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Abstract

A Roman dominating function on a graph G is a function f :
V(G) — {0, 1, 2} satisfying the condition that every vertex u for which
f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2.
The weight of a Roman dominating function is the value f(V(G)) =
> uev(c) f(u). The Roman domination number, yr(G), of G is the
minimum weight of a Roman dominating function on G. In this pa-
per, we define the Roman bondage br(G) of a graph G with maximum
degree at least two to be the minimum cardinality of all sets ' C F(QG)
for which yr(G — E') > yr(G). We determine the Roman bondage
number in several classes of graphs and give some sharp bounds.
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1. TERMINOLOGY AND INTRODUCTION

Let G = (V(G), E(G)) be a simple graph of order n. We denote the open
neighborhood of a vertex v of G by N¢g(v), or just N(v), and its closed neigh-
borhood by Nglv] = N[v]. For a vertex set S C V(G), N(S) = U,cg N(v)
and N[S] = ,cq N[v]. The degree deg(x) of a vertex z denotes the number
of neighbors of x in G, and A(G) is the mazimum degree of G. Also the
eccentricity, ecc(x), of a vertex x is maximum distance of the vertices of G
from z. A set of vertices S in G is a dominating set, if N[S| = V(G). The
domination number, v(G), of G is the minimum cardinality of a dominating
set of G. If S is a subset of V(G), then we denote by G[S] the subgraph of
G induced by S. For notation and graph theory terminology in general we
follow [6].

With K,, we denote the complete graph on n vertices and with C,, the
cycle of length n. For two positive integers m,n, the complete bipartite
graph K, ,, is the graph with partition V(G) = V; U V4 such that |Vi| = m,
|V2| = n and such that G[V;] has no edge for ¢ = 1,2, and every two vertices
belonging to different partition sets are adjacent to each other.

For a graph G, let f : V(G) — {0, 1,2} be a function, and let (Vp; Vi; V3)
be the ordered partition of V(G) induced by f, where V; = {v € V(Q) :
f(v) =i} and for i« = 0,1,2. There is a 1 — 1 correspondence between
the functions f : V(G) — {0,1,2} and the ordered partition (Vp; V1;Va) of
V(G). So we will write f = (Vo; V1; Va).

A function f : V(G) — {0,1,2} is a Roman dominating function (or
just RDF) if every vertex u for which f(u) = 0 is adjacent to at least one
vertex v for which f(v) = 2. The weight of a Roman dominating function
is the value f(V(G)) = >_,cv(q) f(w). The Roman domination number of a
graph G, denoted by yr(G), is the minimum weight of a Roman dominating
function on G. A function f = (Vp; V1; V3) is called a yg-function (or vg(G)-
function when we want to refer f to ), if it is a Roman dominating function
and f(V(G)) = ’YR(G% [27 7, 8]'

The bondage number b(G) of a nonempty graph G is the minimum
cardinality among all sets of edges E' C F(G) for which v(G — E') > v(Q).
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This concept was introduced by Bauer, Harary, Nieminen and Suffel in [1],
and has been further studied for example in [4, 5, 9]). For more information
on this topic we refer the reader to the survey article by Dunbar, Haynes,
Teschner and Volkmann [3].

In this paper we study bondage by considering a variation based on
Roman domination. The Roman bondage number br(G) of a graph G is the
cardinality of a smallest set of edges £ C E(G) for which yg(G — E’) >
Vr(G).

We note that if G is a connected graph on two vertices, then G ~ K>
and Yg(G) = 2. If e € E(G), then G — e ~ K, and thus vgr(G —e) = yr(G).
Therefore the Roman bondage number is only defined for a graph G with
maximum degree at least two.

We recall that a leaf in a graph G is a vertex of degree one, and a
support vertex is the vertex which is adjacent to a leaf.

2. UPPER BOUNDS
Theorem 1. If G is a graph, and xyz a path of length 2 in G, then
(1) br(G) < deg(x) + deg(y) + deg(z) — 3 — [N (z) N N(y)|.
If x and z are adjacent, then
(2) br(G) < deg(x) + deg(y) + deg(z) — 4 — [N(z) N N(y)|.

Proof. Let H be the graph obtained from G by removing the edges incident
with x, y or z with exception of yz and all edges between y and N (z) NN (y).
In H, the vertex x is isolated, z is a leaf and y is adjacent to z and all
neighbors of y in H, if any, lie in Ng(z).

