ROMAN BONDAGE IN GRAPHS

Nader Jafari Rad ${ }^{1}$
Department of Mathematics
Shahrood University of Technology Shahrood, Iran
and
School of Mathematics
Institute for Research in Fundamental Sciences (IPM)
P.O. Box 19395-5746, Tehran, Iran
e-mail: n.jafarirad@shahroodut.ac.ir

AND
Lutz Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen University Templergraben 55, D-52056 Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Abstract

A Roman dominating function on a graph G is a function f : $V(G) \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of a Roman dominating function is the value $f(V(G))=$ $\sum_{u \in V(G)} f(u)$. The Roman domination number, $\gamma_{R}(G)$, of G is the minimum weight of a Roman dominating function on G. In this paper, we define the Roman bondage $b_{R}(G)$ of a graph G with maximum degree at least two to be the minimum cardinality of all sets $E^{\prime} \subseteq E(G)$ for which $\gamma_{R}\left(G-E^{\prime}\right)>\gamma_{R}(G)$. We determine the Roman bondage number in several classes of graphs and give some sharp bounds.

[^0]Keywords: domination, Roman domination, Roman bondage number.
2010 Mathematics Subject Classification: 05C69.

1. Terminology and Introduction

Let $G=(V(G), E(G))$ be a simple graph of order n. We denote the open neighborhood of a vertex v of G by $N_{G}(v)$, or just $N(v)$, and its closed neighborhood by $N_{G}[v]=N[v]$. For a vertex set $S \subseteq V(G), N(S)=\bigcup_{v \in S} N(v)$ and $N[S]=\bigcup_{v \in S} N[v]$. The degree $\operatorname{deg}(x)$ of a vertex x denotes the number of neighbors of x in G, and $\Delta(G)$ is the maximum degree of G. Also the eccentricity, $\operatorname{ecc}(x)$, of a vertex x is maximum distance of the vertices of G from x. A set of vertices S in G is a dominating set, if $N[S]=V(G)$. The domination number, $\gamma(G)$, of G is the minimum cardinality of a dominating set of G. If S is a subset of $V(G)$, then we denote by $G[S]$ the subgraph of G induced by S. For notation and graph theory terminology in general we follow [6].

With K_{n} we denote the complete graph on n vertices and with C_{n} the cycle of length n. For two positive integers m, n, the complete bipartite graph $K_{m, n}$ is the graph with partition $V(G)=V_{1} \cup V_{2}$ such that $\left|V_{1}\right|=m$, $\left|V_{2}\right|=n$ and such that $G\left[V_{i}\right]$ has no edge for $i=1,2$, and every two vertices belonging to different partition sets are adjacent to each other.

For a graph G, let $f: V(G) \rightarrow\{0,1,2\}$ be a function, and let $\left(V_{0} ; V_{1} ; V_{2}\right)$ be the ordered partition of $V(G)$ induced by f, where $V_{i}=\{v \in V(G)$: $f(v)=i\}$ and for $i=0,1,2$. There is a $1-1$ correspondence between the functions $f: V(G) \rightarrow\{0,1,2\}$ and the ordered partition $\left(V_{0} ; V_{1} ; V_{2}\right)$ of $V(G)$. So we will write $f=\left(V_{0} ; V_{1} ; V_{2}\right)$.

A function $f: V(G) \rightarrow\{0,1,2\}$ is a Roman dominating function (or just RDF) if every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of a Roman dominating function is the value $f(V(G))=\sum_{u \in V(G)} f(u)$. The Roman domination number of a graph G, denoted by $\gamma_{R}(G)$, is the minimum weight of a Roman dominating function on G. A function $f=\left(V_{0} ; V_{1} ; V_{2}\right)$ is called a γ_{R}-function (or $\gamma_{R}(G)$ function when we want to refer f to G), if it is a Roman dominating function and $f(V(G))=\gamma_{R}(G),[2,7,8]$.

The bondage number $b(G)$ of a nonempty graph G is the minimum cardinality among all sets of edges $E^{\prime} \subseteq E(G)$ for which $\gamma\left(G-E^{\prime}\right)>\gamma(G)$.

This concept was introduced by Bauer, Harary, Nieminen and Suffel in [1], and has been further studied for example in $[4,5,9])$. For more information on this topic we refer the reader to the survey article by Dunbar, Haynes, Teschner and Volkmann [3].

In this paper we study bondage by considering a variation based on Roman domination. The Roman bondage number $b_{R}(G)$ of a graph G is the cardinality of a smallest set of edges $E^{\prime} \subseteq E(G)$ for which $\gamma_{R}\left(G-E^{\prime}\right)>$ $\gamma_{R}(G)$.

