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Abstract

A Roman dominating function on a graph G is a function f :
V (G) → {0, 1, 2} satisfying the condition that every vertex u for which
f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2.
The weight of a Roman dominating function is the value f(V (G)) =
∑

u∈V (G) f(u). The Roman domination number, γR(G), of G is the
minimum weight of a Roman dominating function on G. In this pa-
per, we define the Roman bondage bR(G) of a graph G with maximum
degree at least two to be the minimum cardinality of all sets E′ ⊆ E(G)
for which γR(G − E′) > γR(G). We determine the Roman bondage
number in several classes of graphs and give some sharp bounds.
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1. Terminology and Introduction

Let G = (V (G), E(G)) be a simple graph of order n. We denote the open
neighborhood of a vertex v of G by NG(v), or just N(v), and its closed neigh-
borhood by NG[v] = N [v]. For a vertex set S ⊆ V (G), N(S) =

⋃

v∈S N(v)
and N [S] =

⋃

v∈S N [v]. The degree deg(x) of a vertex x denotes the number
of neighbors of x in G, and ∆(G) is the maximum degree of G. Also the
eccentricity, ecc(x), of a vertex x is maximum distance of the vertices of G
from x. A set of vertices S in G is a dominating set, if N [S] = V (G). The
domination number, γ(G), of G is the minimum cardinality of a dominating
set of G. If S is a subset of V (G), then we denote by G[S] the subgraph of
G induced by S. For notation and graph theory terminology in general we
follow [6].

With Kn we denote the complete graph on n vertices and with Cn the
cycle of length n. For two positive integers m,n, the complete bipartite
graph Km,n is the graph with partition V (G) = V1 ∪ V2 such that |V1| = m,
|V2| = n and such that G[Vi] has no edge for i = 1, 2, and every two vertices
belonging to different partition sets are adjacent to each other.

For a graph G, let f : V (G) → {0, 1, 2} be a function, and let (V0;V1;V2)
be the ordered partition of V (G) induced by f , where Vi = {v ∈ V (G) :
f(v) = i} and for i = 0, 1, 2. There is a 1 − 1 correspondence between
the functions f : V (G) → {0, 1, 2} and the ordered partition (V0;V1;V2) of
V (G). So we will write f = (V0;V1;V2).

A function f : V (G) → {0, 1, 2} is a Roman dominating function (or
just RDF) if every vertex u for which f(u) = 0 is adjacent to at least one
vertex v for which f(v) = 2. The weight of a Roman dominating function
is the value f(V (G)) =

∑

u∈V (G) f(u). The Roman domination number of a
graph G, denoted by γR(G), is the minimum weight of a Roman dominating
function on G. A function f = (V0;V1;V2) is called a γR-function (or γR(G)-
function when we want to refer f to G), if it is a Roman dominating function
and f(V (G)) = γR(G), [2, 7, 8].

The bondage number b(G) of a nonempty graph G is the minimum
cardinality among all sets of edges E′ ⊆ E(G) for which γ(G−E′) > γ(G).
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This concept was introduced by Bauer, Harary, Nieminen and Suffel in [1],
and has been further studied for example in [4, 5, 9]). For more information
on this topic we refer the reader to the survey article by Dunbar, Haynes,
Teschner and Volkmann [3].

In this paper we study bondage by considering a variation based on
Roman domination. The Roman bondage number bR(G) of a graph G is the
cardinality of a smallest set of edges E′ ⊆ E(G) for which γR(G − E′) >

γR(G).

We note that if G is a connected graph on two vertices, then G ≃ K2

and γR(G) = 2. If e ∈ E(G), then G− e ≃ K2 and thus γR(G− e) = γR(G).
Therefore the Roman bondage number is only defined for a graph G with
maximum degree at least two.

We recall that a leaf in a graph G is a vertex of degree one, and a
support vertex is the vertex which is adjacent to a leaf.

