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1. Introduction

In 1959 Grötsch [9] proved that every planar graph without 3-cycles is 3-
colorable. In 1976 Steinberg [12] conjectured that every planar graph with-
out 4- and 5-cycles is 3-colorable. In fact, there exist 4-critical planar graphs
which have only 4-cycles but no 5-cycles or only 5-cycles but no 4-cycles
[1]. In 1990, Erdös proposed the following relaxed conjecture: every planar
graph without cycles of size {4, 5, . . . , k}, k ≥ 5, is 3-colorable. Abbott and
Zhou [1] proved that the above conjecture holds for k = 11. Borodin [3]
improved the result by showing that the result holds for k = 10. Borodin [2]
and Sanders and Zhao [11] further improved the result showing that k = 9.
To date, the best known result is by Borodin et al. [4], where it is shown
that any planar graph without cycles of length in {4, 5, 6, 7} is 3-colorable.
Xiaofang, Chen and Wang [14] showed that a planar graph without cycles of
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length 4, 6, 7 and 8 is 3-colorable. Chen, Raspaud and Wang [8] showed that
a planar graph without cycles of length 4, 6, 7 and 9 is 3-colorable. Zhang
and Wu [16] showed that every planar graph without 4, 5, 6 and 9-cycles is
3-choosable. Wang and Chen [13] proved that every planar graph without
4, 6, and 8-cycles is 3-colorable. In this article, we show that the result holds
true for planar graphs without cycles of length in {4, 5, 8}.

Another problem somewhat related to Steinberg’s conjecture is the
Havel’s conjecture [10]. In 1969, Havel [10] posed the following problem:
Does there exist a constant d such that every planar graph with the mini-
mum distance between triangles at least d is 3-colorable? Some of the recent
results on Havel’s problems are that every planar graph without 3-cycles at
distance less than d and without 5-cycles is 3-colorable (d = 4 [6] and d = 3
[5, 15]). Borodin et al. [7] proved that a planar graph without adjacent tri-
angles and without 5- and 7-cycles is 3-colorable. In this paper, we intend
to prove the following result:

Theorem 1. Every planar graph without 4-, 5- and 8-cycles is 3-colorable.

We use G to denote the class of planar graphs without 4-, 5-, and 8-cycles.
Let Ci denote an i-cycle. A 9- or a 12-cycle is bad if the subgraph inside
the cycle has a partition into 6- and 3-cycles. We call a cycle of length
{3, 6, 7, 9, 10, 11, 12} that is not bad a good cycle. We would prove a stronger
version of Theorem 1 as given below:

Theorem 2. Let G be a graph in G. Let D be an arbitrary good cycle of G.

Then every proper 3-coloring of D can be extended to a proper 3-coloring of

the whole graph G.

Assuming that Theorem 2 holds, we can easily establish Theorem 1. Suppose
G ∈ G, namely, G contains no 4-, 5- and 8-cycles. We confirm that G

contains Ci for some fixed i ∈ {6, 9}, or else, G is 3-colorable by the result
of [8] or [13]. Suppose that G contains C6. It is easy to see that C6 is
chordless and has a proper 3-coloring φ. By Theorem 2, φ can be extended
to both inside and outside of C6 to make a proper 3-coloring of G. If G
contains C9, it is again easy to see that C9 is chordless and has a proper
3-coloring φ. By Theorem 2, φ can be extended to both inside and outside
of C9 to make a proper 3-coloring of G.

Only simple graphs are considered in this paper. A plane graph is a
particular drawing of a planar graph in the Euclidean plane. For a plane
graph G, we denote its vertices, edges, faces and maximum degree by V (G),
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E(G), F (G), and ∆(G) respectively. We use k-vertex, k+-vertex, k−-vertex,
> k-vertex, < k-vertex to denote a vertex of degree k, at least k, or at most
k, greater than k, less than k respectively. Similarly, we can define k-face,
k+-face, k−-face, > k-face, < k-face. We say that two cycles or faces are
adjacent if they share at least one common edge. For f ∈ F (G), we use b(f)
to denote the boundary walk of f . If u1, u2, . . . , un are the boundary vertices
of f in the clockwise order, we write f = [u1u2 . . . un]. Given two vertices u
and v in a cycle C, let C[u, v] denote the path of C in the clockwise order
from u to v (including u and v), and let C(u, v) = C[u, v]\{u, v}. A cycle C

in a plane graph G is called separating if int(C) 6= ∅ and ext(C) 6= ∅, where
int(C) and ext(C) represent the sets of vertices located inside and outside
C, respectively.