We note that if G is a connected graph on two vertices, then $G \simeq K_{2}$ and $\gamma_{R}(G)=2$. If $e \in E(G)$, then $G-e \simeq \overline{K_{2}}$ and thus $\gamma_{R}(G-e)=\gamma_{R}(G)$. Therefore the Roman bondage number is only defined for a graph G with maximum degree at least two.

We recall that a leaf in a graph G is a vertex of degree one, and a support vertex is the vertex which is adjacent to a leaf.

2. Upper Bounds

Theorem 1. If G is a graph, and xyz a path of length 2 in G, then

$$
\begin{equation*}
b_{R}(G) \leq \operatorname{deg}(x)+\operatorname{deg}(y)+\operatorname{deg}(z)-3-|N(x) \cap N(y)| . \tag{1}
\end{equation*}
$$

If x and z are adjacent, then

$$
\begin{equation*}
b_{R}(G) \leq \operatorname{deg}(x)+\operatorname{deg}(y)+\operatorname{deg}(z)-4-|N(x) \cap N(y)| . \tag{2}
\end{equation*}
$$

Proof. Let H be the graph obtained from G by removing the edges incident with x, y or z with exception of $y z$ and all edges between y and $N(x) \cap N(y)$. In H, the vertex x is isolated, z is a leaf and y is adjacent to z and all neighbors of y in H, if any, lie in $N_{G}(x)$.

Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}(H)$-function. Then $x \in V_{1}$ and, without loss of generality, $z \in V_{0} \cup V_{1}$.

If $z \in V_{0}$, then $y \in V_{2}$ and therefore $\left(V_{0} \cup\{x\}, V_{1}-\{x\}, V_{2}\right)$ is a RDF on G of weight less than f, and (1) as well as (2) are proved.

Now assume that $z \in V_{1}$. If $y \in V_{1}$, then $\left(V_{0} \cup\{z\}, V_{1}-\{y, z\}, V_{2} \cup\{y\}\right)$ is also $\gamma_{R}(H)$-function, and we are in the situation discussed in the previous case. However, if $y \in V_{0}$, then there exists a vertex $w \in N_{G}(x) \cap N_{G}(y)$ such that $w \in V_{2}$. Since w is a neighbor of x in $G,\left(V_{0} \cup\{x\}, V_{1}-\{x\}, V_{2}\right)$ is a RDF on G of weight less than f, and again (1) and (2) are proved.

Applying Theorem 1 on a path $x y z$ such that one of the vertices x, y or z has minimum degree, we obtain the next result immediately.

Corollary 2. If G is a connected graph of order $n \geq 3$, then

$$
b_{R}(G) \leq \delta(G)+2 \Delta(G)-3
$$

Our next upper bound involves the edge-connectivity $\lambda(G)$, which is the fewest number of edges whose removal from a connected graph G creates two components. Since $\lambda(G) \leq \delta(G)$, the next theorem is an extension of Corollary 2.

Observation 3. If E is an edge cut set in a graph G smaller than $b_{R}(G)$, then $\gamma_{R}(G)$ equals the sum of all $\gamma_{R}\left(G_{i}\right)$ where G_{i} emerge by removing E.

Theorem 4. If G is a connected graph of order $n \geq 3$, then

$$
b_{R}(G) \leq \lambda(G)+2 \Delta(G)-3
$$

Proof. Let $\lambda=\lambda(G)$, and let $E=\left\{e_{1}, e_{2}, \ldots, e_{\lambda}\right\}$ be a set of edges whose removal disconnects G. Say $e_{1}=a b$, and let H_{a} and H_{b} denote the components of $G-E$ containing a and b, respectively. By Corollary 2 we may assume that H_{a} and H_{b} are non-trivial. Let $a_{1} \in V\left(H_{a}\right)$ adjacent to a and $b_{1} \in V\left(H_{b}\right)$ adjacent to b, and let $F_{a, a_{1}}$ and $F_{b, b_{1}}$ denote the edges of G incident with a or a_{1} with exception of $a a_{1}$ and b or b_{1} with exception of $b b_{1}$, respectively. Suppose on the contrary that $b_{R}(G)>\lambda(G)+2 \Delta(G)-3$. Noting that $|E|=\lambda<b_{R}(G)$, we observe that $\gamma_{R}(G)=\gamma_{R}\left(H_{a}\right)+\gamma_{R}\left(H_{b}\right)$. Since