2. Upper Bounds

Theorem 1. If G is a graph, and xyz a path of length 2 in G, then

(1) bR(G) ≤ deg(x) + deg(y) + deg(z) − 3− |N(x) ∩N(y)|.

If x and z are adjacent, then

(2) bR(G) ≤ deg(x) + deg(y) + deg(z) − 4− |N(x) ∩N(y)|.

Proof. Let H be the graph obtained from G by removing the edges incident
with x, y or z with exception of yz and all edges between y and N(x)∩N(y).
In H, the vertex x is isolated, z is a leaf and y is adjacent to z and all
neighbors of y in H, if any, lie in NG(x).

Let f = (V0, V1, V2) be a γR(H)-function. Then x ∈ V1 and, without
loss of generality, z ∈ V0 ∪ V1.

If z ∈ V0, then y ∈ V2 and therefore (V0 ∪ {x}, V1 − {x}, V2) is a RDF
on G of weight less than f , and (1) as well as (2) are proved.

Now assume that z ∈ V1. If y ∈ V1, then (V0 ∪{z}, V1−{y, z}, V2 ∪{y})
is also γR(H)-function, and we are in the situation discussed in the previous
case. However, if y ∈ V0, then there exists a vertex w ∈ NG(x)∩NG(y) such
that w ∈ V2. Since w is a neighbor of x in G, (V0 ∪ {x}, V1 − {x}, V2) is a
RDF on G of weight less than f , and again (1) and (2) are proved.
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Applying Theorem 1 on a path xyz such that one of the vertices x, y or z

has minimum degree, we obtain the next result immediately.

Corollary 2. If G is a connected graph of order n ≥ 3, then

bR(G) ≤ δ(G) + 2∆(G)− 3.

Our next upper bound involves the edge-connectivity λ(G), which is the
fewest number of edges whose removal from a connected graph G creates
two components. Since λ(G) ≤ δ(G), the next theorem is an extension of
Corollary 2.

Observation 3. If E is an edge cut set in a graph G smaller than bR(G),
then γR(G) equals the sum of all γR(Gi) where Gi emerge by removing E.

Theorem 4. If G is a connected graph of order n ≥ 3, then

bR(G) ≤ λ(G) + 2∆(G) − 3.

Proof. Let λ = λ(G), and let E = {e1, e2, . . . , eλ} be a set of edges whose
removal disconnects G. Say e1 = ab, and let Ha and Hb denote the com-
ponents of G − E containing a and b, respectively. By Corollary 2 we may
assume that Ha and Hb are non-trivial. Let a1 ∈ V (Ha) adjacent to a and
b1 ∈ V (Hb) adjacent to b, and let Fa,a1 and Fb,b1 denote the edges of G

incident with a or a1 with exception of aa1 and b or b1 with exception of
bb1, respectively. Suppose on the contrary that bR(G) > λ(G) + 2∆(G)− 3.
Noting that |E| = λ < bR(G), we observe that γR(G) = γR(Ha) + γR(Hb).
Since

|Fa,a1 ∪ E| ≤ degG(a) + degG(a1) + λ− 3 ≤ 2∆(G) + λ− 3 < bR(G),

we deduce that γR(G) = γ(Ha − {a, a1}) + 2 + γR(Hb). Similarly, since

|Fb,b1 ∪E| ≤ degG(b) + degG(b1) + λ− 3 ≤ 2∆(G) + λ− 3 < bR(G),

we deduce that γR(G) = γR(Hb−{b, b1})+2+γR(Ha). Altogether we obtain

2γR(G) = γR(Ha− {a, a1}) + 2 + γR(Hb) + γR(Hb− {b, b1}) + 2 + γR(Ha)

= γR(Ha− {a, a1}) + 4 + γR(Hb − {b, b1}) + γR(G)
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and thus γR(G) = γR(Ha−{a, a1})+4+γR(Hb−{b, b1}). This is obviously
a contradiction, since

γR(G) ≤ γR(Ha − {a, a1}) + γR(a1abb1) + γR(Hb − {b, b1})

≤ γR(Ha − {a, a1}) + 3 + γR(Hb − {b, b1}).

