration (more than three colors) of every
S4, every S5 and every C3, then the result holds; the last condition asserts
that the tournament has a kernel by monochromatic paths whenever every
Sk is a non polychromatic subdigraph of the tournament, for some k ≥ 5,
and every cycle with length less than k is non polychromatic as well.

2. Terminology and Notation

We use the standard terminology on digraphs as given in [1]. However we
provide most of the necessary definitions and notation for the convenience
of the reader.

For a digraph D, the vertex (arc) set is denoted by V (D) (A(D)). If
S ⊆ V (D) is nonempty then D[S] is the subdigraph of D induced by S. An
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arc z1z2 ∈ A(D) is called an asymmetrical arc (symmetrical) if z2z1 6∈ A(D)
(z2z1 ∈ A(D)); the asymmetrical part of D (the symmetrical part of D)
denoted by Asym(D) (Sym(D)) is the spanning subdigraph of D whose arcs
are the asymmetrical (symmetrical) arcs of D; D is called an asymmetrical

digraph if Asym(D) = D. A digraph is called semicomplete if for every
two distinct vertices u and v of D, at least one of the arcs (u, v) or (v, u) is
present in D. A semicomplete asymmetrical digraph is called a tournament.

An arc z1z2 ∈ A(D) will be called a V1V2-arc whenever z1 ∈ V1 ⊆ V (D)
and z2 ∈ V2 ⊆ V (D). By [z1, z2]T we denote an arc between z1 and z2.

For a directed walk W we will denote its length by ℓ(W ). And if
{z1, z2} ⊂ V (W ) then we denote by (z1,W, z2) the z1z2-directed walk con-
tained in W . We will denote by Cn a directed cycle of length n. Throughout
the paper all the paths and cycles considered are directed paths and directed
cycles.

3. Kernels and Kernels by Monochromatic Paths

3.1. Kernels

The concept of a kernel was first presented in [28] (under the name solution)
in the context of Game Theory by von Neumann and Morgenstern as an
interesting solution for cooperative n-person games with general n, see [1]
for more details. Let us repeat the definition of a kernel on the context
of Graph Theory: A kernel N of D is an independent set of vertices such
that for each z ∈ V (D) −N there exists a zN -arc in D. As the reader can
see, not every digraph has a kernel and when a digraph contains a kernel,
it may not be the only one. This simple observation compels us to ask for
sufficient conditions for the existence of a kernel in a digraph. It is well
known that if D is finite, the decision problem of the existence of a kernel
in D is NP-complete for a general digraph (see [5] and [25]) and for a planar
digraph with indegrees less than or equal to 2, outdegrees less than or equal
to 2 and degrees less than or equal to 3 [9].

A digraph D such that every induced subdigraph in D has a kernel is
called a kernel-perfect digraph (or simply, a KP-digraph). The following
sufficient conditions for a digraph to be a KP-digraph are known:

Theorem 1. D is a kernel-perfect digraph if one of the following conditions

holds:
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(i) D has no cycles of odd length.

(ii) Every directed cycle of odd length in D has at least two symmetric arcs.

(iii) Asym(D) is acyclic.

(iv) Every directed cycle in D has at least one symmetrical arc.

These claims were proved respectively by Richardson [29], Duchet [7], Duchet
and Meyniel [8], and by Berge and Duchet [2].

There are many applications of this concept in the context of game
theory, logic and decision theory (see [1]), as well as several interesting
related results (see also [2, 13] and [14, 27, 3]). A selected bibliography can
be found in [10], and we also recommend the survey [4].

3.2. Arc colored digraphs and kernel generalizations

A simple variation of the problem first presented by von Neumann and
Morgenstern brings an interesting generalization of the concept of kernel
(see [6]). In order to present it first let us introduce some notation.

D is an m-colored digraph if the arcs of D are colored with m colors. Let
D be an m-colored digraph. A directed path (or cycle) is called monochro-

matic if all of its arcs are colored alike and it is called quasimonochromatic

if with at most one exception all of its arcs are colored alike. A subdigraph
H of D is called a k-colored digraph if all of its arcs are colored with only
k colors, in particular for k = 2 we say that H is bicolor. We will say that
a subdigraph H of D is an at most k-colored digraph if all of its arcs are
colored with at most k colors, in particular for k = 2 we say that H is at
most bicolor; H will be called a polychromatic digraph if all of its arcs are
colored with at least 3 colors.

A set N ⊆ V (D) is said to be a kernel by monochromatic paths of

D if it satisfies the following conditions: (a) N is an independent set by

monochromatic paths: for every pair of different vertices u and v in N there
is no monochromatic path between them in D; and (b) N is an absorbing set

by monochromatic paths: for every vertex x ∈ V (D) − N there is a vertex
n ∈ N such that there is an xn-monochromatic path in D.

The concept of kernel by monochromatic paths is a generalization of
the concept of kernel. Another interesting generalization of this concept is
that of (k, l)-kernel introduced by M. Kwaśnik in [23] (see also [24, 11, 31,
21] and [34]). Even several results arise around the concept of kernel by
monochromatic paths (see [16, 18, 32] and [33]) those results mentioned in
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the Introduction are the foundations of this work. For a short historical
review of them see [6].

4. Main Results. New Sufficient Conditions

As it was mentioned in the Introduction of this paper, we obtain sufficient
conditions for the existence of a kernel by monochromatic paths in an m-
colored tournament. Our technique allow us to assure something more pow-
erful: the existence of such kernel in every induced subdigraph of the tour-
nament. We also prove that our conditions are not implied by those known
previously.

The spirit of our proofs arises from structural properties of arc colored
tournaments (see Lemma 1) and these properties are deduced by working
with previous results on kernels (see Theorem 1-iv) on an new digraph as-
sociated with our original tournament, its closure:

Definition 1. For an m-colored digraph D, the closure of D, C(D), is the
multidigraph such that:

V (C(D)) = V (D),

A(C(D)) = A(D) ∪ {uv | there is an uv − monochromatic path in D}.

Notice that by definition of C(D) it holds that N ⊆ V (D) is a kernel by
monochromatic paths of D if and only if N ⊆ V (C(D)) is a kernel of C(D).
Hence, it is ascertained that the closure of a digraph D relates in a very
natural way kernels by monochromatic paths in this digraph with kernels in
its closure. Now, notice that if certain properties which imply that D has
a kernel also hold in the closure of D, then we can assert that C(D) has a
kernel and hence D has a kernel by monochromatic paths (by the definition
of C(D)). In particular, if the closure of a digraph D satisfies some of the
sufficient conditions in Theorem 1, then we get as an immediate application
of this theorem that D has a kernel by monochromatic paths. This is an
important point to mention because this is not the case with the following
results: the sufficient conditions stated in our results hold in tournaments
and not in its closure.

We start with the following Lemma which gives us structural properties
(i.e., existence and color properties) of certain subdigraphs of an arc colored
tournament whose closure is not a KP-digraph and such that every C3 is a
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quasimonochromatic cycle. This Lemma is the heart or our proofs as the
reader can see. For an easy reading we separate the proof in several claims
written in italic font.

Lemma 1. Let T be an m-colored tournament. If every C3 ⊆ T is a quasi-

monochromatic cycle and C(T ) is not a KP-digraph then there exists a cycle

γ = (z0, z1, z2 = 0, 1, 2, . . . , p = z0) ⊆ C(T ) such that the following proper-

ties hold:

(a) ℓ(γ) ≥ 4,

(b) γ ⊆ T ,

(c) (z0, z1) ∈ A(T ) with color a, (z1, z2) ∈ A(T ) with color b and there

exists a z2z0-path α = (z2 = 0, 1, 2, . . . , p = z0) (p ≥ 2) with color c,

a 6= b, b 6= c, a 6= c, let a=red, b=blue, c=black,

(d) (z2, z0) 6∈ A(T ) (so (z0, z2) ∈ A(T )),

(e) There is no z1z0-monochromatic path in T and there is no z2z1-mono-

chromatic path in T ,

(f) Every arc between z1 and an internal vertex in α is not black.