$$
\left|F_{a, a_{1}} \cup E\right| \leq \operatorname{deg}_{G}(a)+\operatorname{deg}_{G}\left(a_{1}\right)+\lambda-3 \leq 2 \Delta(G)+\lambda-3<b_{R}(G)
$$

we deduce that $\gamma_{R}(G)=\gamma\left(H_{a}-\left\{a, a_{1}\right\}\right)+2+\gamma_{R}\left(H_{b}\right)$. Similarly, since

$$
\left|F_{b, b_{1}} \cup E\right| \leq \operatorname{deg}_{G}(b)+\operatorname{deg}_{G}\left(b_{1}\right)+\lambda-3 \leq 2 \Delta(G)+\lambda-3<b_{R}(G)
$$

we deduce that $\gamma_{R}(G)=\gamma_{R}\left(H_{b}-\left\{b, b_{1}\right\}\right)+2+\gamma_{R}\left(H_{a}\right)$. Altogether we obtain

$$
\begin{aligned}
2 \gamma_{R}(G) & =\gamma_{R}\left(H_{a}-\left\{a, a_{1}\right\}\right)+2+\gamma_{R}\left(H_{b}\right)+\gamma_{R}\left(H_{b}-\left\{b, b_{1}\right\}\right)+2+\gamma_{R}\left(H_{a}\right) \\
& =\gamma_{R}\left(H_{a}-\left\{a, a_{1}\right\}\right)+4+\gamma_{R}\left(H_{b}-\left\{b, b_{1}\right\}\right)+\gamma_{R}(G)
\end{aligned}
$$

and thus $\gamma_{R}(G)=\gamma_{R}\left(H_{a}-\left\{a, a_{1}\right\}\right)+4+\gamma_{R}\left(H_{b}-\left\{b, b_{1}\right\}\right)$. This is obviously a contradiction, since

$$
\begin{aligned}
\gamma_{R}(G) & \leq \gamma_{R}\left(H_{a}-\left\{a, a_{1}\right\}\right)+\gamma_{R}\left(a_{1} a b b_{1}\right)+\gamma_{R}\left(H_{b}-\left\{b, b_{1}\right\}\right) \\
& \leq \gamma_{R}\left(H_{a}-\left\{a, a_{1}\right\}\right)+3+\gamma_{R}\left(H_{b}-\left\{b, b_{1}\right\}\right) .
\end{aligned}
$$

Observation 5. If a graph G has a vertex v such that $\gamma_{R}(G-v) \geq \gamma_{R}(G)$, then $b_{R}(G) \leq \Delta(G)$.

Proof. Let E be the edge set incident with v. It follows that $\gamma_{R}(G-E)>$ $\gamma_{R}(G)$, and the result is proved.

3. Exact Values of $b_{R}(G)$

In this section we determine the Roman bondage number for several classes of graphs.

Theorem 6. If G is a graph of order $n \geq 3$ with exactly $k \geq 1$ vertices of degree $n-1$, then $b_{R}(G)=\left\lceil\frac{k}{2}\right\rceil$.
Proof. Since $k \geq 1$, we note that $\gamma_{R}(G)=2$. First let $E_{1} \subseteq E(G)$ be an arbitrary subset of edges such that $\left|E_{1}\right|<\left\lceil\frac{k}{2}\right\rceil$, and let $G^{\prime}=G-E_{1}$. It is evident that there is a vertex v in G^{\prime} such that $\operatorname{deg}_{G}(v)=\operatorname{deg}_{G^{\prime}}(v)=n-1$, and so $\gamma_{R}\left(G^{\prime}\right)=\gamma_{R}(G)=2$. This shows that $b_{R}(G) \geq\left\lceil\frac{k}{2}\right\rceil$.

If $v_{1}, v_{2}, \ldots, v_{k} \in V(G)$ are the vertices of degree $n-1$, then the subgraph F induced by the vertices $v_{1}, v_{2}, \ldots, v_{k}$ is isomorphic to the complete graph K_{k}.

If k is even, then let H_{1} be the graph obtained from G by removing $\frac{k}{2}$ independent edges from F. Then $\Delta\left(H_{1}\right)=n-2$ and thus $\gamma_{R}\left(H_{1}\right)=3$. This implies $b_{R}(G) \leq\left\lceil\frac{k}{2}\right\rceil$.

If k is odd, then let H_{2} be the graph obtained from G by removing $\frac{k-1}{2}$ independent edges from F. Then there exists exactly one vertex, say $v_{k} \in V\left(H_{2}\right)$ such that $\operatorname{deg}_{H_{2}}\left(v_{k}\right)=n-1$. Let H_{3} be the graph obtained from H_{2} by removing an arbitrary edge incident with v_{k}. Then $\Delta\left(H_{3}\right)=n-2$ and so $\gamma_{R}\left(H_{3}\right)=3$. This implies $b_{R}(G) \leq\left\lceil\frac{k}{2}\right\rceil$.