Observation 5. If a graph G has a vertex v such that γR(G− v) ≥ γR(G),
then bR(G) ≤ ∆(G).

Proof. Let E be the edge set incident with v. It follows that γR(G−E) >
γR(G), and the result is proved.

3. Exact Values of bR(G)

In this section we determine the Roman bondage number for several classes
of graphs.

Theorem 6. If G is a graph of order n ≥ 3 with exactly k ≥ 1 vertices of
degree n− 1, then bR(G) = ⌈k2⌉.

Proof. Since k ≥ 1, we note that γR(G) = 2. First let E1 ⊆ E(G) be an
arbitrary subset of edges such that |E1| < ⌈k2⌉, and let G′ = G − E1. It is
evident that there is a vertex v in G′ such that degG(v) = degG′(v) = n− 1,
and so γR(G

′) = γR(G) = 2. This shows that bR(G) ≥ ⌈k2⌉.
If v1, v2, . . . , vk ∈ V (G) are the vertices of degree n − 1, then the sub-

graph F induced by the vertices v1, v2, . . . , vk is isomorphic to the complete
graph Kk.

If k is even, then let H1 be the graph obtained from G by removing k
2

independent edges from F . Then ∆(H1) = n−2 and thus γR(H1) = 3. This
implies bR(G) ≤ ⌈k2⌉.

If k is odd, then let H2 be the graph obtained from G by removing
k−1
2 independent edges from F . Then there exists exactly one vertex, say

vk ∈ V (H2) such that degH2
(vk) = n−1. Let H3 be the graph obtained from

H2 by removing an arbitrary edge incident with vk. Then ∆(H3) = n − 2
and so γR(H3) = 3. This implies bR(G) ≤ ⌈k2⌉.

Combining the obtained inequalities, we deduce that bR(G) = ⌈k2⌉, and
the proof is complete.

Corollary 7. If n ≥ 3, then bR(Kn) = ⌈n2 ⌉.
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Lemma 8 [2]. For the classes of paths Pn and cycles Cn,

γR(Pn) = γR(Cn) =

⌈

2n

3

⌉

.

Theorem 9. For n ≥ 3,

bR(Pn) =

{

2 if n ≡ 2 (mod 3),
1 otherwise.

Proof. Let Pn = v1v2 . . . vn. Corollary 2 yields to bR(Pn) ≤ 2. First assume
that n = 3k. Lemma 8 implies that γR(Pn) = 2k and γR(Pn − v1v2) =
1 + γR(Pn−1) = 1 + 2k and thus bR(Pn) = 1. Next assume that n = 3k + 1.
According to Lemma 8, we have γR(Pn) = 2k + 1 and γR(Pn − v2v3) =
2 + γR(Pn−2) = 2 + 2k and so bR(Pn) = 1. It remains to assume that
n = 3k + 2. By Lemma 8, γR(Pn) = 2k + 2. If e is an arbitrary edge
of Pn, then Pn − e consists of two paths P1 and P2 of order n1 and n2,
respectively, such that n1 + n2 = n and γR(Pn − e) = γR(P1) + γR(P2).
Now there are integers k1 and k2 such that n1 = 3k1, n2 = 3k2 + 2 or
n1 = 3k1 + 1, n2 = 3k2 + 1 or n1 = 3k1 + 2, n2 = 3k2 and k1 + k2 = k. In
the first case we deduce from Lemma 8 that

γR(Pn − e) = γR(P1) + γR(P2)

=

⌈

6k1
3

⌉

+

⌈

6k2 + 4

3

⌉

= 2k1 + 2k2 + 2 = 2k + 2 = γR(Pn).