Proof. Proceeding by contradiction, let us suppose that C(T ) is not a KP-
digraph so a well known theorem by Berge and Duchet (see Theorem 1-iv) as-
serts that there is a cycle Γ ⊆ Asym(C(T )). Let Γ = (z0, z1, . . . , zn−1, zn =
z0) ⊆ Asym(C(T )) be a cycle with minimal length contained in Asym(C(T )).
Through the following claims we will discover color properties of this cycle
and they will allow us to prove the lemma.

1. ℓ(Γ) = n ≥ 3.

Recall Γ ⊆ Asym(C(T )), so ℓ(Γ) = n 6= 2.

2. Γ ⊆ T .

Suppose that there is an arc (zi, zi+1) ∈ Γ − T . Since T is a tournament
we have that (zi+1, zi) ∈ T and so {(zi, zi+1, (zi+1, zi)} ⊆ Asym(C(T )), a
contradiction.

3. (z0, z1) ∈ A(T ) has color a, (z1, z2) ∈ A(T ) has color b, a 6= b.

Since Γ is not a monochromatic cycle (by the contrary: (z0,Γ, zn−1) ⊆
Asym(C(T )) is a monochromatic path, thus (z0, zn−1) ∈ A(C(T )) and hence
(zn−1, z0) ∈ A(Sym(C(T )) ∩ Γ), a contradiction), then there exists two
consecutive arcs in Γ colored differently. Say (z0, z1) ∈ A(Γ) is red and
(z1, z2) ∈ A(Γ) is blue.
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4. For any {zi, zj} ⊂ V (Γ) such that j 6∈ {i− 1, i+ 1} it holds that {(zi, zj),
(zj , zi)} ⊆ A(C(T )).

Let {zi, zj} ⊂ V (Γ) be such that j 6∈ {i− 1, i+ 1}. Since T is a tournament,
(zi, zj) ∈ A(T ) or (zj , zi) ∈ A(T ), without loss of generality let (zi, zj) ∈
A(T ). Then Γ′ = (zi, zj , zj+1, zj+2, . . ., zi−1, zi) ⊆ T is a cycle with ℓ(Γ′) <
ℓ(Γ). Hence Γ′ 6⊆ Asym(C(T )) and so (zi, zj) ∈ A(Sym(C(T )).

5. (z2, z0) 6∈ A(T ).

If (z2, z0) ∈ A(T ) then there exists C3 = (z0, z1, z2, z0) ⊆ T and it is a
quasimonochromatic cycle by hypothesis, so (z2, z0) ∈ A(T ) is red or blue.
If (z2, z0) ∈ A(T ) is red then (z2, z0, z1) ⊆ T is a z2z1-monochromatic path
and (z1, z2) ∈ A(Sym(C(T )) ∩ Γ), a contradiction. If (z2, z0) ∈ A(T ) is
blue, then (z1, z2, z0) ⊆ T is a z1z0-monochromatic path and (z0, z1) ∈
A(Sym(C(T )) ∩ Γ), a contradiction again.

Now, by claims (4) and (5) there exists a z2z0-monochromatic path in
T with length at least 2. Let α = (z2 = 0, 1, 2, . . . , p = z0) ⊆ T be a
z2z0-monochromatic path with minimal length (p ≥ 2).

6. z1 6∈ V (α).

Otherwise z1 ∈ V (α) and then (z2, α, z1) is a z2z1-monochromatic path in
T so (z1, z2) ∈ Sym(C(T )), contradiction.

7. α is neither red nor blue.

If α is red then α∪ (z0, z1) is a z2z1-monochromatic path in T and (z2, z1) ∈
A(Sym(C(T )) ∩ Γ), a contradiction. If α is blue then (z1, z2) ∪ α ⊆ T

is a z1z0-monochromatic path in T and (z1, z0) ∈ A(Sym(C(T )) ∩ Γ), a
contradiction again. Let α be black.

Consider γ = (z0, z1, z2) ∪ α. Clearly γ satisfies the first four properties
of our Lemma 1. Let us conclude with the following points.

8. There is no z1z0-monochromatic path in T and there is no z2z1-mono-
chromatic path in T .

Notice that {(z0, z1), (z1, z2)} ⊆ Asym(C(T )).

9. Every arc between z1 and an internal vertex in α is not black.

If there exists i, 1 ≤ i ≤ p − 1 such that (i, z1) ∈ A(T ) (resp. (z1, i) ∈
A(T )) is black then (z2 = 0, α, i) ∪ (i, z1) ⊆ T (resp. (z1, i) ∪ (i, α, z0)) is
a z2z1-monochromatic path in T (resp. is a z1z0-monochromatic path), a
contradiction.

In order to present the following conditions we must introduce new subdi-
graphs whose arc coloration in an arc colored tournament T will allow us to
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assert the existence of a kernel by monochromatic paths in T and in every
induced subdigraph of this digraph. It is important to mention that we
decided to write these proofs in separated and enumerated claims (in italic
font) in order to make its reading easier. Drawings also can help for a better
understand: each arc is marked with the corresponding item in the proof
and with prior items that are needed between brackets.

4.1. Tk subdigraphs

Definition 2. A subdigraph H of D is defined as a Tk if H consists of a
directed path of length k − 1, (z0, z1, . . . , zk−1), and the arc (z0, zk−1).

Definition 3. Let T be an m-colored tournament. T has the property Pk

for some fixed integer k ≥ 4 if:

(a) Every Tk ⊆ T is a quasimonochromatic subdigraph of T , and

(b) Every Ct ⊆ T (t < k) is at most bicolor.

Notice that the property P4 is the corresponding property of the sufficient
condition for cycles in the theorem proved by Galeana Sánchez [12] and
mentioned in the Introduction.

Theorem 2. Let T be an m-colored tournament. If T satisfies the property

Pk for some integer k ≥ 4, then C(T ) is a KP-digraph.

Proof. We proceed by contradiction. Suppose that C(T ) is not a KP-
digraph, then by Lemma 1 there exists a cycle γ = (z0, z1, . . . , p = z0)
satisfying properties (a) to (f). The following assertions will allow us to
obtain a contradiction. First some general assertions:

1. p ≥ k − 2.
If p < k− 2 then it follows from Lemma 1-c that γ is a 3-colored cycle. But
ℓ(γ) < k, a contradiction.

2. (z0, z2) ∈ A(T ) (Theorem 1, point 5).

3. For each i such that 0 ≤ i ≤ p − (k − 2) it holds that. If (z1, i) ∈
A(T ) then for every m ∈ N such that i + (k − 2) ≤ i + m(k − 2) ≤ p we
have that (i + m(k − 2), z1) ∈ A(T ) whenever m is an odd number and
(z1, i+m(k− 2)) ∈ A(T ) whenever m is an even number (this means that if
there is an arc from z1 to some vertex i of α then there is an arc from every
vertex in α and separated from i an odd multiple of k − 2 toward z1 and
there is an arc from z1 to every vertex in α and separated from i an even
multiple of k − 2).
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By induction over m. First let us asume that (z1, i) ∈ A(T ) for some i,
0 ≤ i ≤ p−(k−2), and suppose by contradiction that (i+(k−2), z1) 6∈ A(T ),
then (z1, i + (k − 2)) ∈ A(T ) (because T is a tournament) and so there
exists Tk = (z1, i) ∪ (i, α, i + (k − 2)) ∪ (z1, i + (k − 2)) ⊆ T which is not
quasimonochromatic by Lemma 1-f ((z1, i) and (z1, i+(k−2)) are not colored
black and k ≥ 4), contradicting that every Tk ⊆ T is a quasimonochromatic
digraph. By the same way we can conclude that (z1, i + 2(k − 2)) ∈ A(T ).
Now suppose that for every n such that i+(k−2) ≤ i+n(k−2) ≤ p−(k−2)
we have the following: If n is even then (z1, i + n(k− 2)) ∈ A(T ) and if n is
odd then (i+n(k−2), z1) ∈ A(T ). We will prove the affirmation for n+1. If
n is even then assume by contradiction that (z1, i + (n+ 1)(k − 2)) ∈ A(T ).
Then there exists Tk = (z1, i + n(k − 2)) ∪ (i + n(k − 2), α, i + (n + 1)
(k − 2)) ∪ (z1, i + (n + 1)(k − 2)) ⊆ T which is not a quasimonochromatic
Tk from Lemma 1-f ((z1, i + n(k − 2)) and (z1, i + (n + 1)(k − 2)) are not
colored black, besides k ≥ 4), a contradiction. If n is odd then assume by
contradiction that (i + (n + 1)(k − 2), z1) ∈ A(T ). Then there exists Tk =
(i+n(k−2), α, i+(n+1)(k−2))∪(i+(n+1)(k−2), z1)∪(i+n(k−2), z1) ⊆ T

which is not a quasimonochromatic Tk (k ≥ 4 and from Lemma 1-f), a
contradiction again.

z0=p

z1

z2=0

ii+ k-( 2)
black

not black
z0=p

z1

z2=0

j j- k-( 2)
black

not blacknot black
not black

Figure 1. Claims 3 and 4 (from left to right).