2. Proof of Theorem 2

Assume that G is a minimal (least number of vertices) counterexample to
Theorem 2. Without loss of generality, assume that the outside face f0 is of
degree 6, 7, 9, 10, 11 or 12 such that a proper 3-coloring φ of the boundary
vertices of f0 cannot be extended to the whole graph G. This implies that
there exists at least one vertex in the interior of b(f0). In fact, ∆(G) ≥ 3
in this case. In the sequel, we write C as the boundary walk of f0, i.e.,
C = b(f0). Other faces in G different from f0 are called the internal faces.
The vertices in C are called the outer vertices and other vertices the internal
vertices. An internal 3-vertex incident to a 3-face is called bad.

Claim 1. G does not contain a separating good cycle.

Proof. Suppose that G has such a separating cycle Ci. Then we can
extend φ to G − int(Ci) by the minimality of G. Subsequently, we delete
the (possible) chords from Ci and extend the 3-coloring of Ci induced by φ

to G− ext(Ci) (this is possible due to the minimality of G). �

Claim 2. G is 2-connected.

Proof. Assume that C contains a cut vertex u. Assume that B is an end
block with a cut vertex u ∈ V (G)\V (C). Due to minimality of G, we can
extend φ to G− (B − u), then 3-color B, and thus obtain an extension of φ
to G. �
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Claim 3. Each 2-vertex in G belongs to C; no 2-vertex in C is incident to
a 3-face.

Proof. Let G contains a 2-vertex v ∈ V (G)\V (C). Then we can extend
coloring φ to G−v by the minimality of G, then color v with a color different
from the colors of its neighbors in G. If a 2-vertex v in C is incident to a
3-face, we can extend φ to G− v (due to minimality of G) and then recolor
v with a color different from the colors of its neighbors in G. �

Claim 4. No cycle of length at most 9 in G has a non-triangular chord. In
particular, if C is a good cycle and boundary of the external face, it has no
chord at all.

Proof. If G contains a cycle of length at most 9 with a non-triangular
chord, then it is easy to show that G must contain a cycle of length 4, 5 or
8, contradicting the assumption.

Suppose that C has a chord e. If e cuts a 3-cycle C3 from C, then C3

forms a 3-face by Claim 1, which contradicts Claim 3. Otherwise, it follows
that |C| = 10 or |C| = 11 or |C| = 12 by the previous argument.

Assume that |C| = 10. Since G contains no 4-, 5-, 8-cycles, e cuts C

into two cycles C1 = C6 and C2 = C6. If both int(C1) and int(C2) are
empty, then it is straightforward to derive that G is 3-colorable. Otherwise,
at least one of C1 and C2 is a separating cycle, which contradicts Claim 1.

Assume that |C| = 11. Since G contains no 4, 5, 8-cycles, e cuts C into
two cycles C1 = C6 and C2 = C7. If both int(C1) and int(C2) are empty,
then it is straightforward to derive that G is 3-colorable. Otherwise, at least
one of C1 and C2 is a separating cycle, which contradicts Claim 1.

Assume that |C| = 12. Then e must cut C into two cycles C1 = C7

and C2 = C7. If int(C1) and int(C2) are empty, then G is 3-colorable.
Otherwise, either C1 or C2 is a separating cycle, again contradicting Claim
1. Thus, C has no chord. The proof of Claim 4 is complete. �

Claim 5. Let C be a good cycle. For v1, v2 ∈ C and x 6∈ C, if xv1, xv2 ∈
E(G), then v1v2 ∈ E(C).