This implies that bR(Pn) ≥ 2 in the first case, and because of bR(Pn) ≤ 2 we
obtain bR(Pn) = 2. The remaining two cases are similar and are therefore
omitted.

Theorem 10. For n ≥ 3,

bR(Cn) =

{

3 if n ≡ 2 (mod 3),
2 otherwise.

Proof. Let Cn = v1v2 . . . vnv1. Corollary 2 leads to bR(Cn) ≤ 3. If e is
an arbitrary edge of Cn, then Cn − e = Pn. Hence Lemma 8 shows that
bR(Cn) ≥ 2. We distinguish three cases.



Roman Bondage in Graphs 769

Assume that n = 3k. Lemma 8 implies that γR(Cn) = 2k and γR(Cn −
{v1v2, v2v3}) = 1 + γR(P3k−1) = 1 + 2k and thus bR(Cn) = 2.

Assume that n = 3k + 1. Lemma 8 implies that γR(Cn) = 2k + 1 and
γR(Cn − {v1v2, v3v4}) = 2 + γR(P3k−1) = 2 + 2k and thus bR(Cn) = 2.

Assume that n = 3k+2. By Lemma 8, γR(Cn) = 2k+2. If e1 and e2 are
two arbitrary edges of Cn, then Cn−{e1, e2} consists of two paths P1 and P2

of order n1 and n2 such that n1 +n2 = n and γR(Cn −{e1, e2}) = γR(P1) +
γR(P2). Now there are integers k1 and k2 such that n1 = 3k1, n2 = 3k2 + 2
or n1 = 3k1 + 1, n2 = 3k2 + 1 or n1 = 3k1 + 2, n2 = 3k2 and k1 + k2 = k. In
the second case we deduce from Lemma 8 that

γR(Cn − {e1, e2}) = γR(P1) + γR(P2)

=

⌈

6k1 + 2

3

⌉

+

⌈

6k2 + 2

3

⌉

= 2k1 + 1 + 2k2 + 1 = 2k + 2 = γR(Cn).

Because of bR(Cn) ≤ 3, this leads to bR(Cn) = 3 in this case. The remaining
two cases are similar and are therefore omitted.

Theorem 11. If m and n are integers such that 1 ≤ m ≤ n and n ≥ 2,
then bR(Km,n) = m, with exception of the case m = n = 3. In addition,
bR(K3,3) = 4.

Proof. Let G = Km,n. First notice that if m = 1, then G is a star and
γR(G− e) = 3 > 2 = γR(G) for any edge e, and hence bR(G) = 1 = m.

Assume next that m = 2. If n = 2, then the desired result follows
from Theorem 10. If n ≥ 3, then γR(G − e) = γR(G) = 3 for any edge
e. But if e1 and e2 are two edges incident to a vertex of degree two, then
γR(G− {e1, e2}) = 4 and thus bR(G) = 2 = m.

Finally assume that m ≥ 3. Let X and Y be the two partite sets
with |X| = m and |Y | = n. If E is a set of edges with |E| < m and
G1 = G − E, then there are two vertices x ∈ X and y ∈ Y such that
NG1