4. For each j with k − 2 ≤ j ≤ p it holds that. If (j, z1) ∈ A(T ) then
for every m ∈ N such that 0 ≤ j − m(k − 2) ≤ j − (k − 2) we have that
(z1, j −m(k − 2)) ∈ A(T ) with m odd, and (j −m(k − 2), z1) ∈ A(T ) with
m even.

Let j be such that k − 2 ≤ j ≤ p and (j, z1) ∈ A(T ) and let m be
such that 0 ≤ j − m(k − 2) ≤ j − (k − 2). If m is odd then suppose by
contradiction that (z1, j−m(k−2)) 6∈ A(T ) so (j−m(k−2), z1) ∈ A(T ) (T
is a tournament) and by the previous point (take j−m(k− 2) as i) we have
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that (z1, j) ∈ A(T ), a contradiction. An analogue argument holds when m

is even.

5. (z1, k − 3) ∈ A(T ) .
If (k − 3, z1) ∈ A(T ) then there exists Ck−1 = (z1, z2 = 0) ∪ (0, α, k − 3) ∪
(k − 3, z1) ⊆ T and it is an at most bicolor subdigraph by hypothesis so
(k−3, z1) ∈ A(T ) is blue (it is not black from Lemma 1-f), then there exists
the 3-colored Tk = (z0, z2 = 0) ∪ (0, α, k − 3) ∪ (k − 3, z1) ∪ (z0, z1) ⊆ T (Tk
contains at least one black arc from α, as k ≥ 4, and (z0, z1) ∈ A(T ) is red
from Lemma 1-c), a contradiction.

Now we continue the proof by analyzing the following two cases, de-
pending on the value of k:

Case I. k = 4.

6. (p− 1, z1) ∈ A(T ).
If (z1, p − 1) ∈ A(T ) then C3 = (z1, p − 1, z0, z1) ⊆ T is a quasimonochro-
matic cycle by hypothesis so (z1, p − 1) is red (it is not colored black as a
consequence of Lemma 1-f) then T4 = (z1, p−1, p = z0, z2 = 0)∪(z1, z2) ⊆ T

is not a bicolor subdigraph (Lemma 1-c), a contradiction.

Case I.A. p = 2m, for some m ∈ N.

Subcase A1. p = 2m, with m odd.
(p − 1, z1) ∈ A(T ) by (6) so it follows from (4) that (1, z1) ∈ A(T ), contra-
dicting point 5 with k = 4. Then this case is impossible.

Subcase A2. p = 2m, with m even.
(z0, z1) ∈ A(T ) then by (4) with i = p we obtain that (z2 = 0, z1) ∈ A(T ),
a contradiction.

Case I.B. p = 2m + 1, for some m ∈ N.

Subcase B1. p = 2m + 1, with m even.
(z1, z2 = 0) ∈ A(T ) then by point (3) we have that (z1, p − 1) ∈ A(T ), a
contradiction with point (6).

Subcase B2. p = 2m + 1, with m odd.

7. (1, z0) ∈ A(T ).
If (z0, 1) ∈ A(T ) then there exists the non quasimonochromatic T4 = (z0, z1,
z2 = 0, 1) ∪ (z0, 1) ⊆ T , a contradiction.

8. (z2, p − 1) ∈ A(T ).
If (p − 1, z2) ∈ A(T ) then T4 = (p − 1, z0, z1, z2 = 0) ∪ (p − 1, z2) ⊆ T is a
non quasimonochromatic subdigaph, a contradiction.



On Monochromatic Paths and Bicolored Subdigraphs in ... 801

Then there exists

T4A = (z1, 1, z0, z2) ∪ (z1, z2) ⊆ T,

T4B = (z0, z2, p − 1, z1) ∪ (z0, z1) ⊆ T,

C ′

3 = (z0, z1, 1, z0) ⊆ T.

z0=p

z1

z2=0

Claim

5

1

Claim 7

p-1

Claim 2

z0=p

z1

z2=0

Clai
m

6

1
p-1

Claim 2

Claim 8

Figure 2. Case I.B2 for k = 4. Left: T4A . Right: T4B .

9. color(z2, p − 1) 6= color(p − 1, z1) (by the contrary these arcs form a
monochromatic z2z1-path in T ).

10. color(z1, 1) 6= color(1, z0) (by the contrary there is a monochromatic
z1z0-path in T ).

11. (z1, 1) ∈ A(T ) is colored red or (1, z0) ∈ A(T ) is colored red.
If not then C3’ is a 3-colored cycle, a contradiction.

Subcase B2-a. (1, z0) ∈ A(T ) is red.

12. (z1, 1) ∈ A(T ) is blue (T4A is a quasimonochromatic one and from
point 10).

13. (z0, z2) ∈ A(T ) is blue (T4A is a quasimonochromatic one and from the
previous point).

14. (p − 1, z1) ∈ A(T4B ) and (z2 = 0, p − 1) ∈ A(T4B ) are both red or they
are both blue.
(z0, z2) ∈ A(T4B ) is blue (previous point) and T4B is a quasimonochromatic
subdigraph.

Then (z2, p− 1, z1) ⊆ T is a monochromatic z2z1-path, a contradiction.

Subcase B2-b. (z1, 1) ∈ A(T ) is red.

15. (1, z0) ∈ A(T ) is blue (T4A is a quasimonochromatic one and from
point 10).
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16. (z0, z2) ∈ A(T ) is blue (T4A is a quasimonochromatic one and from the
previous point).

17. (p − 1, z1) ∈ F (T4B ) and (z2 = 0, p− 1) ∈ F (T4B ) are both red or they
are both blue (by the last point and because T4B is a quasimonochromatic
subdigraph).

Then (z2, p− 1, z1) ⊆ T is a monochromatic z2z1-path, and a contradic-
tion arises. This contradiction establishes the theorem for k = 4.

In what follows we will discuss the case for k ≥ 5.

Case II. k ≥ 5.

18. (z0 = p, 1) ∈ A(T ).
If (1, p) ∈ A(T ) then C4 = (1, p = z0, z1, z2 = 0, 1) ⊆ T is a 3-colored cycle,
a contradiction.

We analyze this case depending on the length of α: if it is equal to k−2,
less than k − 2 or greater than k − 2:

Case II.A. p > k − 2.
There exists Tk = (p, 1)∪ (1, α, k−2)∪ (k−2, z1 )∪ (z0, z1) ⊆ T ((k−2, z1) ∈
A(T ) by point (3) with i = 0) which is quasimonochromatic by hypothesis
and it has al least two black arcs (k ≥ 5), then (k − 2, z1) ∈ A(T ) is black,
a contradiction with Lemma 1-f.

Case II.B. p = k − 2.

19. (z1, p − 1 = k − 3) ∈ A(T ) is red.
(z1, k−3 = p−1) ∈ A(T ) (point 5) so there exists C3 = (z1, p−1, z0, z1) ⊆ T

and it is at most bicolor by hypothesis, it follows that (z1, p − 1) ∈ A(T ) is
black or red and we conclude that it is colored with red by Lemma 1-f.