Let f = (Vo,V1, V) be a yg(H)-function. Then x € V; and, without
loss of generality, z € Vp U V1.

If z € Vp, then y € V;, and therefore (Vo U {x}, Vi) — {z},V2) is a RDF
on G of weight less than f, and (1) as well as (2) are proved.

Now assume that z € V4. If y € Vi, then (VoU{z}, V1 —{y, 2}, Vo U{y})
is also yg(H )-function, and we are in the situation discussed in the previous
case. However, if y € V{, then there exists a vertex w € Ng(z) N Ng(y) such
that w € V5. Since w is a neighbor of z in G, (Vo U {z},V; — {z},V3) is a
RDF on G of weight less than f, and again (1) and (2) are proved. [
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Applying Theorem 1 on a path xyz such that one of the vertices z,y or z
has minimum degree, we obtain the next result immediately.

Corollary 2. If G is a connected graph of order n > 3, then
br(G) < 4(G) +2A(G) — 3.

Our next upper bound involves the edge-connectivity A\(G), which is the
fewest number of edges whose removal from a connected graph G creates
two components. Since A(G) < 6(G), the next theorem is an extension of
Corollary 2.

Observation 3. If E is an edge cut set in a graph G smaller than br(G),
then yr(G) equals the sum of all yr(G;) where G; emerge by removing E.

Theorem 4. If G is a connected graph of order n > 3, then
br(G) < AG) +2A(G) — 3.

Proof. Let A = \(G), and let E = {e1,ea,...,ex} be a set of edges whose
removal disconnects G. Say e; = ab, and let H, and Hp denote the com-
ponents of G — E containing a and b, respectively. By Corollary 2 we may
assume that H, and Hj are non-trivial. Let a; € V(H,) adjacent to a and
b1 € V(H,) adjacent to b, and let Fj, 4, and Fpp, denote the edges of G
incident with a or a; with exception of aa; and b or b; with exception of
bby, respectively. Suppose on the contrary that br(G) > A(G) + 2A(G) — 3.
Noting that |E| = A < br(G), we observe that Yr(G) = yr(Ha) + vr(Hp).
Since

|Foa, UE| <degg(a) + degg(ar) + A —3 < 2A(G) + X — 3 < br(G),

we deduce that yr(G) = v(H, — {a,a1}) + 2 + yr(Hp). Similarly, since
|Fyp, U E| < degg(b) + degg(br) + X — 3 < 2A(G) + X — 3 < br(G),

we deduce that Yg(G) = yr(Hp—{b,b1})+2+~vr(H,). Altogether we obtain

2vr(G) = yr(Ha— {a,a1}) + 24+ vr(Hy) + yr(Hy— {b,01}) + 2+ vr(H,)
=vr(He—{a,a1}) + 4+ vr(Hp — {b,b1}) + vr(G)
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and thus Yr(G) = yr(He —{a,a1}) +4+vr(Hp — {b,b1}). This is obviously
a contradiction, since

Yr(G) < Yr(Ha —{a,a1}) + yr(arabby) 4+ yr(Hy — {b,01})

< Yr(Ha —{a,a1}) + 3 +yr(Hy — {b,01}). .
Observation 5. If a graph G has a vertex v such that yr(G —v) > vr(G),
then br(G) < A(G).

Proof. Let E be the edge set incident with v. It follows that yr(G — E) >
vr(G), and the result is proved. ]

3. EXAcCT VALUES OF br(G)

In this section we determine the Roman bondage number for several classes
of graphs.

Theorem 6. If G is a graph of order n > 3 with exactly k > 1 vertices of
degree n — 1, then br(G) = [£].

Proof. Since k > 1, we note that yr(G) = 2. First let E; C E(G) be an
arbitrary subset of edges such that |E;| < [g], and let G' = G — Ey. Tt is
evident that there is a vertex v in G’ such that degg(v) = deggr (v) =n—1,
and so Yr(G') = yr(G) = 2. This shows that bg(G) > [£].

If v1,vg,...,0% € V(G) are the vertices of degree n — 1, then the sub-
graph F' induced by the vertices vy, v, ..., vy is isomorphic to the complete
graph K.