Combining the obtained inequalities, we deduce that $b_{R}(G)=\left\lceil\frac{k}{2}\right\rceil$, and the proof is complete.

Corollary 7. If $n \geq 3$, then $b_{R}\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.

Lemma 8 [2]. For the classes of paths P_{n} and cycles C_{n},

$$
\gamma_{R}\left(P_{n}\right)=\gamma_{R}\left(C_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil .
$$

Theorem 9. For $n \geq 3$,

$$
b_{R}\left(P_{n}\right)= \begin{cases}2 & \text { if } n \equiv 2(\bmod 3) \\ 1 & \text { otherwise }\end{cases}
$$

Proof. Let $P_{n}=v_{1} v_{2} \ldots v_{n}$. Corollary 2 yields to $b_{R}\left(P_{n}\right) \leq 2$. First assume that $n=3 k$. Lemma 8 implies that $\gamma_{R}\left(P_{n}\right)=2 k$ and $\gamma_{R}\left(P_{n}-v_{1} v_{2}\right)=$ $1+\gamma_{R}\left(P_{n-1}\right)=1+2 k$ and thus $b_{R}\left(P_{n}\right)=1$. Next assume that $n=3 k+1$. According to Lemma 8 , we have $\gamma_{R}\left(P_{n}\right)=2 k+1$ and $\gamma_{R}\left(P_{n}-v_{2} v_{3}\right)=$ $2+\gamma_{R}\left(P_{n-2}\right)=2+2 k$ and so $b_{R}\left(P_{n}\right)=1$. It remains to assume that $n=3 k+2$. By Lemma $8, \gamma_{R}\left(P_{n}\right)=2 k+2$. If e is an arbitrary edge of P_{n}, then $P_{n}-e$ consists of two paths P_{1} and P_{2} of order n_{1} and n_{2}, respectively, such that $n_{1}+n_{2}=n$ and $\gamma_{R}\left(P_{n}-e\right)=\gamma_{R}\left(P_{1}\right)+\gamma_{R}\left(P_{2}\right)$. Now there are integers k_{1} and k_{2} such that $n_{1}=3 k_{1}, n_{2}=3 k_{2}+2$ or $n_{1}=3 k_{1}+1, n_{2}=3 k_{2}+1$ or $n_{1}=3 k_{1}+2, n_{2}=3 k_{2}$ and $k_{1}+k_{2}=k$. In the first case we deduce from Lemma 8 that

$$
\begin{aligned}
\gamma_{R}\left(P_{n}-e\right) & =\gamma_{R}\left(P_{1}\right)+\gamma_{R}\left(P_{2}\right) \\
& =\left\lceil\frac{6 k_{1}}{3}\right\rceil+\left\lceil\frac{6 k_{2}+4}{3}\right\rceil \\
& =2 k_{1}+2 k_{2}+2=2 k+2=\gamma_{R}\left(P_{n}\right)
\end{aligned}
$$

This implies that $b_{R}\left(P_{n}\right) \geq 2$ in the first case, and because of $b_{R}\left(P_{n}\right) \leq 2$ we obtain $b_{R}\left(P_{n}\right)=2$. The remaining two cases are similar and are therefore omitted.

Theorem 10. For $n \geq 3$,

$$
b_{R}\left(C_{n}\right)= \begin{cases}3 & \text { if } n \equiv 2(\bmod 3) \\ 2 & \text { otherwise }\end{cases}
$$

Proof. Let $C_{n}=v_{1} v_{2} \ldots v_{n} v_{1}$. Corollary 2 leads to $b_{R}\left(C_{n}\right) \leq 3$. If e is an arbitrary edge of C_{n}, then $C_{n}-e=P_{n}$. Hence Lemma 8 shows that $b_{R}\left(C_{n}\right) \geq 2$. We distinguish three cases.

Assume that $n=3 k$. Lemma 8 implies that $\gamma_{R}\left(C_{n}\right)=2 k$ and $\gamma_{R}\left(C_{n}-\right.$ $\left.\left\{v_{1} v_{2}, v_{2} v_{3}\right\}\right)=1+\gamma_{R}\left(P_{3 k-1}\right)=1+2 k$ and thus $b_{R}\left(C_{n}\right)=2$.