20. (1, z1) ∈ A(T ) and it is colored blue.
First, if (z1, 1) ∈ A(T ) then there exists Tk = (z1, 1) ∪ (1, α, k − 2 =
z0) ∪ (z0, z2) ∪ (z1, z2) ⊆ T , which is quasimonochromatic by hypothe-
sis, so (z1, 1)is colored with black (k ≥ 5 then Tk has at least two black
arcs), a contradiction with Lemma 1-f. So we conclude that (1, z1) ∈ A(T ).
Now, C3 = (z1, z2 = 0, 1, z1) ⊆ T is quasimonochromatic by hypothesis and
(1, z1) ∈ A(T ) is not black by Lemma 1-f, then (1, z1) ∈ A(T ) is blue.

Then there exists a 3-colored C4 ⊆ T , namely (z1, k−3, k−2 = z0, 1, z1)
(1 6= k − 3 as k ≥ 5), and a contradiction arises. This contradiction estab-
lishes the theorem.

The same technique allow us to easily prove the following Theorems. For
the first one consider the next definition.
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Definition 4. A subdigraph H of D is called a (1, 1, t − 2)-subdivision of
a 3-colored C3 with colors 1, 2 and 3, if it is a cycle of length t having a
monochromatic path of length t− 2 colored 1, one arc colored 2 and one arc
colored 3.

Theorem 3. Let T be an m-colored tournament. If every C3 ⊆ T , every

Tk ⊆ T and every Ck ⊆ T is a non polychromatic subdigraph of T for some

k ≥ 4, and T does not contain a (1, 1, t − 2)-subdivision of a 3-colored C3

(t < k) then C(T ) is a KP-digraph.

Sketch of the proof: By using Lemma 1, first notice that p ≥ k − 2, then
prove that (k − 3, z0) ∈ A(T ) in order to point out the polychromatic Ck =
(z0, z1, z2) ∪ (z2, α, k − 3) ∪ (k − 3, z0) ⊆ T .

Theorem 4. Let T be an m-colored tournament. If every C3 ⊆ T and every

T4 ⊆ T is a non polychromatic subdigraph then C(T ) is a KP-digraph.

Sketch of the proof: By using Lemma 1 prove that p ≥ 3 (use that (z1, 1))
and the existence of the arcs (p − 1, z1) and (1, z0) in order to prove that
there exists T4 = (p − 1, z1, 1, z0) ∪ (p − 1, z0) ⊆ T . Finally notice that
(z1, 1, z0) ⊆ T is a z1z0-monochromatic path in T (apply Lemma 1-c,f to see
that color(z1, 1) = color(1, z0) 6= black).

In what follows we prove that the conditions in Theorem 2 are tight.
We also prove that the condition of the Theorem 2 and the Shen Minggang
condition are not mutually implied. Remarks 5 and 6 are important to be
considered because they allow us to assure that for k = 4 our condition
is not the condition of the Shen Minggang’s result and also because they
justify the theorem for k > 4.

Remark 1. In Theorem 2 if we ask only that every C3 ⊆ T is at most
bicolor then the result does not hold, as shows Figure 3 (left).

Proof. The digraph G5 given in [26] holds that every C3 ⊆ G5 is at most
bicolor, there exists a non quasimonochromatic T4 ⊆ G5, namely (v2, v4, v1,
v3) ∪ (v2, v3), and G5 does not have a kernel by monochromatic paths.

Remark 2. In Theorem 2 if we ask only that every Tk ⊆ T is a quasi-
monochromatic subdigraph then the result does not hold, as shows Figure
3 (center) for k = 4.
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Proof. The digraph T holds that every T4 ⊆ T is a quasimonochromatic
subdigraph (there exists only (4, 1, 2, 3)∪(4, 3)), there exists a 3-colored
cycle of length 3, namely (3, 2, 1, 3), and T does not have a kernel by
monochromatic paths (3 does not absorb 2, 2 does not absorb 3, 3 does not
absorb 1 and 4 does not absorb 3).

1
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5

13

2

4 5

v1

3

2

1

4

a b

c

a a
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1 2
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v4v3

v1

v2

v3

v4

v5

v6

v7

vk-4

vk-3

vk-2

vk-1

vk

Figure 3. Remarks 1, 2 and 3 (from left to right).

Remark 3. The condition of the Theorem 2 does not imply the Shen Ming-
gang condition.

Proof. Consider a tournament T with V (T ) = {v1, v2, . . . , vk} such that
for every i, 4 ≤ i ≤ k, it holds that (vi, vj) ∈ A(T ) for every j such that
j < i, and it has color 1 (see Figure 3 (right)) and there exists the 3-
colored T3 = (v3, v2, v1) ∪ (v3, v1) ⊆ T . Notice that every Tk ⊆ T is a
quasimonochromatic subdigraph.

Remark 4. The Shen Minggang condition does not imply the condition of
the Theorem 2.

Proof. Consider the tournament T in Figure 4 (left) in which every T3 ⊆ T

and every C3 ⊆ T is a non polychromatic subdigraph (T is a 2-colored
tournament) and Tk = (v1, v2, . . . , vk−1) ∪ (vk−1, vk) ⊆ T is a non quasi-
monochromatic one.

Remark 5. The condition of every Tk ⊆ T to be a quasimonochromatic sub-
digraph does not imply that every Tk−1 ⊆ T is also a quasimonochromatic
subdigraph.
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Proof. Consider the tournament T in Figure 3 (center). The arcs not drown
have any direction and they are colored red. Besides δ+T (vk) = 0. Every
Tk ⊆ T is a quasimonochromatic subdigraph of T (if there exists some non
quasimonochromatic T ′

k ⊆ T then {f1, f2} ⊆ F (T ′

k) and vk ∈ V (T ′

k) so there
exists a v0vk−3-path P in T such that vk ∈ V (P ), contradicting δ+T (vk) = 0)
but Tk−1 = (v1, v2, . . . , vk−2)∪(vk−2, vk−1) ⊆ T is not a quasimonochromatic
one.

Remark 6. The Property Pk does not imply the Property Pk−1.

Proof. Consider the 3-colored tournament T in Figure 3 (right). The arcs
not drown have any direction and they are colored red. Besides δ+T (vk−2) =
0 and δ−T (vk) = 0. T holds the Property Pk: there is no polychromatic
Ct ⊆ Tk with t < k (if there is some polychromatic C ′

t ⊆ Tk, t < k, then
{f1 = (vk−1, vk−2), f2 = (vk−3, vk−2)} ⊆ A(C ′

t) and then δ−Ct
(vk−2) = 2, a

contradiction) and every Tk ⊆ T is a non quasimonochromatic one (if not
then there is some non quasimonochromatic T ′

k ⊆ T ) and {f1, f2)} ⊆ A(T ′

k);
as f1 and f2 are adjacent arcs there are only two cases, if f2 ⊆ T ′

k is the
last arc in the path of length k − 1 in T ′

k then it follows from the definition
of T ′

k that there is a vk−1vk−3-path R in T ′

k such that vk ∈ V (R), in other
case, if f1 ⊆ T ′

k is the last arc in the path of length k − 1 in T ′

k then it
follows that there is a vk−3vk−1-path Q in T ′

k such that vk ∈ V (Q), in both
cases a contradiction arises (as δ−T (vk) = 0). But T does not hold Property
Pk−1 as there exists the polychromatic Tk−1 = (v0 = vk, v1, . . . , vk−2) ∪
(vk−1, vk−2) ⊆ T .

all the rest
of the arcs

are colored red
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f1f2

-3 red arcsk
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Figure 4. Remarks 4, 5 and 6 (from left to right).
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4.2. Sk subdigraphs

Definition 5. A subdigraph H of D is called an Sk subdigraph if H consists
of a directed path of length k− 2, (z0, z1, . . . , zk−2), and a path (z0, z, zk−2),
with z 6= zi for every i such that 0 ≤ i ≤ k − 2.

Definition 6. Let T be an m-colored tournament. T has the property P

if:

(a) Every S4 ⊆ T is a quasimonochromatic subdigraph of T , and

(b) Every Ct ⊆ T (t ≤ 4) is at most bicolor.

Again notice that the property P is the corresponding property of the suffi-
cient condition for cycles and proved by Galeana Sánchez in [12] and men-
tioned in the Introduction.