(x) = Y and NG1
(y) = X. It follows that γR(G1) = 4 = γR(G) and

thus bR(G) ≥ m. However, if we remove all edges incident to a vertex
y ∈ Y , then we obtain a graph G2 such that γR(G2) = 5 when n ≥ 4.
This shows that bR(G) = m when n ≥ 4. Finally, let X = {x1, x2, x3} and
Y = {y1, y2, y3} be the partite sets of K3,3. Let E be a subset of edges
such that γR(K3,3 −E) > γR(K3,3) = 4. Assume that |E| < 4, and without
loss of generality assume that |E| = 3. Let E = {e1, e2, e3}. If no two
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edges of E have a common end point, then we may assume, without loss
of generality, that ei = xiyi for i = 1, 2, 3. Then γR(K3,3 − E) = 4 and
({x2, y2, x3, y3}, ∅, {x1, y1}) is a γR-function for K3,3 − E, a contradiction.
Thus we assume, without loss of generality, that e1 = x1y1 and e2 = x1y2.
If e3 = x1y3, then γR(K3,3 − E) = 4, and ({y1, y2, y3}, {x1, x2}, {x3}) is
a γR-function for K3,3 − E), a contradiction. Thus e3 6= x1y3. Similarly,
this case produces a contradiction. We conclude that bR(K3,3) ≥ 4. On
the other hand γR(K3,3 − {x1y2, x1y3, y1x2, y1x3}) = 5 > γR(K3,3). Hence,
bR(K3,3) = 4.

4. Trees and Unicyclic Graphs

Lemma 12. If a graph G has a support vertex v of degree at least three such
that all of its neighbors except one is a leaf, then bR(G) ≤ 2.

Proof. Let N(v) = {v1, v2, . . . , vk} such that deg(vk) ≥ 2. Applying (1) on
the path v1vv2 in the case deg(v) = k = 3, we obtain bR(G) ≤ 2 immediately.

Assume now that deg(v) = k ≥ 4. Let f = (V0;V1;V2) be a γR-function
of G−vv1. It follows that v1 ∈ V1 and, without loss of generality, that v ∈ V2.
Therefore (V0 ∪{v1}, V1 −{v1};V2) is a RDF on G of weight γR(G)− 1, and
thus bR(G) = 1.

Theorem 13. For any tree T with at least three vertices, bR(T ) ≤ 3.

Proof. If T has a support vertex v of degree at least three such that all
of its neighbors except one is a leaf, then bR(T ) ≤ 2 by Lemma 12. So
assume that for any support vertex v either deg(v) = 2 or v has at least two
neighbors which are no leaves. Let P = v1v2 . . . vk be a longest path of T .
By the assumption, degT (v2) = 2. If degT (v3) ≤ 3, then (1) with the path
v1v2v3 shows that bR(T ) ≤ 3.

Assume now that degT (v3) ≥ 4. Suppose to the contrary that bR(T ) >
3. So γR(T − {v2v3, v3v4}) = γR(T ). Let f = (V0;V1;V2) be a γR-function
on T − {v2v3, v3v4}. Then f(v1) + f(v2) = 2. If v3 ∈ V1, then

((V0 − {v1, v2}) ∪ {v1, v3};V1 − {v3}; (V2 − {v1, v2}) ∪ {v2})

is a RDF on T of weight less than γR(T ). This contradiction implies that
v3 6∈ V1. Similarly, v3 6∈ V2. So v3 ∈ V0. We deduce that there is a vertex
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w1 ∈ NV (T−{v2v3,v3v4})(v3) ∩ V2. If w1 is a leaf, then

((V0 − {v1, v2}) ∪ {w1, v2}; (V1 − {v1, v2}) ∪ {v1}; (V2 − {v1, v2}) ∪ {v3})

is a RDF on T of weight less than γR(T ), a contradiction. It follows that
w1 is a support vertex with degT (w1) = 2. Let u1 be a leaf adjacent to
w1. By the assumption, γR(T − {v2v3, v3v4, w1v3}) = γR(T ). Let g be a
γR-function on T − {v2v3, v3v4, w1v3}. If g(v3) = 1, then we replace g(v3)
by 0, g(v2) by 2 and g(v1) by 0 to obtain a RDF on T of weight less than
γR(G), a contradiction. Similarly, we observe that g(v3) 6= 2. So g(v3) = 0.
We deduce that there is a vertex w2 ∈ NT−{v2v3,v3v4,w1v3}(v3) such that
g(w2) = 2. We can easily see that w2 is a support vertex with degT (w2) = 2.
Let u2 be the leaf adjacent to w2.