Assume that $n=3 k+1$. Lemma 8 implies that $\gamma_{R}\left(C_{n}\right)=2 k+1$ and $\gamma_{R}\left(C_{n}-\left\{v_{1} v_{2}, v_{3} v_{4}\right\}\right)=2+\gamma_{R}\left(P_{3 k-1}\right)=2+2 k$ and thus $b_{R}\left(C_{n}\right)=2$.

Assume that $n=3 k+2$. By Lemma $8, \gamma_{R}\left(C_{n}\right)=2 k+2$. If e_{1} and e_{2} are two arbitrary edges of C_{n}, then $C_{n}-\left\{e_{1}, e_{2}\right\}$ consists of two paths P_{1} and P_{2} of order n_{1} and n_{2} such that $n_{1}+n_{2}=n$ and $\gamma_{R}\left(C_{n}-\left\{e_{1}, e_{2}\right\}\right)=\gamma_{R}\left(P_{1}\right)+$ $\gamma_{R}\left(P_{2}\right)$. Now there are integers k_{1} and k_{2} such that $n_{1}=3 k_{1}, n_{2}=3 k_{2}+2$ or $n_{1}=3 k_{1}+1, n_{2}=3 k_{2}+1$ or $n_{1}=3 k_{1}+2, n_{2}=3 k_{2}$ and $k_{1}+k_{2}=k$. In the second case we deduce from Lemma 8 that

$$
\begin{aligned}
\gamma_{R}\left(C_{n}-\left\{e_{1}, e_{2}\right\}\right) & =\gamma_{R}\left(P_{1}\right)+\gamma_{R}\left(P_{2}\right) \\
& =\left\lceil\frac{6 k_{1}+2}{3}\right\rceil+\left\lceil\frac{6 k_{2}+2}{3}\right\rceil \\
& =2 k_{1}+1+2 k_{2}+1=2 k+2=\gamma_{R}\left(C_{n}\right) .
\end{aligned}
$$

Because of $b_{R}\left(C_{n}\right) \leq 3$, this leads to $b_{R}\left(C_{n}\right)=3$ in this case. The remaining two cases are similar and are therefore omitted.

Theorem 11. If m and n are integers such that $1 \leq m \leq n$ and $n \geq 2$, then $b_{R}\left(K_{m, n}\right)=m$, with exception of the case $m=n=3$. In addition, $b_{R}\left(K_{3,3}\right)=4$.

Proof. Let $G=K_{m, n}$. First notice that if $m=1$, then G is a star and $\gamma_{R}(G-e)=3>2=\gamma_{R}(G)$ for any edge e, and hence $b_{R}(G)=1=m$.

Assume next that $m=2$. If $n=2$, then the desired result follows from Theorem 10. If $n \geq 3$, then $\gamma_{R}(G-e)=\gamma_{R}(G)=3$ for any edge e. But if e_{1} and e_{2} are two edges incident to a vertex of degree two, then $\gamma_{R}\left(G-\left\{e_{1}, e_{2}\right\}\right)=4$ and thus $b_{R}(G)=2=m$.

Finally assume that $m \geq 3$. Let X and Y be the two partite sets with $|X|=m$ and $|Y|=n$. If E is a set of edges with $|E|<m$ and $G_{1}=G-E$, then there are two vertices $x \in X$ and $y \in Y$ such that $N_{G_{1}}(x)=Y$ and $N_{G_{1}}(y)=X$. It follows that $\gamma_{R}\left(G_{1}\right)=4=\gamma_{R}(G)$ and thus $b_{R}(G) \geq m$. However, if we remove all edges incident to a vertex $y \in Y$, then we obtain a graph G_{2} such that $\gamma_{R}\left(G_{2}\right)=5$ when $n \geq 4$. This shows that $b_{R}(G)=m$ when $n \geq 4$. Finally, let $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $Y=\left\{y_{1}, y_{2}, y_{3}\right\}$ be the partite sets of $K_{3,3}$. Let E be a subset of edges such that $\gamma_{R}\left(K_{3,3}-E\right)>\gamma_{R}\left(K_{3,3}\right)=4$. Assume that $|E|<4$, and without loss of generality assume that $|E|=3$. Let $E=\left\{e_{1}, e_{2}, e_{3}\right\}$. If no two
edges of E have a common end point, then we may assume, without loss of generality, that $e_{i}=x_{i} y_{i}$ for $i=1,2,3$. Then $\gamma_{R}\left(K_{3,3}-E\right)=4$ and $\left(\left\{x_{2}, y_{2}, x_{3}, y_{3}\right\}, \emptyset,\left\{x_{1}, y_{1}\right\}\right)$ is a γ_{R}-function for $K_{3,3}-E$, a contradiction. Thus we assume, without loss of generality, that $e_{1}=x_{1} y_{1}$ and $e_{2}=x_{1} y_{2}$. If $e_{3}=x_{1} y_{3}$, then $\gamma_{R}\left(K_{3,3}-E\right)=4$, and $\left(\left\{y_{1}, y_{2}, y_{3}\right\},\left\{x_{1}, x_{2}\right\},\left\{x_{3}\right\}\right)$ is a γ_{R}-function for $K_{3,3}-E$), a contradiction. Thus $e_{3} \neq x_{1} y_{3}$. Similarly, this case produces a contradiction. We conclude that $b_{R}\left(K_{3,3}\right) \geq 4$. On the other hand $\gamma_{R}\left(K_{3,3}-\left\{x_{1} y_{2}, x_{1} y_{3}, y_{1} x_{2}, y_{1} x_{3}\right\}\right)=5>\gamma_{R}\left(K_{3,3}\right)$. Hence, $b_{R}\left(K_{3,3}\right)=4$.