Theorem 5. Let T be an m-colored tournament. If T satisfies the property

P , then C(T ) is a KP-digraph.

Proof. We proceed by contradiction. Suppose that C(T ) is not a KP-
digraph, then by Lemma 1 there exists a cycle γ = (z0, z1, z2 = 0, 1, 2, . . . ,
p = z0) satisfying properties (a) to (f). The following assertions will allow
us to obtain a contradiction. First some general assertions:

1. p ≥ 3.

From Lemma 1-c we have that p ≥ 2. If we suppose that p = 2 then γ is a
3-colored C4 ⊆ T , a contradiction.

2. (p− 1, z2) ∈ A(T ).

If (z2, p − 1) ∈ A(T ) then C4 = (p − 1, z0, z1, z2, p − 1) ⊆ T is a 3-colored
cycle, a contradiction.

3. (z0, 1) ∈ A(T ).

If (1, z0) ∈ A(T ) then C4 = (1, z0, z1, z2, 1) ⊆ T is a 3-colored cycle, a
contradiction.

4. If (1, z1) ∈ A(T ) then it is colored blue.

It follows from Lemma 1-f as C3 = (1, z1, z2, 1) ⊆ T is a cycle colored with
at most 2 colors.

5. If (z1, 1) ∈ A(T ) then it is colored red and so (z0, z2) ∈ A(T ) is red.

Consequence of Lemma 1-f and the fact that S4 = (z0, z1, 1)∪ (z0, z2, 1) ⊆ T

is a quasimonochromatic subdigraph of T .

6. If (z1, p− 1) ∈ A(T ) then it is red.
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It follows from Lemma 1-f, as C3 = (z1, p − 1, z0, z1) ⊆ T is a cycle colored
with at most 2 colors.

7. If (p − 1, z1) ∈ A(T ) then it is colored blue and so (z0, z2) ∈ A(T ) is
blue: 6.

Consequence of Lemma 1-f and the fact that S4 = (p−1, z1, z2)∪ (p−1,
z0, z2) ⊆ T is a quasimonochromatic subdigraph of T .

Now we continue the proof by considering several possible cases depend-
ing on the direction of some arcs:

Case I. (p− 1, z1) ∈ A(T ) and (z1, 1)∈A(T).

There exists a 3-colored S4 = (p − 1, z0, z2) ∪ (p − 1, z1, z2) ⊆ T (as a
consequence of points 5 and 7), a contradiction arises.

Case II. (p− 1, z1) ∈ A(T ) and (1, z1) ∈ A(T ).

Subcase II.A. p ≥ 4.

8. (1, p − 1) ∈ A(T ) and it is blue.

Suppose that (p−1, 1) ∈ A(T ). Then S4 = (p−1, 1, z1)∪(p−1, z0, z1) ⊆ T is
a 3-colored subdigraph of T (recall 4), a contradiction. So (1, p− 1) ∈ A(T )
and then there exists C4 = (1, p−1, z1, z2, 1) ⊆ T which is an at most bicolor
cycle by hypothesis, it follows from (7) that (1, p − 1) ∈ A(T ) is blue (it is
not colored black because of the minimality in the choice of α).

9. (p− 2, z1) ∈ A(T ) and color(p− 2, z1) = color(p − 1, z2)=blue.

If (z1, p − 2) ∈ A(T ) then there exists C3 = (z1, p − 2, p − 1, z1) ⊆ T which
is not a polychromatic cycle by hypothesis so (z1, p − 2) ∈ A(T ) is blue
(point (6) and Lemma 1-f) and then there exists a 3-colored C4 = (z1, p−2,
p − 1, z0, z1) ⊆ T , a contradiction. We conclude that (p − 2, z1) ∈ A(T ).
As a consequence there exists S4 = (p − 2, z1, z2) ∪ (p − 2, p − 1, z2) ⊆ T

(recall 2) and it is a quasimonochromatic subdigraph by hypothesis so the
affirmation holds (Lemma 1-f).

10. (z0, 1) ∈ A(T ) is black (recall 3).
S4 = (p − 1, z2, 1) ∪ (p − 1, z0, 1) ⊆ T is a quasimonochromatic subdigraph
and the affirmation holds from the previous point.

11. (p − 2, z0) ∈ A(T ).
By the contrary, if (z0, p − 2) ∈ A(T ) then exists S4 = (z0, p − 2, p − 1) ∪
(z0, 1, p − 1) ⊆ T which is a quasimonochromatic subdigraph so (z0, p − 2)
∈ A(T ) is colored black (points 8 and, 10) and S4 = (z0, p− 2, z1)∪ (z0, 1z1)
⊆ T is not a quasimonochromatic subdigraph (points 4, 9 and 10), a con-
tradiction.
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We conclude that S4 = (p − 2, p − 1, z1) ∪ (p − 2, z0, z1) ⊆ T is a 3-colored
subdigraph (7, 11), a contradiction that establishes the subcase.
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Figure 5. Left: Subcase II.A. Rigth: Subcase II.B.

Subcase II.B. p = 3.

12. (2, z2) ∈ A(T ) is blue.
As S4 = (1, 2, z2) ∪ (1, z1, z2) ⊆ T is a quasimonochromatic one (from point
2 with p− 1 = 2, and point 4).

13. (z0, 1) ∈ A(T ) is black (recall 3).
Consequence of the previous point and noticing that S4 = (p−1 = 2, z0, 1)∪
(p − 1 = 2, z2, 1) ⊆ T ) (point 2) is a quasimonochromatic one.

14. (2, z0) 6∈ A(Asym(C(T ))).
As we have the following z02-monochromatic path in T : (z0 = 3, 1, 2) ⊆ T

(point 13).

15. There exists some v 6∈ {z0 = 3, z1, z2 = 0, 1, 2} such that (v, z0) ∈
A(T ) ∩A(Asym (C(T ))).

From the proof of Theorem 1 we have that there exists some v 6∈
{z0, z1, z2} such that (v, z0) ∈ A(Asym(C(T )). Now, from points (3) and
(14), v 6∈ {1, 2}.

Let us say that (v, z0) ∈ A(T ) is colored x.

16. (v, z1) ∈ A(T ).
By the contrary suppose that (z1, v) ∈ A(T ) then there exists the non
polychromatic C3 = (z1, v, z0, z1) ⊆ T and so (z1, v) ∈ A(T ) is red or
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it is colored x. If (z1, v) ∈ A(T ) is red then (z0 = 3, z1, v) ⊆ T is a
z0v-monochromatic path, contradicting point (15). In the other way, if
(z1, v) ∈ A(T ) has color x then (z1, v, z0 = 3) ⊆ T is a z1z0-monochromatic
path, a contradiction again (Lemma 1-d).

17. (v, z2) ∈ A(T ).

If (z2, v) ∈ A(T ) then there exists C4 = (v, z0, z1, z2, v) ⊆ T which is not
a polychromatic cycle by general hypothesis so we have that (z2, v) is red
or blue and x ∈ {red, blue}. If (z2, v) ∈ A(T ) is blue then (z0, z2, v) ⊆ T

is a z0v-monochromatic path ((z0, z2) ∈ A(T ) is blue from point (6)), a
contradiction. We conclude that (z2, v) ∈ A(T ) is red. Then there is the
3-colored S4 = (z2, v, z1)∪(z2, 1, z1) ⊆ T (by point 4), a contradiction again.

18. (v, 2) ∈ A(T ).

If (2, v) ∈ A(T ) then there exists S4 = (2, v, z2) ∪ (2, z0, z2) ⊆ T and it a
is quasimonochromatic one by general hypothesis so (2, v) ∈ A(T ) is black
or blue. It can not be black (by the contrary (z0, 1, 2, v) ⊆ T is a z0v-
monochromatic path (13) contradicting point 15) so it is colored blue and
there exists the 3-colored S4 = (2, v, z1) ∪ (2, z0, z1) ⊆ T (point 16), a con-
tradiction.

19. (v, z0) ∈ A(T ) and (v, 2) ∈ A(T ) are both colored blue (i.e., x = blue).