Proof.Assume on the contrary that v1v2 does not belong to E(C). Let l de-
note the number of edges in sector C[v1, v2] i.e., |C[v1, v2]| = l ≤ |C[v2, v1]|.
Then 2 ≤ l ≤ 6, by |C| ≤ 12. Let C1 = C[v1, v2] ∪ v2xv1 and C2 =
C[v2, v1]∪ v1xv2. Then C1 is an (l+2)-cycle and C2 is a (|C| − l+2)-cycle.
Since G contains no 4, 5 and 8-cycles, l 6= 2, 3, 6.
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Assume that l = 4. Then C1 is a 6-cycle and C2 is a (|C| − 2)-cycle. Thus,
|C| 6= 6, 7, 10. By Claim 1, neither C1 nor C2 is separating. It is easy to see
that only way C2 can have a chord is when |C2| = 10, and then it is split
into two 6-cycles. In this case, G consists of three 6-cycles which can be
3-colored easily. For all the other cases of C2 , there is no chord (otherwise,
it implies presence of a cycle of length 4, 5 or 8). Hence, Both C1 and
C2 form the faces of G, which implies that x is an internal 2-vertex. This
contradicts Claim 3.

Assume that l = 5. C1 is a 7-cycle and C2 is a (|C| − 3)-cycle. Thus,
|C| 6= 7, 8, 11. By Claim 1, neither C1 nor C2 is separating. It is easy to see
that C2 does not have any chord (otherwise, it implies presence of a cycle of
length 4, 5 or 8. Hence, Both C1 and C2 form the faces of G, which implies
that x is an internal 2-vertex. This contradicts Claim 3. �

Claim 6. Let C be a good cycle. For v1, v2 ∈ C and if v1x, xy, yv2 ∈ E(G)
and x, y ∈ int(C), then v1v2 ∈ E(C).

Proof.Assume on the contrary that v1v2 does not belong to E(C). Let l de-
note the number of edges in sector C[v1, v2] i.e., |C[v1, v2]| = l ≤ |C[v2, v1]|.
Then 2 ≤ l ≤ 6, by |C| ≤ 12. Let C1 = C[v1, v2] ∪ v2xyv1 and C2 =
C[v2, v1]∪v2yxv1. Then C1 is an (l+3)-cycle and C2 is a (|C|− l+3)-cycle.

Assume that l = 2. Then C1 is a 5-cycle, contradicting assumption.

Assume that l = 3. Then C1 is a 6-cycle and C2 is a |C|-cycle. Note that
C1 is not separating. Also C1 cannot have any chord. If C2 is good, it
cannot be separating by Claim 1. Hence, as d(x), d(y) ≥ 3, there must be at
least two chords of C2. If |C2| = 6, there cannot exist two chords without
creating a 4-cycle (contradicting the assumption). If |C2| = 7, there is a
5-cycle contradicting assumption again. When |C2| = 9, either there is a
4- or 5- cycle or there are two 3-cycles adjacent to C1 creating a 8-cycle,
contradicting assumption. If |C2| = 10 or 11, there is a 4-, 5- or 8-cycle. If
|C2| = 12, then either there is a 4-, 5- or 8-cycle or a bad cycle. If C2 is
bad, then we cannot have d(x) ≥ 3 and d(y) ≥ 3, contradicting Claim 3.

When l = 4, C1 is a 7-cycle and C2 is a (|C| − 1)-cycle. By Claim
6, neither C1 nor C2 is separating(unless bad). First assume that C1 does
not have any chord. If C2 is good, it cannot be separating by Claim 1.
Hence, as d(x), d(y) ≥ 3, there must be at least two chords of C2. There
are four possibilities of good C2: 6-cycle, 8-cycle, 9-cycle, 10-cycle or 11-
cycle. In all these cases, we can establish that there is a cycle of length in
{4, 5, 8} or a bad C2. When C2 is bad, there is a contradiction as either
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d(x) = 2 or d(y) = 2 or there is 8-cycle. Next we assume that C1 has an
internal chord. The only possible chord divides it into 6- and 3-faces. By
Claim 1, C2 (when good) cannot be separating. Let us assume that C2

is good. Hence, as d(x), d(y) ≥ 3, there must be at least one chord of C2

with one end at x or y. If |C2| = 6, there is a 4- or 5-cycle (contradicting
the assumption). If |C2| = 8, there is a 4- or 5-cycle or a 8-cycle (a 6-
cycle adjacent to two 3-cycles or two adjacent 3-cycles), contradicting the
assumption. When |C2| = 9, either there is a 4-, 5- or 8-cycle. If |C2| = 10,
there is a 4- or 5-cycle or a 8-cycle (a 6-cycle adjacent to two 3-cycles) or
C is bad, contradicting the assumption. If C2 is bad, then we have 6-cycle
adjacent to two 3-cycles ( hence a 8-cycle) or two adjacent 3-cycles (hence
a 4-cycle) contradicting assumption.