4. Trees and Unicyclic Graphs

Lemma 12. If a graph G has a support vertex v of degree at least three such that all of its neighbors except one is a leaf, then $b_{R}(G) \leq 2$.

Proof. Let $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ such that $\operatorname{deg}\left(v_{k}\right) \geq 2$. Applying (1) on the path $v_{1} v v_{2}$ in the case $\operatorname{deg}(v)=k=3$, we obtain $b_{R}(G) \leq 2$ immediately.

Assume now that $\operatorname{deg}(v)=k \geq 4$. Let $f=\left(V_{0} ; V_{1} ; V_{2}\right)$ be a γ_{R}-function of $G-v v_{1}$. It follows that $v_{1} \in V_{1}$ and, without loss of generality, that $v \in V_{2}$. Therefore $\left(V_{0} \cup\left\{v_{1}\right\}, V_{1}-\left\{v_{1}\right\} ; V_{2}\right)$ is a RDF on G of weight $\gamma_{R}(G)-1$, and thus $b_{R}(G)=1$.

Theorem 13. For any tree T with at least three vertices, $b_{R}(T) \leq 3$.
Proof. If T has a support vertex v of degree at least three such that all of its neighbors except one is a leaf, then $b_{R}(T) \leq 2$ by Lemma 12. So assume that for any support vertex v either $\operatorname{deg}(v)=2$ or v has at least two neighbors which are no leaves. Let $P=v_{1} v_{2} \ldots v_{k}$ be a longest path of T. By the assumption, $\operatorname{deg}_{T}\left(v_{2}\right)=2$. If $\operatorname{deg}_{T}\left(v_{3}\right) \leq 3$, then (1) with the path $v_{1} v_{2} v_{3}$ shows that $b_{R}(T) \leq 3$.

Assume now that $\operatorname{deg}_{T}\left(v_{3}\right) \geq 4$. Suppose to the contrary that $b_{R}(T)>$ 3. So $\gamma_{R}\left(T-\left\{v_{2} v_{3}, v_{3} v_{4}\right\}\right)=\gamma_{R}(T)$. Let $f=\left(V_{0} ; V_{1} ; V_{2}\right)$ be a γ_{R}-function on $T-\left\{v_{2} v_{3}, v_{3} v_{4}\right\}$. Then $f\left(v_{1}\right)+f\left(v_{2}\right)=2$. If $v_{3} \in V_{1}$, then

$$
\left(\left(V_{0}-\left\{v_{1}, v_{2}\right\}\right) \cup\left\{v_{1}, v_{3}\right\} ; V_{1}-\left\{v_{3}\right\} ;\left(V_{2}-\left\{v_{1}, v_{2}\right\}\right) \cup\left\{v_{2}\right\}\right)
$$

is a RDF on T of weight less than $\gamma_{R}(T)$. This contradiction implies that $v_{3} \notin V_{1}$. Similarly, $v_{3} \notin V_{2}$. So $v_{3} \in V_{0}$. We deduce that there is a vertex
$w_{1} \in N_{V\left(T-\left\{v_{2} v_{3}, v_{3} v_{4}\right\}\right)}\left(v_{3}\right) \cap V_{2}$. If w_{1} is a leaf, then

$$
\left(\left(V_{0}-\left\{v_{1}, v_{2}\right\}\right) \cup\left\{w_{1}, v_{2}\right\} ;\left(V_{1}-\left\{v_{1}, v_{2}\right\}\right) \cup\left\{v_{1}\right\} ;\left(V_{2}-\left\{v_{1}, v_{2}\right\}\right) \cup\left\{v_{3}\right\}\right)
$$