Now we consider the forest T − {v2v3, v3w1, v3w2}. Our assumption
implies that γR(T −{v2v3, v3w1, v3w2}) = γR(T ). Let h be a γR-function on
T − {v2v3, v3w1, v3w2}. Then

h(v1) + h(v2) = h(w1) + h(u1) = h(w2) + h(u2) = 2.

We replace g(v3) by 2, g(v2), g(w1), g(w2) by 0, and g(v1), g(u1), g(u2) by 1,
to obtain a RDF on T of weight less than γR(T ), a contradiction. Hence
bR(T ) ≤ 3, and the proof is complete.

The following figure shows that the bound of Theorem 13 is sharp. It is a
simple matter to verify that bR(H) = 3.
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In the next theorem we give a sharp upper bound for Roman bondage num-
ber in unicyclic graphs.

Theorem 14. For any unicyclic graph G, bR(G) ≤ 4, and this bound is
sharp.
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Proof. Let G be a unicyclic graph, and let C be the unique cycle of G.
If G = C, then by Theorem 10, bR(G) ≤ 3. Assume that G 6= C. Let
v1− v2−· · ·− vk be the longest path where v1 is a leaf and {v1, v2, . . . , vk}∩
V (C) = {vk}. Let V (C) = {u1, u2, . . . , ut}, where u1 = vk and NC(vk) =
{u2, ut}. If bR(G) ≤ 2, then we have done. So suppose that bR(G) ≥ 3.
First assume that k ≥ 4. By Lemma 12, deg(v2) = 2. If deg(v3) ≤ 4,
then (1) with the path v1v2v3 shows that bR(G) ≤ 4. So we assume that
deg(v3) ≥ 5. Let A be the set of all leaves of G at distance 2 from v3 except
the leaves adjacent to v4. Let e1, e2, e3 be three edges incident with v3 with
{e1, e2, e3} ∩ {v2v3, v3v4} = ∅. We show that γR(G − {v2v3, e1, e2, e3}) >

γR(G). Suppose to the contrary that γR(G − {v2v3, e1, e2, e3}) = γR(G).
Let f be a γR-function for G−{v2v3, e1, e2, e3}. It follows that g : V (G) −→
{0, 1, 2} defined by g(v3) = 2, g(x) = 0 if x ∈ N(v3), g(x) = 1 if x ∈ A, and
g(x) = f(x) if x 6∈ N [V3] ∪A, is a RDF for G with weight less than γR(G).
This contradiction implies that γR(G − {v2v3, e1, e2, e3}) > γR(G), and so
bR(G) ≤ 4.

Now suppose that k ≤ 3. For k = 2, it is straightforward to verify
that if deg(v2) ≥ 4, then γR(G − {v1v2, u1ut, u1u2}) > γR(G). Suppose
that deg(v2) = 3. As an immediately result deg(ui) ≤ 3 for i = 1, 2, . . . , t.
Again we can easily see that for deg(u2) = 2, γR(G − {v1v2, v2ut, u2u3}) >
γR(G), and for deg(u2) = 3, γR(G − {v2u2, v2ut, u2u3}) > γR(G). Thus
bR(G) ≤ 3. It remains to suppose that k = 3. By Lemma 12, deg(v2) = 2.
If deg(v3) ≤ 4, then (1) with the path v1v2v3 shows that bR(G) ≤ 4. So
suppose that deg(v3) ≥ 5. This time γR(G − {v2v3, v3x, v3y}) > γR(G),
where {x, y} ∩ {u2, ut, v2} = ∅. We deduce that bR(G) ≤ 3.

To see the sharpness, let G be a graph obtained from any cycle Cn on
n ≥ 3 vertices by identifying every vertex of Cn with the central vertex of a
path P5. It is straightforward to verify that γR(G) = 4n, and bR(G) = 4.

We close the paper with the following problem.

Problem 15. Determine the trees T with γR(T ) = 1, γR(T ) = 2 and
γR(T ) = 3.
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