When l = 5, C1 is a 8-cycle, a contradiction.

When l = 6, C1 is a 9-cycle and C2 is a |C| − 3 cycle. Hence, l 6= 7, 8, 11.
By Claim 6, neither C1 nor C2 is separating (unless bad). Note that C1

cannot have any chord without creating a cycle of length in {4, 5, 8}. If C2

is good, it cannot be separating by Claim 1. Hence, as d(x), d(y) ≥ 3, there
must be at least two chords of C2. There are four possibilities of good C2:
3-cycle, 6-cycle, 7-cycle, or 9-cycle. In the first case, there cannot be any
chord. For all the other cases, we can establish that there is a cycle of length
in {4, 5, 8}. When C2 is bad, there is a contradiction as either d(x) = 2 or
d(y) = 2 or there is 8-cycle. Hence, Claim 6 is proved. �

Claim 7. Let C be a good cycle. For v1, v2 ∈ C and if v1x, xy, yz, zv2 ∈
E(G) and x, y, z ∈ int(C), then v1v2 ∈ E(C).

Proof.Assume on the contrary that v1v2 does not belong to E(C). Let l de-
note the number of edges in sector C[v1, v2] i.e., |C[v1, v2]| = l ≤ |C[v2, v1]|.
Then 2 ≤ l ≤ 6, by |C| ≤ 12. Let C1 = C[v1, v2] ∪ v2xyv1 and C2 =
C[v2, v1]∪v2yxv1. Then C1 is an (l+4)-cycle and C2 is a (|C|− l+4)-cycle.

Assume that l = 2. Then C1 is a 6-cycle and C2 is a (|C| + 2)-cycle.
Note that C1 is not separating. Also C1 cannot have any chord. If C2 is
good, it cannot be separating by Claim 1. Hence, as d(x), d(y), d(z) ≥ 3,
there must be at least two chords of C2. If |C2| = 9, C is a bad cycle
contradicting assumption. When |C2| = 10, 11, 12, 13 or 14, either there is
a 4-, 5- or 8-cycle, contradicting assumption.

When l = 3, C1 is a 7-cycle and C2 is a (|C| + 1)-cycle. Note that C1

is not separating. First assume that C1 does not have any chord. If C2 is
good, it cannot be separating by Claim 1. Hence, as d(x), d(y), d(z) ≥ 3,
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there must be at least three chords of C2. There are four possibilities of
good C2: 7-cycle, 10-cycle, 11-cycle, 12-cycle or 13-cycle. In all these cases,
we can establish that there is a cycle of length in {4, 5, 8} or a bad C2. When
C2 is bad, there is a contradiction as there is an internal 2-vertex or there is
8-cycle. Next we assume that C1 has an internal chord. The only possible
chord divides it into 6- and 3-faces. By Claim 1, C2 (when good) cannot be
separating. Let us assume that C2 is good. Hence, as d(x), d(y), d(z) ≥ 3,
there must be at least two chords of C2 with one end at x, y or z. If
|C2| = 7, there is a 4-, 5- or 8-cycle (contradicting the assumption). If
|C2| = 10, 11, 12 or 13, we can again show that there is a 4- or 5-cycle or
a 8-cycle, contradicting the assumption. If C2 is bad, then we have 6-cycle
adjacent to two 3-cycles (hence a 8-cycle) contradicting assumption.

When l = 4, C1 is a 8-cycle, a contradiction.

When l = 5, C1 is a 9-cycle and C2 is a (|C| − 1)-cycle. Hence, l 6= 5, 6, 9.
Neither C1 nor C2 is separating (unless bad). Note that C1 cannot have any
chord without creating a cycle of length in {4, 5, 8}. If C2 is good, it cannot
be separating by Claim 1. Hence, as d(x), d(y), d(z) ≥ 3, there must be at
least three chords of C2. There are four possibilities of good C2: 6-cycle,
9-cycle, 10-cycle or 11-cycle. In the first case, there cannot be any chord.
For all the other cases, we can establish that there is a cycle of length in
{4, 5, 8}. When C2 is bad, there is a contradiction as either there is an
internal 2-vertex or there is 8-cycle.