S4 = (v, z0, z1) ∪ (v, 2, z1) ⊆ T is a quasimonochromatic subdigraph so
(v, z0) ∈ A(T ) and (v, 2) ∈ A(T ) are both colored red or blue, in the first
case we have that S4 = (v, z0, z2) ∪ (v, 2, z2) ⊆ T is not a quasimonochro-
matic subdigraph (point 12 and 17), a contradiction. So the affirmation
holds.

We can notice now that (v, z0, z1) ⊆ T is a bicolor path contained in
Asym(C(T )) and z0 holds the properties of z1 in Lemma 1 so all the results
in such Lemma hold; in particular there exists a z1v-monochromatic path in
T with length at least 2 and colored y 6∈ {red, blue} (Lemma 1-c). As a con-
sequence there is some w ∈ V (T )−{z0, z1, z2, v, 1, 2} (w 6∈ {z0, z1, z2, v, 1, 2}
because T is a tournament and because the direction of the arcs with an
end in z1.) such that (z1, w) ∈ A(T ) is colored y. Let us prove the following
affirmations:

20. (v,w) ∈ A(T ).

If (w, v) ∈ A(T ) then there exists the 3-colored C4 = (w, v, z0, z1, w) ⊆ T , a
contradiction.

21. (z0, w) ∈ A(T ).

By the contrary (w, z0) ∈ A(T ) and there exists C4 = (w, z0, 1, z1, w) ⊆ T
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which is not polychromatic by the general hypothesis so y = black (recall
that y is neither red nor blue) and the color of (w, z0) is black or blue
(from points 4 and 13). If (w, z0) ∈ A(T ) is black then (z1, w, z0) ⊆ T

is a z1z0-monochromatic path, a contradiction. We now can assume that
(w, z0) ∈ A(T ) is blue. Then there is the 3-colored C3 = (z1, w, z0, z1) ⊆ T ,
a contradiction.

22. (w, z2) ∈ A(T ).

Suppose that (z2, w) ∈ A(T ) then S4 = (z0, z2, w) ∪ (z0, z1, w) ⊆ T is a
3-colored subdigraph (from point 7 and because y 6∈ {red, blue}), a contra-
diction.

23. (z0, w) ∈ A(T ) and (z1, w) ∈ A(T ) are both colored black.

S4 = (2, z0, w) ∪ (2, z1, w) ⊆ T is a quasimonochromatic subdigraph and
y 6∈ {red, blue} (point 7).

Then there exists the 3-colored S4 = (z0, w, z2) ∪ (z0, z1, z2) ⊆ T , a
contradiction arises and demonstrates the subcase:

Case III. (z1, p − 1) ∈ A(T ) and (z1, 1) ∈ A(T ).

Subcase III.A. p ≥ 5.

24. (1, p − 1) ∈ A(T ) and it is colored red.

If (p − 1, 1) ∈ A(T ) then there is the 3-colored subdigraph S4 = (z1, p −
1, 1) ∪ (z1, z2, 1) ⊆ T (point 6), a contradiction. So (1, p − 1) ∈ A(T ) and
C4 = (z1, 1, p− 1, z0, z1) ⊆ T holds the property of not being polychromatic
by general hypothesis then (1, p − 1) ∈ A(T ) is red (from point 5 and it is
not black because of the minimality of α).

25. (z1, 2) ∈ A(T ) and color(z1, 2) = color(z0, 1)=red.

If (2, z1) ∈ A(T ) then it is blue (C4 = (z1, z2 = 0, 1, 2, z1) ⊆ T is an at most
bicolor cycle by hypothesis) and there is the 3-colored C3 = (2, z1, 1, 2) ⊆ T ,
a contradiction (recall 5). Then (z1, 2) ∈ A(T ) and there exists S4 =
(z0, z1, 2) ∪ (z0, 1, 2) ⊆ T ((z0, 1) ∈ A(T ) as point (3)) which is a quasi-
monochromatic one and it follows that (z1, 2) ∈ A(T ) and (z0, 1) ∈ A(T )
are both red ((z1, 2) is not black from Lemma 1-f.

26. (p − 1, z2) ∈ A(T ) is black.

S4 = (p− 1, z0, 1)∪ (p− 1, z2, 1) ⊆ T is a quasimonochromatic one and from
the previous point.

27. (z1, p − 2) ∈ A(T ) and it is colored red.

If (p − 2, z1) ∈ A(T ) then there exists S4 = (p − 2, z1, z2) ∪ (p − 2, p − 1,
z2) ⊆ T and it is a quasimonochromatic subdigraph by hypothesis. It follows
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that (p − 2, z1) ∈ A(T ) is black (26), contradicting Lemma 1-f. So (z1,
p − 2) ∈ A(T ) and it is red (C4 = (z1, p − 2, p − 1, p = z0, z1) ⊆ T is not a
polychromatic cycle and (z1, p − 2) ∈ A(T ) is not black because of Lemma
1-f).

28. (1, p − 2) ∈ A(T ) and it is red.
If (p − 2, 1) ∈ A(T ) then S4 = (z1, z2, 1) ∪ (z1, p − 2, 1) ⊆ T is a 3-colored
subdigraph (27), a contradiction. So (1, p − 2) ∈ A(T ) and as C4 = (z0, 1,
p− 2, p− 1, p = z0) ⊆ T is not a polychromatic cycle then (1, p− 2) ∈ A(T )
is red (it is not colored black because of the minimality of α).

29. (z0, p − 2) ∈ A(T ) and it is red.
If (p−2, z0) ∈ A(T ) then there exists S4 = (z1, p−2, z0)∪ (z1, p−1, z0) ⊆ T

and it is quasimonochromatic by hypothesis. So (p − 2, z0) ∈ A(T ) is red
(points 6 and 27) and (z1, p − 2, z0) ⊆ T is a z1z0-monochromatic path, a
contradiction. So (z0, p − 2) ∈ A(T ) and as S4 = (z0, z1, p − 1) ∪ (z0, p − 2,
p − 1) ⊆ T is a quasimonochromatic subdigraph then we have that (z0,
p− 2) ∈ A(T ) is red.
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Figure 6. Subcase III.A.

30. (p − 2, z2) ∈ A(T ) and it is red.
If (z2, p−2) ∈ A(T ) then there is S4 = (p−1, z0, p−2)∪(p−1, z2, p−2) ⊆ T

and it is a quasimonochromatic one by hypothesis, then (z2, p − 2) ∈ A(T )
is colored black (26, 29), contradicting the minimality of α. So (p− 2, z2) ∈
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A(T ) and as S4 = (z1, p−2, z2)∪ (z1, p−1, z2) ⊆ T is a quasimonochromatic
subdigraph then (p − 2, z2) ∈ A(T ) is red (6, 26, 27).

31. (z1, p − 3) ∈ A(T ) and it is red.
If (p − 3, z1) ∈ A(T ) then, as S4 = (p − 3, p − 2, p − 1) ∪ (p − 3, z1, p − 1)
⊆ T is a quasimonochromatic subdigraph then (p − 3, z1) ∈ A(T ) is black,
contradicting Lemma 1. So (z1, p − 3) ∈ A(T ) and then there exists S4 =
(z1, p−3, p−2)∪(z1 , 1, p−2) ⊆ T which is a quasimonochromatic subdigraph
and as a consequence (z1, p− 3) ∈ A(T ) is red (5, 28).

32. (p − 3, z2) ∈ A(T ) and it is red.
If (z2, p − 3) ∈ A(T ) then as there exists the quasimonochromatic S4 =
(z2, p − 3, p − 2) ∪ (z2, 1, p − 2) ⊆ T then (z2, p − 3) ∈ A(T ) is black, con-
tradicting the minimality of α. So (p − 3, z2) ∈ A(T ) and there exists
S4 = (z1, p − 3, z2) ∪ (z1, p − 1, z2) ⊆ T and it is quasimonochromatic by
hypothesis. It follows that (p− 3, z2) ∈ A(T ) is red (6, 26, 31).

33. (p − 3, p− 1) ∈ A(T ).
If (p− 1, p − 3) ∈ A(T ) then it is red (there exists the quasimonochromatic
S4 = (p − 1, p − 3, z2) ∪ (p − 1, z0, z2) ⊆ T and from points 5 and 32) and
S4 = (p− 1, z0, p− 2)∪ (p− 1, p− 3, p− 2) ⊆ T is not a quasimonochromatic
subdigraph (29), a contradiction.