If k is even, then let H; be the graph obtained from G by removing %
independent edges from F. Then A(H;) = n—2 and thus yg(H;) = 3. This
implies br(G) < (%]

If k£ is odd, then let Hy be the graph obtained from G by removing
% independent edges from F. Then there exists exactly one vertex, say
v € V(Hz) such that degp, (vi) = n—1. Let Hs be the graph obtained from
Hj, by removing an arbitrary edge incident with vg. Then A(Hsz) = n — 2
and so yr(Hs) = 3. This implies br(G) < [g]

Combining the obtained inequalities, we deduce that br(G) = [g], and

the proof is complete. ]

Corollary 7. Ifn > 3, then br(K,) = [5].
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Lemma 8 [2]. For the classes of paths P, and cycles Cy,

Yr(FPn) = 7r(Cr) = an-‘ :

Theorem 9. For n > 3,

[ 2 if n=2 (mod 3),

br(Pn) = { 1 otherwise.

Proof. Let P, = v1vs...v,. Corollary 2 yields to br(P,) < 2. First assume
that n = 3k. Lemma 8 implies that yr(P,) = 2k and yr(P, — viv2) =
14+ 9r(Py—1) = 1+ 2k and thus br(P,) = 1. Next assume that n = 3k + 1.
According to Lemma 8, we have yr(P,) = 2k + 1 and yr(P, — vov3) =
2 + yr(Pp—2) = 2+ 2k and so br(P,) = 1. It remains to assume that
n = 3k + 2. By Lemma 8, vg(P,) = 2k + 2. If e is an arbitrary edge
of P,, then P, — e consists of two paths P, and P, of order ny and no,
respectively, such that ny + ne = n and vgr(P, — €) = Yr(P1) + Yr(P2).
Now there are integers ki and k9 such that ny = 3ki,ne = 3ke + 2 or
ny =3k +1,n0o =3ky+1o0rny =3k1 +2,n9 =3ky and k1 + ko = k. In
the first case we deduce from Lemma 8 that

Yr(Pn —€) = Yr(P1) + Yr(P2)

5[

= 2]{31 —|—2]€2+2 :2]{5—{—2:’73(Pn)

This implies that br(P,) > 2 in the first case, and because of br(FP,) < 2 we
obtain br(P,) = 2. The remaining two cases are similar and are therefore
omitted. [ ]

Theorem 10. For n > 3,

3 if n=2 (mod 3),

2 otherwise.

br(Ch) = {

Proof. Let C,, = vivy...v,v1. Corollary 2 leads to br(C,) < 3. If e is
an arbitrary edge of C,,, then C,, — e = P,. Hence Lemma 8 shows that
br(Cy) > 2. We distinguish three cases.
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Assume that n = 3k. Lemma 8 implies that vz(C,,) = 2k and vr(C),, —
{v1va,v2v3}) =1+ Yr(Psk—1) = 1 + 2k and thus br(C,,) = 2.

Assume that n = 3k + 1. Lemma 8 implies that yg(C),) = 2k + 1 and
Yr(Cr, — {v1v2,v3v4}) = 2 + Yr(P3i—1) = 2 + 2k and thus br(C),) = 2.

Assume that n = 3k+2. By Lemma 8, vg(C),) = 2k+2. If e; and eg are
two arbitrary edges of Cy,, then C,, —{e1, e2} consists of two paths P; and P»
of order n; and ngy such that ny +ny = n and yg(C, — {e1,e2}) = yr(P1) +
Yr(P). Now there are integers k1 and kg such that ny = 3kj,ng = 3k + 2
orny =3k1+1,n9=3ky+1o0rny =3k +2,n9 =3k and k1 + ko = k. In
the second case we deduce from Lemma 8 that

Yr(Crn —{e1,e2}) = Yr(P1) + Yr(P2)

_ 6ky + 2 " 6k + 2
N 3 3

= 2k1 + 1+ 2ko +1=2k+2=~g(Cy).

Because of br(C,,) < 3, this leads to br(C,,) = 3 in this case. The remaining
two cases are similar and are therefore omitted. []

Theorem 11. If m and n are integers such that 1 < m < n and n > 2,
then br(Kpmrn) = m, with exception of the case m = n = 3. In addition,
br(Ks33) = 4.