When l = 6, then C1 is a 10-cycle and C2 is a (|C| − 2)-cycle. Hence,
l 6= 6, 7, 10. Neither C1 nor C2 is separating (unless bad). C1 can have
a chord only in two possible ways (the chord divides C1 as 3 + 9 or 6 + 6
cycles). If C2 is good, it cannot be separating by Claim 1. Hence, as
d(x), d(y), d(z) ≥ 3, there must be at least two chords of C2. There are four
possibilities of good C2: 6-cycle, 7-cycle, 9-cycle or 10-cycle. In the first
case, there cannot be any chord. For all the other cases, we can establish
that there is a cycle of length in {4, 5, 8} or a bad cycle. When C2 is bad,
there is a contradiction as either there is an internal 2-vertex or there is
8-cycle. Hence, Claim 7 is proved. �

Now, we shall make G into smaller graphs by identifying vertices. In doing
so, we should be sure that we do not

(i) identify two vertices of C (because then C is not a cycle anymore),

(ii) create an edge between two vertices of C colored the same (for otherwise
our precoloring φ of C would be destroyed),
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(iii) create loops,

(iv) create multiple edges,

(v) create cycles of length 4, 5 or 8, and

(vi) make C a bad cycle.

Claim 8. G has no 6-face other than C.

Proof. Suppose f = wxyzpq is a face inside C. If f has an adjacent 3-cycle,
we remove the common edge between f and the 3-cycle. The resulting graph
is smaller than G, and does not have any 4-, 5- or 8-cycle. So we assume
that G does not have any adjacent 3-cycle. By Claim 4, f has at least one
internal vertex. Let y be an internal vertex. Identifying x with p within f

cannot violate (i). Suppose x, p ∈ C. Let z ∈ C. Then z and x cannot be
consecutive along C as otherwise, it violates the assumption of no 5-cycle.
This implies by Claim 5 that y cannot be internal (a contradiction) or z is
internal. If z is internal, then by Claim 6, x and p are consecutive on C,
but then there is a 4-cycle in G.

Next suppose (ii) is an obstacle for identifying x with p. With out loss
of generality, x ∈ C, p does not belong to C, and there is an edge pvi such
that vi ∈ C, where vi is not adjacent to x along C. If q is on C, by Claim 5, q
is adjacent to vi. In this case, there is a 3-cycle adjacent to f , contradicting
assumption. If w is on C, by Claim 6, it must be adjacent to vi. This
creates a 4-cycle, contradicting assumption. Similarly y and z cannot be on
C. Hence, all of y, z, p, q and w must be internal. Hence, by Claim 7, vi is
adjacent to x along C, contradicting the assumption.

The property (iii) follows from the absence of 4-cycles in G. The prop-
erty (iv) is true else there is a 5-cycles in G.

Suppose we have created a 4-, 5- or 8-cycle C ′ = xv1 . . . vk, where y ∈
int(C ′) and k ∈ {3, 4, 7}. If k = 3 then there is a separating 7-cycle if
y does not belong b(C ′). However, y cannot actually coincide with one of
vi’s as then there is a 4-cycle in G. If k = 4 then there is a separating
8-cycle in G contradicting assumption. If k = 7 and y does not coincide
with any of the vi’s, there is a separating cycle (zwxv1 . . . vk) of length 10,
contradicting Claim 1. If y coincides with one of the vi’s, then the only
possible case without creating a 4-, 5- or 8-cycle is when y coincides with
v2 or v6. In both the cases there is a 3-cycle incident at y. This contradicts
the assumption that there is no 3-cycle adjacent to f .

Finally, collapsing the 6-face f by identifying x with p cannot make C

bad. Hence Claim 8 is proved. �
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We use the definition of good path as in [13]. A path P = v1v2v3v4 in the
interior of C is called good if the following properties hold:

(a) d(vi) = 3 for each i = 1, 2, 3, 4;

(b) . . . xPx′ . . . is on the boundary of a face;

(c) there is a triangle [uv1v2] with u 6= x;

(d) tv3, t
′v4 ∈ E(G), where t 6= x′ and t′ 6= x′.