Then (p− 3, p− 1) ∈ A(T ) is black (there exists S4 = (p− 3, p− 1, z2)∪
(p − 3, p − 2, z2) ⊆ T , it is a quasimonochromatic subdigraph and if follows
from 26, 30 and 33), contradicting the choice of α. We conclude the Subcase
III.A.

Subcase III.B. p = 3.

34. (z0, 1) ∈ A(T ) is red (recall point 3).
S4 = (z0, z1, p − 1 = 2) ∪ (z0, 1, p − 1 = 2) ⊆ T is a quasimonochromatic
subdigraph, (z1, 2) can not be black because of Lemma 1-f and finally the
affirmation holds from point 6.

35. (p − 1 = 2, z2) ∈ A(T ) is black (recall 2).
This follows from point (34) and because of the quasimonochromaticity of
S4 = (p− 1 = 2, z2, 1) ∪ (p − 1, p = z0, 1) ⊆ T .

36. (z2, 1) 6∈ A(Asym(C(T ))).
(1, 2, z2) ⊆ T is a 1z2-monochromatic path.

37. There exists some v 6∈ {z0 = 3, z1, z2 = 0, 1, 2} such that (z2, v) ∈
A(T ) ∩A(Asym(C(T ))).
From the proof of Lemma 1 we have that there exists some v 6∈ {z0, z1, z2}
such that (z2, v) ∈ A(Asym(C(T )) ((z1, z2) ∈ A(Asym(C(T )) so v 6= z1
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and if v = z0 then γ = (z0, z1, z2, v = z0) ⊆ T is an at most bicolor cycle
by hypothesis and it follows that (z2, v) ∈ A(T ) is colored red or blue, and
then there is a z2z1-red path or there is a z1z0-blue path respectively, a
contradiction in both cases. Now, from points (2) and (36) v 6∈ {1, 2}.

Let us say that (z2, v) ∈ A(T ) is colored x.

38. (z1, v) ∈ A(T ).

By the contrary suppose that (v, z1) ∈ A(T ) then there exists the non poly-
chromatic C3 = (z1, z2, v, z1) ⊆ T and so (v, z1) ∈ A(T ) is blue or it is col-
ored x. If (v, z1) ∈ A(T ) is blue then (v, z1, z2) ⊆ T is a vz2-monochromatic
path, contradicting point (37). In the other way if (v, z1) ∈ A(T ) is colored
x then (z2, v, z1) ⊆ T is a z2z1-monochromatic path, a contradiction again
(Lemma 1-d).

39. (z0, v) ∈ A(T ).

If (v, z0) ∈ A(T ) then there exists C4 = (z0, z1, z2, v, z0) ⊆ T and it is a
not polychromatic cycle by general hypothesis then we have that (v, z0) ∈
A(T ) is red or blue. If (v, z0) ∈ A(T ) is red then (v, z0, z2) ⊆ T is a vz2-
monochromatic path ((z0, z2) ∈ A(T ) is red from point 5), a contradiction.
We conclude that (v, z0) ∈ A(T ) is blue. Then there is the 3-colored S4 =
(z1, v, z0) ∪ (z1, 2, z0) ⊆ T (point 16), a contradiction again.

40. (1, v) ∈ A(T ).

If (v, 1) ∈ A(T ) then there exists S4 = (z1, v, 1) ∪ (z1, z2, 1) ⊆ T and it is
a quasimonochromatic one by general hypothesis so (v, 1) ∈ A(T ) is black
or blue. It can not be black (by the contrary (v, 1, p − 1 = 2, z2) ⊆ T is
a vz2-monochromatic path contradicting point (37)) so it is colored blue
and there exists the 3-colored S4 = (z0, z2, 1) ∪ (z0, v, 1) ⊆ T (point 5), a
contradiction.

41. (2, v) ∈ A(T ).

If (v, 2) ∈ A(T ) then there exists the non polychromatic C4 = (v, 2, z0, z2, v)
⊆ T so (v, 2) ∈ A(T ) is black or red and (z2, v) ∈ A(T ) is also black or red
(i.e., x ∈ {red, black}). (v, 2) ∈ A(T ) can not be black (by the contrary
(v, p − 1 = 2, z2) ⊆ T is a vz2-monochromatic path contradicting point
(37)) so (v, 2) ∈ A(T ) is red. Even more, x = color(z2, v) is also red (there
exists the quasimonochromatic S4 = (z1, z2, v) ∪ (z1, 1, v) ⊆ T (5)). Now
we have that (z0, v) ∈ A(T ) is black (S4 = (2, z0, v) ∪ (2, z2 = 0, v) ⊆ T

is a quasimonochromatic subdigraph (35)) and then there exists the non-
quasimonochromatic S4 = (z0, v, 2) ∪ (z0, 1, 2) ⊆ T ((z0, 1, ) ∈ A(T ), point
(34)), a contradiction.
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42. (z2, v) ∈ A(T ) and (1, v) ∈ A(T ) are both colored red (i.e., x =red).
S4 = (z1, z2, v) ∪ (z1, 1, v) ⊆ T and S4 = (z0, z2, v) ∪ (z0, 1, v) ⊆ T are both
quasimonochromatic subdigraphs (point 5 and 34).

Notice that (z1, z2, v) ⊆ T a is a bicolor path contained in Asym(C(T ))
and z2 holds the properties of z1 in Lemma 1 so all the results in such Lemma
holds, in particular there exists a vz1-monochromatic path in T with length
at least 2 and colored y 6∈ {red, blue} (Lemma 1-c). As a consequence there
is some w ∈ V (T ) − {z0, z1, z2, v, 1, 2} such that (w, z1) ∈ A(T ) is colored y

(w 6∈ {z0, z1, z2, v, 1, 2} because T is a tournament and because the direction
of the arcs with one end in z1, besides, y 6∈ {red, blue}). See the following
affirmations:

43. (w, z2) ∈ A(T ).
If (z2, w) ∈ A(T ) then y=black and (z2, w) ∈ A(T ) is red or black. (C4 =
(w, z1, 2, z2, w) ⊆ T is a non polychromatic subdigraph and from points 6
and 35). But if (z2, w) ∈ A(T ) is black then (z2, w, z1) ⊆ T is a z2z1-
monochromatic path, contradicting that (z1, z2) ∈ A(Asym(C(T ))). So
(z2, w) ∈ A(T ) is red and C3 = (z1, z2, w, z1) ⊆ T is a 3-colored cycle, a
contradiction again.

44. (z0, w) ∈ A(T ).
If (w, z0) ∈ A(T ) then it is colored red (S4 = (w, z0, 1) ∪ (w, z1, 1) ⊆ T is a
quasimonochromatic one and because y 6= red). So there exists the 3-colored
S4 = (w, z0, z2) ∪ (w, z1, z2) ⊆ T (from points 5 and 34), a contradiction.

45. (w, z1) ∈ A(T ) and (w, z2) ∈ A(T ) are both colored black.
S4 = (w, z1, 1) ∪ (w, z2, 1) ⊆ T is a quasimonochromatic subdigraph, y 6∈
{red, blue} and point 5.

We conclude this case noticing that there exists the 3-colored S4 =
(z0, w, z2) ∪ (z0, z1, z2) ⊆ T , a contradiction (recall 43 and 44)

Case III.C. p = 4.

46. (1, 3) ∈ A(T ) and it is colored red.
If (3, 1) ∈ A(T ) then S4 = (z1, 3, 1) ∪ (z1, z2, 1) ⊆ T is a 3-colored subdi-
graph (recall point 6). Then we have that (1, 3) ∈ A(T ) and exists C4 =
(z0, z1, 1, 3, z0) ⊆ T which is a non-polychromatic cycle, so (1, 3) ∈ A(T ) is
red (from point 5 and notice that it is not colored black because the choice
of α in Lemma 1).