Proof. Let G = K,,,. First notice that if m = 1, then G is a star and
Yr(G —e) =3 > 2 =~g(G) for any edge e, and hence br(G) =1 = m.

Assume next that m = 2. If n = 2, then the desired result follows
from Theorem 10. If n > 3, then Yr(G — e) = vg(G) = 3 for any edge
e. But if e; and ey are two edges incident to a vertex of degree two, then
Yr(G — {e1,e2}) = 4 and thus br(G) =2 =m.

Finally assume that m > 3. Let X and Y be the two partite sets
with |X| = m and [Y| = n. If E is a set of edges with |E| < m and
G1 = G — E, then there are two vertices x € X and y € Y such that
Ng,(x) =Y and Ng,(y) = X. It follows that vg(G1) = 4 = yr(G) and
thus br(G) > m. However, if we remove all edges incident to a vertex
y € Y, then we obtain a graph Gy such that yg(G2) = 5 when n > 4.
This shows that br(G) = m when n > 4. Finally, let X = {z1,%2,23} and
Y = {v1,y2,y3} be the partite sets of K33. Let E be a subset of edges
such that yr(K33 — FE) > vr(K33) = 4. Assume that |E| < 4, and without
loss of generality assume that |E| = 3. Let E = {e1,e2,e3}. If no two
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edges of E have a common end point, then we may assume, without loss
of generality, that e; = z;y; for i = 1,2,3. Then yr(K33 — E) = 4 and
({z2,y2, 23,93}, 0, {x1,y1}) is a yp-function for K33 — E, a contradiction.
Thus we assume, without loss of generality, that e; = z1y; and ex = x1ys.
If e3 = z1y3, then yr(K33 — E) = 4, and ({y1,y2,y3}, {z1, 22}, {23}) is
a yg-function for K33 — E), a contradiction. Thus ez # z1ys. Similarly,
this case produces a contradiction. We conclude that br(K3z3) > 4. On
the other hand Yr(K33 — {z1y2, T1y3, y172, y173}) = 5 > Yr(K33). Hence,
br(K33) = 4. u

4. TREES AND UNICYCLIC GRAPHS

Lemma 12. If a graph G has a support vertex v of degree at least three such
that all of its neighbors except one is a leaf, then br(G) < 2.

Proof. Let N(v) = {v1,v9,...,vx} such that deg(vg) > 2. Applying (1) on
the path vjvvs in the case deg(v) = k = 3, we obtain br(G) < 2 immediately.

Assume now that deg(v) = k > 4. Let f = (Vi; V1; V2) be a yg-function
of G—wvwvy. It follows that v; € V7 and, without loss of generality, that v € V5.
Therefore (Vo U{v1}, Vi —{v1}; V2) is a RDF on G of weight v5(G) — 1, and
thus br(G) = 1. |

Theorem 13. For any tree T with at least three vertices, br(T) < 3.

Proof. If T has a support vertex v of degree at least three such that all
of its neighbors except one is a leaf, then br(7") < 2 by Lemma 12. So
assume that for any support vertex v either deg(v) = 2 or v has at least two
neighbors which are no leaves. Let P = vjvy... v, be a longest path of 7.
By the assumption, degr(ve) = 2. If degr(vs) < 3, then (1) with the path
v1vvg shows that br(T) < 3.

Assume now that degr(vs) > 4. Suppose to the contrary that br(T) >
3. So Yr(T — {vaus,v3va}) = yr(T). Let f = (Vp; Vi;V2) be a yg-function
on T — {vous,v3vs}. Then f(vy) + f(ve) = 2. If v3 € V3, then

(Vo = {v1,v2}) U{vr, s b Vi — {os}s (Va — {o1,02}) U {v2})

is a RDF on T of weight less than «g(7"). This contradiction implies that
vy € V1. Similarly, vs &€ V5. So v € V. We deduce that there is a vertex
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w1 € Ny (T—{vavs,0304})(03) N Va. If wy is a leaf, then

(Vo — {v1,v2}) U{wr, vak; (Vi — {vr,ve}) Uor }s (Vo — {vr, 02}) U {vs})

is a RDF on T of weight less than yr(T'), a contradiction. It follows that
wy is a support vertex with degr(w;) = 2. Let u; be a leaf adjacent to
wy. By the assumption, yr(T — {vavs, v3vg, wivs}) = Yr(T). Let g be a
vr-function on T — {vovs, v3vy, wrvs}. If g(vs) = 1, then we replace g(vs)
by 0, g(vz) by 2 and g(v1) by 0 to obtain a RDF on T of weight less than
vr(G), a contradiction. Similarly, we observe that g(vs) # 2. So g(v3) = 0.
We deduce that there is a vertex wa € Np_{y,us,0508,wi0s) (v3) such that
g(we) = 2. We can easily see that ws is a support vertex with degp(wq) = 2.
Let ug be the leaf adjacent to ws.