Obviously, when t = t′, a good path is just a tetrad defined in [4].

Claim 9. G does not contain a good path P .

Proof. Suppose on the contrary that such a good path P exists in G. Let
G′ denote the graph obtained from G by deleting vertices v1, v2, v3 and v4
and identifying x and t. It is easy to see that G′ contains no 4, 5 and 8-
faces. In order to show that G′ ∈ G, we have the following argument. We
first notice that G′ has neither loops nor multiple edges. Indeed, if G′ has a
loop, then x is adjacent to t in G which leads to a 5-cycle xtv3v2v1x. If G′

has multiple edges, then both x and t are adjacent to a common vertex y so
that a 6-cycle xytv3v2v1x is established. This implies presence of a 8-cycle
xytv4v3v2uv1x.

Next, we claim that G′ does not contain a separating cycle of length
4, 5 or 8. In fact, if C∗ = xy1y2 . . . ykt is a separating cycle in G′, where
k ∈ {3, 4, 7}, then C ′ = xy1y2 . . . yktv3v2v1x is a cycle of length 8, 9 or 12 in
G. Clearly, u does not belong C ′. Thus, C ′ separates v4 from u in G, which
contradicts Claim 1 unless C ′ is bad. If C ′ is bad, there is a 6-cycle adjacent
to two 3-cycles. This implies presence of 8-cycle, contradicting assumption.

We need to prove that identifying x and t cannot damage the coloring
of C. If this is not true, then we either identify two vertices of C colored
differently, or insert an edge between two vertices of C colored by the same
color. This means that the total distance from x and t to C is at most 1,
that is, at least one of x and t lies on C. Without loss of generality, assume
that t ∈ C and let C = u1u2 . . . u|C|u1, where the subscripts increase in
the clockwise order. Suppose that u|C| is a vertex of C nearest to x. Since
|C| ∈ {6, 7, 9, 10, 11, 12}, C is split by u|C| and t into two paths, P1 and P2,
one of which, say P1 = u|C|u1 . . . ujt, consists of at most six edges. Thus,
P1 and the path tv3v2v1xu|C| yield a cycle of length at most 11. Since
xv1v2v3v4x

′ is on the boundary of a face, C ′ = u|C|u1u2 . . . ujtv3v2v1xu|C|

separates u from v4, contradicting Claim 1.
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Finally, we prove that any 3-coloring φ of G′ can be extended to a 3-coloring
of G in the following two ways:

(i) Assume that t = t′. We first color v4 and v3 in succession, and then
properly color v1 and v2. Since x and t have the same color, x and v3
must have different colors, therefore the required coloring exists.

(ii) Assume that t 6= t′, i.e., v4 is not adjacent to t. If φ(t) does not
belong to {φ(t′), φ(x′)}, we color v4 with φ(t) and then color v3, since
φ(x) = φ(t), φ(x) 6= φ(v3). Thus, v1 and v2 can be properly colored in
this case. Suppose that φ(t) ∈ {φ(t′), φ(x′)}. We can properly color v4
with a color different from φ(t). Afterwards we color v3, v2 and v1 in
succession. �

Claim 10. No 3-face is adjacent to a k-face for k = 3, 7.

Proof. Suppose that G contains a 3-face f adjacent to a k-face f ′ =
[v1v2 . . . vk] for some k ∈ {3, 7}. If k = 3, it is easy to derive that b(f)∪b(f ′)
contains a 4-cycle, a contradiction.

Assume that k = 7. If f ′ and f have two common boundary edges, then
G has an internal 2-vertex, contradicting Claim 3. So we may suppose that
f = [v1uv2]. If u does not belong to b(f ′), then a 8-cycle uv2 . . . v7v1u is
constructed in G, which is impossible. So, u ∈ b(f ′).

Clearly, u 6= v3. If u = v4, a 5-cycle v1v4v5v6v7v1 is established. If
u = v5, a 4-cycle v2v3v4v5v2 is established. We always get a contradiction.
We can give a similar proof for u = v6 or u = v7. This proves Claim 10. �

Claim 11. No two 6-faces can have more than one common edge.