47. (z1, 2) ∈ A(T ).
If (2, z1) ∈ A(T ) then there exists the non-polychromatic cycle C4 = (z1, z2,
1, 2, z1) ⊆ T and it follows from Lemma 1-f that (2, z1) ∈ A(T ) is blue. Then
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C3 = (2, z1, 1, 2) ⊆ T is a 3-colored cycle, a contradiction (recall point 5).

48. (z0, 1) ∈ A(T ) and (z1, 2) ∈ A(T ) are both red (recall points 2 and 3).
If follows from the existence of the quasimonochromatic S4 = (z0, z1, 2) ∪
(z0, 1, 2) ⊆ T and from Lemma 1-f.

49. (3, z2) ∈ A(T ) is black.
S4 = (p − 1 = 3, z0, 1) ∪ (p − 1 = 3, z2, 1) ⊆ T is a quasimonochromatic
subdigraph and from the previous point.

50. (2, z2) ∈ A(T ) and it is red.
If (z2, 2) ∈ A(T ) then there exists the 3-colored S4 = (z1, z2, 2) ∪ (z1, 1, 2) ⊆
T (point 5), a contradiction. Then (2, z2) ∈ A(T ) and it is colored red
because S4 = (z1, 2, z2) ∪ (z1, p − 1 = 3, z2) ⊆ T is a quasimonochromatic
subdigraph (points 6, 48 and 49).

Then there exists the non-quasimonochromatic S4 = (1, 2, z2) ∪ (1, p −
1 = 3, z2) ⊆ T (points 46, 49 and 50). This contradiction establishes the
last subcase.

Case IV. (z1, p− 1) ∈ A(T ) and (1, z1) ∈ A(T ).
There is the 3-colored cycle C4 = (z1, p − 1, z2, 1, z1) ⊆ T (points 2, 4 and
6), a contradiction. And the Theorem is proved.

The same technique allow us to prove the following Theorems. In the first
one notice a less restrictive coloration than in the previous theorem, but the
subdigraphs S5 and (1, 1, 2)-subdivision of a 3-colored C3 are also involved.

Definition 7. Let T be an m-colored tournament. T has the property Q

if:

(a) Every S4 ⊆ T and every S5 ⊆ T are non-polychromatic subdigraphs,

(b) Every C3 ⊆ T is a non-polychromatic cycle

(c) There is no (1, 1, 2)-subdivision of a 3-colored C3.

Theorem 6. Let T be an m-colored tournament. If T satisfies the property

Q, then C(T ) is a KP-digraph.

Sketch of the proof: Consider the cycle of Lemma 1 and prove that p ≥ 3
as well as the following assertions: If (1, z1) ∈ A(T ) then it is blue, if
(p − 1, z1) ∈ A(T ) then it is colored blue and if (z1, 1) ∈ A(T ) then it is
colored red, if (z1, p − 1) ∈ A(T ) then it is red. Finally prove that the
following cases lead us a contradiction: If (1, z1) ∈ A(T ) then there exists
the 3-colored S5 = (p− 1, p, z1) ∪ (p− 1, z2, 1, z1) ⊆ T ; if (z1, 1) ∈ A(T ) and
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(z1, p−1) ∈ A(T ) then (z1, 1, z0) ⊆ T is a z1z0-red path and if (z1, 1) ∈ A(T )
and (p−1, z1) ∈ A(T ) then there is the 3-colored S5 = (p−1, z1, 1)∪(p−1, p =
z0, z2 = 0, 1) ⊆ T .

Definition 8. Let T be a m-colored tournament. T has the property Rk

for some k ≥ 5 if:

(a) Every Sk ⊆ T is a non-polychromatic subdigraph of T ,

(b) Every Ct ⊆ T (t ≤ k) is a non-polychromatic cycle.

Theorem 7. Let T be a m-colored tournament. If T satisfies the property

Rk for some integer k ≥ 5, then C(T ) is a KP-digraph.

Sketch of the proof: Use Lemma 1. Prove first that p > k − 2 and also
that for every i such that 1 ≤ i ≤ k − 3 and for every j such that p − 1 ≥
j ≥ p − (k − 3) it holds that (z0, i) ∈ A(T ) and (j, z2) ∈ A(T ), as well
as the existence of the arc (p − 1, 1) ∈ A(T ). Consider two general cases,
if p ≥ 2(k − 3) and if k − 2 < p < 2(k − 3). Both cases lead us to a
contradiction by analyzing the two possible directions of the arc between
k − 3 and z1 (in the first case if (k − 3, z1) ∈ A(T ) the reader can prove
that (k − 3, z1) ∈ A(T ) is colored blue, that (z1, k − 4) ∈ A(T ) and it is
colored blue, also if p > 2(k − 3) then (k − 3, p − (k − 3)) ∈ A(T ), and
that (z0, p− (k−3)) ∈ A(T ) in order to prove that there exists the 3-colored
Sk = (z0, p−(k−3), z2)∪(z2, α, k−4)∪(z0, z1, k−4) ⊆ T , on the other hand,
if (z1, k−3) ∈ A(T ) it can be proved that (z1, k−3) ∈ A(T ) is red as well as
the arc (z1, p−(k−3)) ∈ A(T ) and those arcs will help the reader to find the
3-colored Sk = (z1, p−(k−3)∪(p−(k−3), α, p−1)∪(p−1, 1)∪(z1 , z2, 1)) ⊆ T ;
in the second case if (z1, k − 3) ∈ A(T ) notice that (z1, k − 3) ∈ A(T ) is red
as well as the arcs (z1, p − (k − 3)) ∈ A(T ) and (z1, p − (k − 4)) ∈ A(T ) to
prove that Sk = (z1, p− (k−4))∪ (p− (k−4), α, z0)∪ (z0, 1)∪ (z1, z2, 1) ⊆ T

is a 3-colored subdigraph, in the other hand, if (k − 3, z1) ∈ A(T ) then
notice that Sk = (p− 1, z2) ∪ (z2, α, k − 4) ∪ (k − 4, z1) ∪ (p− 1, z0, z1) ⊆ T

((p − 1, z2) ∈ A(T ) is a 3-colored subdigraph using that (k − 3, z1) ∈ A(T )
is colored blue as well as the arc (k − 4, z1) ∈ A(T )).

The following two remarks guarantee that the conditions of Theorems
5 and 6 which involve the S4 colorations, do not implicate each other.

Remark 7. Property P does not imply Property Q.

Proof. Consider the tournament T in Figure 7 (left). The arcs which
were not drown have any direction. Every S4 ⊆ T is a quasimonochro-
matic subdigraph: if there exists a non-quasimonochromatic S′

4 ⊆ T then
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{(v5, v4), (v5, v3)} ⊆ A(S′

4), a contradiction (v1 is the only vertex adja-
cent from v4 and v1 is not adjacent from v3). Besides every C4 is a non-
polychromatic cycle: if there exists a polychromatic cycle C ′

4 ⊆ T then
{(v5, v4), (v5, v3)} ⊆ A(C ′

4), contradicting that for e7ery vertex v ∈ C ′

4 we
have that δ+C4

(v) = 2. But S5 = (v5, v3, v2, v1) ∪ (v5, v4, v1) ⊆ T is a poly-
chromatic subdigraph.

Remark 8. Property Q does not imply Property P .

Proof. See the tournament T in Figure 7 (right) in which every S4 ⊆ T

and every S4 ⊆ T is not a polychromatic subdigraph (T is a 2-colored
tournament) and there exists a non-quasi-monochromatic S4 ⊆ T5, namely
S4 = (v3, v2, v1) ∪ (v3, v4, v1) ⊆ T5

32
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Figure 7. Remarks 7 and 8 (from left to right).

5. Open Problems

We still ask ourselves if an m-colored tournament has a kernel by monochro-
matic paths whenever one of the following statements holds. Unfortunately
the technique used in the previous theorems do not allow us to answer:

(1) There is no 3-colored C3 and every T4 is an at most 3-colored subdi-
graph.

(2) Every Ct ⊆ T and every St ⊆ T (t ≤ 4) are subdigraphs colored with
at most 2 colors.
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(3) The tournament does not contain some 3-colored C3 and every S4 ⊆ T

is a quasimonochromatic subdigraph.
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