is a RDF on T of weight less than $\gamma_{R}(T)$, a contradiction. It follows that w_{1} is a support vertex with $\operatorname{deg}_{T}\left(w_{1}\right)=2$. Let u_{1} be a leaf adjacent to w_{1}. By the assumption, $\gamma_{R}\left(T-\left\{v_{2} v_{3}, v_{3} v_{4}, w_{1} v_{3}\right\}\right)=\gamma_{R}(T)$. Let g be a γ_{R}-function on $T-\left\{v_{2} v_{3}, v_{3} v_{4}, w_{1} v_{3}\right\}$. If $g\left(v_{3}\right)=1$, then we replace $g\left(v_{3}\right)$ by $0, g\left(v_{2}\right)$ by 2 and $g\left(v_{1}\right)$ by 0 to obtain a RDF on T of weight less than $\gamma_{R}(G)$, a contradiction. Similarly, we observe that $g\left(v_{3}\right) \neq 2$. So $g\left(v_{3}\right)=0$. We deduce that there is a vertex $w_{2} \in N_{T-\left\{v_{2} v_{3}, v_{3} v_{4}, w_{1} v_{3}\right\}}\left(v_{3}\right)$ such that $g\left(w_{2}\right)=2$. We can easily see that w_{2} is a support vertex with $\operatorname{deg}_{T}\left(w_{2}\right)=2$. Let u_{2} be the leaf adjacent to w_{2}.

Now we consider the forest $T-\left\{v_{2} v_{3}, v_{3} w_{1}, v_{3} w_{2}\right\}$. Our assumption implies that $\gamma_{R}\left(T-\left\{v_{2} v_{3}, v_{3} w_{1}, v_{3} w_{2}\right\}\right)=\gamma_{R}(T)$. Let h be a γ_{R}-function on $T-\left\{v_{2} v_{3}, v_{3} w_{1}, v_{3} w_{2}\right\}$. Then

$$
h\left(v_{1}\right)+h\left(v_{2}\right)=h\left(w_{1}\right)+h\left(u_{1}\right)=h\left(w_{2}\right)+h\left(u_{2}\right)=2 .
$$

We replace $g\left(v_{3}\right)$ by $2, g\left(v_{2}\right), g\left(w_{1}\right), g\left(w_{2}\right)$ by 0 , and $g\left(v_{1}\right), g\left(u_{1}\right), g\left(u_{2}\right)$ by 1 , to obtain a RDF on T of weight less than $\gamma_{R}(T)$, a contradiction. Hence $b_{R}(T) \leq 3$, and the proof is complete.

The following figure shows that the bound of Theorem 13 is sharp. It is a simple matter to verify that $b_{R}(H)=3$.

In the next theorem we give a sharp upper bound for Roman bondage number in unicyclic graphs.

Theorem 14. For any unicyclic graph $G, b_{R}(G) \leq 4$, and this bound is sharp.

Proof. Let G be a unicyclic graph, and let C be the unique cycle of G. If $G=C$, then by Theorem $10, b_{R}(G) \leq 3$. Assume that $G \neq C$. Let $v_{1}-v_{2}-\cdots-v_{k}$ be the longest path where v_{1} is a leaf and $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \cap$ $V(C)=\left\{v_{k}\right\}$. Let $V(C)=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$, where $u_{1}=v_{k}$ and $N_{C}\left(v_{k}\right)=$ $\left\{u_{2}, u_{t}\right\}$. If $b_{R}(G) \leq 2$, then we have done. So suppose that $b_{R}(G) \geq 3$. First assume that $k \geq 4$. By Lemma 12 , $\operatorname{deg}\left(v_{2}\right)=2$. If $\operatorname{deg}\left(v_{3}\right) \leq 4$, then (1) with the path $v_{1} v_{2} v_{3}$ shows that $b_{R}(G) \leq 4$. So we assume that $\operatorname{deg}\left(v_{3}\right) \geq 5$. Let A be the set of all leaves of G at distance 2 from v_{3} except the leaves adjacent to v_{4}. Let e_{1}, e_{2}, e_{3} be three edges incident with v_{3} with $\left\{e_{1}, e_{2}, e_{3}\right\} \cap\left\{v_{2} v_{3}, v_{3} v_{4}\right\}=\emptyset$. We show that $\gamma_{R}\left(G-\left\{v_{2} v_{3}, e_{1}, e_{2}, e_{3}\right\}\right)>$ $\gamma_{R}(G)$. Suppose to the contrary that $\gamma_{R}\left(G-\left\{v_{2} v_{3}, e_{1}, e_{2}, e_{3}\right\}\right)=\gamma_{R}(G)$. Let f be a γ_{R}-function for $G-\left\{v_{2} v_{3}, e_{1}, e_{2}, e_{3}\right\}$. It follows that $g: V(G) \longrightarrow$ $\{0,1,2\}$ defined by $g\left(v_{3}\right)=2, g(x)=0$ if $x \in N\left(v_{3}\right), g(x)=1$ if $x \in A$, and $g(x)=f(x)$ if $x \notin N\left[V_{3}\right] \cup A$, is a RDF for G with weight less than $\gamma_{R}(G)$. This contradiction implies that $\gamma_{R}\left(G-\left\{v_{2} v_{3}, e_{1}, e_{2}, e_{3}\right\}\right)>\gamma_{R}(G)$, and so $b_{R}(G) \leq 4$.