Proof. Suppose that there are two adjacent 6-faces f = [v1v2v3v4v5v6]
and f ′ = [v1v2u1u2u3u4] with v1v2 as a common edge. If f and f ′ have
any other common edge then it is easy to establish presence of a separating
cycle of length at most 12 (contradicting Claim 1) or of a 4-, 5-, or 8-cycle
contradicting that G ∈ G. �

Claim 12. No two adjacent 6-faces can have 3 or more common vertices.

Proof. If the adjacent 6-faces have 3 or more common vertices then it
is easy to establish presence of a separating cycle of length at most 12
(contradicting Claim 1) or of a 4-,5-, or 8-cycle contradicting that G ∈ G. �

Claim 13. The following properties hold true.
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1. No 7-face shares more than one edge with a ≤ 9-face.

2. No 6-face shares more than one edge with a ≤ 10-face.

3. No 3-face shares more than one edge with a ≤ 13-face.

Proof. In all these cases, it is easy to establish presence of a separating
cycle of length at most 12 (contradicting Claim 1) otherwise. �

Claim 14. The following properties hold true.

1. No 6-face is adjacent to two or more 3-faces.

2. No 7-face is adjacent to a 3-faces.

Proof. In both the cases, it is easy to establish presence of a 8-cycle (con-
tradicting that G ∈ G) otherwise. �

Claim 15. There cannot be three 6-faces incident with a 3-vertex.

Proof. In this case, it is easy to establish presence of a separating 12-cycle
(contradicting contradicting Claim 1) otherwise. �

Claim 16. Let us consider a 3-face. The following properties hold with
respect to the adjacent faces:

1. There cannot be any adjacent face of degree 7.

2. There cannot be two faces of degree 6 adjacent to the 3-face.

3. There cannot be three faces of length 6, 9, and 3 mutually adjacent to
each other.

Proof. (1) is basically restatement of 14(2). This is true as there is no
8-cycle by assumption. If (2) is false, there is separating 9-cycle contra-
dicting claim 1. If (3) is false, there is separating 12-cycle contradicting
Claim 1. �

3. Discharging

Since by Euler’s formula |V (G)| − |E(G)|+ |F (G)| = 2 and
∑

v∈V (G) d(v) =∑
f∈F (G) d(f) = 2|E(G)|,

∑

v∈V (G)

(d(v) − 4) +
∑

f∈F (G)

(d(f)− 4) = −8.(1)



786 S.A. Mondal

We define a charge function w by w(v) = d(v)− 4 for each vertex v ∈ V (G),
w(f) = d(f)−4 for each internal face f ∈ {F (G)\f0}, and w(f0) = d(f0)+4.
It follows from identity (1) that the total sum of charge is equal to 0. We
intend to design appropriate discharging rules and redistribute charges so
that once the discharging is finished, a new charge function w′ is produced.
The discharging rules maintain that the total charge is kept fixed when the
discharging is in process. Nevertheless, after the discharging is complete,
the new charge function w′(x) satisfies the following properties:

1. w′(x) ≥ 0 ∀x ∈ V (G) ∪ F (G);

2. there exists some x∗ ∈ V (G) ∪ F (G) such that w′(x∗) > 0.

This leads to the following obvious contradiction,

0 <
∑

x∈V (G)∪F (G)

w′(x) =
∑

x∈V (G)∪F (G)

w(x) = 0.(2)

Our discharging rules are as follows:

R0. Each 3-face f = xyz receives 1
3 from each adjacent face, unless d(x) = 3,

d(y) ≥ 4, and d(z) ≥ 4, in which case f receives 1
6 each from faces

adjacent to xy, and xz, and receives 2
3 from the face adjacent to yz.

R1. Every 3-vertex v 6∈ C receives 1
3 from each incident face, unless v is

incident with one 3-face, in which case v receives 1
2 from each of the

two > 3 faces.

R2. Every 2-vertex receives 5
3 from the external face, and 1

3 from the other
adjacent (i.e., internal) face.

R3. The external face f0 gives 1 to each incident vertex of degree at least
3.