Now we consider the forest T' — {vgv3, v3wy, v3ws}. Our assumption
implies that yg(T — {vovs, v3wy, v3wa}) = Yr(T'). Let h be a yg-function on
T — {vovs, v3wy, v3we}. Then

h(vl) + h(vg) = h(QU1) + h(ul) = h(w2) + h(ug) = 2.

We replace g(v3) by 2, g(v2), g(w1), g(w2) by 0, and g(v1), g(u1), g(uz) by 1,
to obtain a RDF on T of weight less than yr(7T'), a contradiction. Hence
br(T) < 3, and the proof is complete. [

The following figure shows that the bound of Theorem 13 is sharp. It is a
simple matter to verify that br(H) = 3.

U1 V2 U3 V4 Us Ve

T Y1

H

In the next theorem we give a sharp upper bound for Roman bondage num-
ber in unicyclic graphs.

Theorem 14. For any unicyclic graph G, br(G) < 4, and this bound is
sharp.



772 N. JAFARI RAD AND L. VOLKMANN

Proof. Let G be a unicyclic graph, and let C' be the unique cycle of G.
If G = C, then by Theorem 10, br(G) < 3. Assume that G # C. Let
v] — vy — - - - — v, be the longest path where vy is a leaf and {v1,va,..., v} N
V(C) = {vg}. Let V(C) = {u1,ug,...,u}, where u; = v and Ne(vg) =
{ug,us}. If br(G) < 2, then we have done. So suppose that br(G) > 3.
First assume that k& > 4. By Lemma 12, deg(ve) = 2. If deg(vs) < 4,
then (1) with the path vjvovs shows that br(G) < 4. So we assume that
deg(vs) > 5. Let A be the set of all leaves of G at distance 2 from v3 except
the leaves adjacent to vy. Let e, e, e3 be three edges incident with vs with
{e1,ea,e3} N {vous,v3v4} = 0. We show that yr(G — {vavs,e1,e2,e3}) >
vr(G). Suppose to the contrary that yr(G — {vevs,e1,e2,e3}) = Yr(G).
Let f be a yg-function for G — {vqvs, e1, €2, e3}. It follows that g : V(G) —
{0,1,2} defined by g(v3) =2, g(x) =0if x € N(v3), g(z) =1if z € A, and
g(x) = f(z) if x & N[V3]U A, is a RDF for G with weight less than yr(G).
This contradiction implies that yr(G — {vavs, e1,€2,e3}) > vr(G), and so
bR(G) <A4.

Now suppose that k& < 3. For k = 2, it is straightforward to verify
that if deg(ve) > 4, then yr(G — {vive,urus, uruz}) > Yr(G). Suppose
that deg(vy) = 3. As an immediately result deg(u;) < 3 for i = 1,2,...,t.
Again we can easily see that for deg(ug) = 2, Yr(G — {viva, vous, ugus}) >
Yr(G), and for deg(ug) = 3, Yr(G — {vouz, vous, usug}) > yr(G). Thus
br(G) < 3. It remains to suppose that £k = 3. By Lemma 12, deg(vy) = 2.
If deg(vs) < 4, then (1) with the path vjvovs shows that br(G) < 4. So
suppose that deg(vs) > 5. This time vr(G — {vavs,v3z,v3y}) > Vr(G),
where {z,y} N {ug, us, vo} = . We deduce that br(G) < 3.

To see the sharpness, let G be a graph obtained from any cycle C,, on
n > 3 vertices by identifying every vertex of ), with the central vertex of a
path Ps. It is straightforward to verify that yg(G) = 4n, and br(G) = 4.

|

We close the paper with the following problem.

Problem 15. Determine the trees 7" with vg(T) = 1, vg(T) = 2 and
r(T) = 3.
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