Now suppose that $k \leq 3$. For $k=2$, it is straightforward to verify that if $\operatorname{deg}\left(v_{2}\right) \geq 4$, then $\gamma_{R}\left(G-\left\{v_{1} v_{2}, u_{1} u_{t}, u_{1} u_{2}\right\}\right)>\gamma_{R}(G)$. Suppose that $\operatorname{deg}\left(v_{2}\right)=3$. As an immediately result $\operatorname{deg}\left(u_{i}\right) \leq 3$ for $i=1,2, \ldots, t$. Again we can easily see that for $\operatorname{deg}\left(u_{2}\right)=2, \gamma_{R}\left(G-\left\{v_{1} v_{2}, v_{2} u_{t}, u_{2} u_{3}\right\}\right)>$ $\gamma_{R}(G)$, and for $\operatorname{deg}\left(u_{2}\right)=3, \gamma_{R}\left(G-\left\{v_{2} u_{2}, v_{2} u_{t}, u_{2} u_{3}\right\}\right)>\gamma_{R}(G)$. Thus $b_{R}(G) \leq 3$. It remains to suppose that $k=3$. By Lemma $12, \operatorname{deg}\left(v_{2}\right)=2$. If $\operatorname{deg}\left(v_{3}\right) \leq 4$, then (1) with the path $v_{1} v_{2} v_{3}$ shows that $b_{R}(G) \leq 4$. So suppose that $\operatorname{deg}\left(v_{3}\right) \geq 5$. This time $\gamma_{R}\left(G-\left\{v_{2} v_{3}, v_{3} x, v_{3} y\right\}\right)>\gamma_{R}(G)$, where $\{x, y\} \cap\left\{u_{2}, u_{t}, v_{2}\right\}=\emptyset$. We deduce that $b_{R}(G) \leq 3$.

To see the sharpness, let G be a graph obtained from any cycle C_{n} on $n \geq 3$ vertices by identifying every vertex of C_{n} with the central vertex of a path P_{5}. It is straightforward to verify that $\gamma_{R}(G)=4 n$, and $b_{R}(G)=4$.

We close the paper with the following problem.
Problem 15. Determine the trees T with $\gamma_{R}(T)=1, \gamma_{R}(T)=2$ and $\gamma_{R}(T)=3$.

Acknowledgement

We would like to thank the referees for their careful review of our manuscript and some helpful suggestions.

References

[1] D. Bauer, F. Harary, J. Nieminen and C.L. Suffel, Domination alteration sets in graphs, Discrete Math. 47 (1983) 153-161.
[2] E.J. Cockayne, P.M. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11-22.
[3] J.E. Dunbar, T.W. Haynes, U. Teschner and L. Volkmann, Bondage, insensitivity, and reinforcement, in: T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998) 471-489.
[4] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990) 47-57.
[5] B.L. Hartnell and D.F. Rall, Bounds on the bondage number of a graph, Discrete Math. 128 (1994) 173-177.
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[7] C.S. ReVelle and K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer Math. Monthly 107 (2000) 585-594.
[8] I. Stewart, Defend the Roman Empire!, Sci. Amer. 281 (1999) 136-139.
[9] U. Teschner, New results about the bondage number of a graph, Discrete Math. 171 (1997) 249-259.
[10] D.B. West, Introduction to Graph Theory, (2nd edition) (Prentice Hall, USA, 2001).

Received 14 June 2010
Revised 23 November 2010
Accepted 23 November 2010

[^0]: ${ }^{1}$ The research of first author was in part supported by a grant from IPM (No. 89050040).