R4. Let v1, v2, v3 be consecutive vertices of external face f0 with d(v2) ≥ 4.
Then v2 gives 1 to each incident face not incident with edges v1v2 and
v2v3. Furthermore, if the internal face receiving 1 is a 3-face (v2xy)
where x and y do not belong to f0, then it passes the 1 to the neigh-
boring internal face (one with the common edge xy).

R5. Each 9+-face f 6= f0 gives d(f)−4
2 to f0.

Claim 17. For all v ∈ V (G), w′(v) ≥ 0.

Proof. Let us assume that v does not belong to C. If d(v) = 3 and v

is not incident with a 3-face, w′(v) = 3 − 4 + 3 × 1
3 = 0. If d(v) = 3

and v is incident with a 3-face, w′(v) = 3 − 4 + 2 × 1
2 = 0. If d(v) ≥ 4,



Planar Graphs Without 4-, 5- and 8-cycles are ... 787

w′(v) = w(v) ≥ 0. Now suppose v ∈ C. If d(v) = 2 then by (R2), w′(v) =
2 − 4 + 5

3 + 1
3 = 0. If d(v) = 3, by (R3) w′(v) = 3− 4 + 1 = 0. If d(v) ≥ 4,

w′(v) = d(v)− 4 + 1− (d(v) − 3)× 1 = 0, by (R3) and (R4). �

Claim 18. For all f ∈ F (G)\C, w′(f) ≥ 0.

Proof. If d(f) = 3, then w′(f) ≥ 3−4+3× 1
3 = 0 or 3−4+1× 2

3+2× 1
6 = 0,

by (R0). If f appears in R4, then it may have additional charge, hence
w′(f) ≥ 0.

Let us assume d(f) = 7. Let f = v1v2v3v4v5v6v7. We have seen that
f cannot be adjacent to any 3-face. Hence by (R1) and (R2), w′(f) ≥
7− 4− 7× 1

3 > 0.
Let us consider the case of d(f) ≥ 9. Note that Claim 9 holds. We can

partition the donation of f to the vertices by (R1), (R2) and to the edges
by (R0) into d(f) groups so that the total donation per group is at most 1

2 .
For example, if f gives the edge vivi+1 (notation is in mod d(f)) a charge of
2
3 (by (R0), then we can split the charge as 1

3 each to the two vertices as vi
and vi+1. If f gives the edge vivi+1 a charge of 1

3 or 1
6 (by (R0), then we can

split the charge as at most 1
6 each to the two vertices as vi−1 and vi+2, which

can receive 1
3 each at most by (R1) and (R2). So each of vi−1 and vi+2 gets

at most 1
3 +

1
6 or 1

2 . Hence, w
′(f) ≥ d(f)− 4− d(f)× 1

2 − (d(f)− 8)× 1
2 ≥ 0.

�

Claim 19. w′(f0) > 0.

Proof. If f is the outer face f0, then d(f0) ∈ {6, 7, 9, 10, 11, 12}. Since G is
different from C, and G is 2-connected, it follows that C has at least two ≥ 3-
vertices. Thus w′(f0) ≥ d(f0)+4− 2

3−
5
3×(d(f0)−2)−2×1. Since there is no

4-, 5-, 8-cycle, there is an internal non-triangular face with at least 4 internal
vertices. This implies an internal face of dimension at least d(f0)−2+4, i.e.,
d(f0) + 2. This face gives at least (d(f0) + 2− 8)× 1

2 , i.e., (d(f0)− 6)× 1
2 to

f0. Hence, w
′(f0) = d(f0)+4− 2

3 −
5
3 × (d(f0)−2)−2×1+(d(f0)−6)× 1

2 =
1
6 × (22− d(f0)). For the case, there is no 2-vertex, by rules (R0), (R3) and
(R5), w′(f0) > d(f0) + 4 − 1 × d(f0) −

2
3 × (12 × d(f0)) =

1
3 × (12 − d(f0)).

This implies w′(f0) > 0. �

4. Conclusion

To date, the best known result towards Steinberg’s conjecture is by [4] that
states that any planar graph without cycles of length in {4, 5, 6, 7} is 3-
colorable. In this article, we show that the result holds true for any planar
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graph without cycles of length in {4, 5, 8}. This takes us one step closer to
resolving the Steinberg’s conjecture. The result is promising with respect to
Havel’s problem too.
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