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Abstract

Let G be a connected graph and T be a spanning tree of G. For
e ∈ E(T ), the congestion of e is the number of edges in G joining
the two components of T − e. The congestion of T is the maximum
congestion over all edges in T . The spanning tree congestion of G is
the minimum congestion over all its spanning trees. In this paper, we
determine the spanning tree congestion of the rook’s graph Km �Kn

for any m and n.
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1. Introduction

For a graph G, we denote its vertex set and edge set by V (G) and E(G),
respectively. Let T be a spanning tree of a connected graph G. The detour

for an edge {u, v} ∈ E(G) is the unique u − v path in T . We define the
congestion of e ∈ E(T ), denoted by cngG,T (e), as the number of detours
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that contain e. The congestion of T , denoted by cngG(T ), is the maximum
congestion over all edges in T . We define the spanning tree congestion of G,
denoted by stc(G), as the minimum congestion over all spanning trees of G.

The spanning tree congestion has been studied intensively [4, 5, 8, 9, 12,
10, 16, 15, 17, 18]. Castejón and Ostrovskii [5], and Hruska [8] independently
determined the spanning tree congestion of the two-dimensional grid Pm�Pn.
Kozawa, Otachi, and Yamazaki [9] determined the spanning tree congestion
of the two-dimensional torus Cm � Cn. There are some results for high-
dimensional graphs; that is, Cartesian products of three or more graphs.
Castejón and Ostrovskii [5] presented asymptotic estimates for the three-
dimensional grid P 3

n = Pn � Pn � Pn and the three-dimensional torus C3
n =

Cn�Cn�Cn. The spanning tree congestion of the d-dimensional hypercube
P d
2 was conjectured to be 2d−1 [8, 9], but it was proven to be Θ(2d lg d/d)

by Law [12].

In this paper, we follow the line of studies on the spanning tree congestion
of Cartesian product graphs. We investigate the spanning tree congestion of
the two-dimensional Hamming graph Km �Kn, which is also known as the
rook’s graph. The rest of this paper is organized as follows. In Section 2, we
introduce some notions and auxiliary lemmas. In Section 3, we determine
the spanning tree congestion of two-dimensional Hamming graphs.

2. Preliminaries

Let G be a connected graph. For S ⊆ V (G), let G[S] denote the subgraph
induced by S. For an edge e ∈ E(G), we denote by G−e the graph obtained
from G by deleting e. If e ∈ E(G) has a vertex of degree one as one of its
endpoints, e is called a leaf edge, otherwise e is called an inner edge. Let
NG(v) denote the neighborhood of v ∈ V (G) in G; that is, NG(v) = {u |
{u, v} ∈ E(G)}. We denote the degree of a vertex v ∈ V (G) by degG(v),
and the maximum degree of G by ∆(G); that is, degG(v) = |NG(v)| and
∆(G) = maxv∈V (G) degG(v). A graph G is r-regular if degG(v) = r for all
v ∈ V (G). For S ⊆ V (G), we denote the edge set of G[S] by ιG(S), and the
boundary edge set by θG(S); that is,

ιG(S) = {{u, v} ∈ E(G) | u, v ∈ S},

θG(S) = {{u, v} ∈ E(G) | exactly one of u, v is in S}.



Spanning Tree Congestion of Rook’s Graphs 755

We define the functions ι and θ also for a positive integer s ≤ |V (G)| as

ιG(s) = max
S⊆V (G), |S|=s

|ιG(S)|,

θG(s) = min
S⊆V (G), |S|=s

|θG(S)|.

The congestion cngG,T (e) of an edge e ∈ E(T ) satisfies cngG,T (e) = |θG(Le)|,
where Le is the vertex set of one of the two components of T − e. We omit
the subscripts of the above functions when they are clear from the context.
As the next lemma shows, the two functions ι and θ can be computed from
each other directly.

Lemma 2.1 [3]. Let G be r-regular and S ⊆ V (G). Then, 2|ιG(S)| +
|θG(S)| = r|S|.

The following lower bound can be derived from a property of the centroid of
trees.

Lemma 2.2 [5, 9]. For a connected graph G,

stc(G) ≥ min
{

θ(s) |
⌈

(|V (G)| − 1)/∆(G)
⌉

≤ s ≤
⌊

|V (G)|/2
⌋}

.

The Cartesian product of graphs G and H, denoted by G�H, is the graph
whose vertex set is V (G)× V (H) and in which a vertex (g, h) is adjacent to
a vertex (g′, h′) if and only if either g = g′ and {h, h′} ∈ E(H), or h = h′

and {g, g′} ∈ E(G). It is easy to see that the Cartesian product operation
satisfies the associative and commutative laws up to isomorphism. The dth
Cartesian power of a graph G, denoted by Gd, is defined as follows: G1 = G
and Gd = G�Gd−1 if d ≥ 2. Obviously, degG�H((g, h)) = degG(g)+degH(h).

Let [n] denote the set {0, . . . , n−1}. The complete graph Kn is the graph
whose vertex set is [n], with any two vertices adjacent. The graph Kd

n =
(Kn)

d is the d-dimensional Hamming graph. We call Kn1
�Kn2

� · · ·�Knd

a generalized d-dimensional Hamming graph. Generalized two-dimensional
Hamming graphs are called rook’s graphs.

Lindsey [13] solved the edge-isoperimetric problem for generalized d-
dimensional Hamming graphs. In the lexicographic order ≺lex, (a1, . . . , ad)
≺lex (b1, . . . , bd) if and only if there exists i (1 ≤ i ≤ d) such that ai < bi
and ai′ = bi′ for each i′ < i.

Lemma 2.3 [13]. Let p1 ≤ p2 ≤ · · · ≤ pd. Then for each s, 1 ≤ s ≤
∏d

i=1 pi,
the collection of the first s vertices of Kp1 � Kp2 � · · · � Kpd taken in the

lexicographic order ≺lex provides minimum for the function θ.
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3. Spanning Tree Congestion of Rook’s Graphs

In this section, we determine the spanning tree congestion of generalized two-
dimensional Hamming graphs Km �Kn. These graphs have several natural
characterizations. The rook’s graph has the vertex set {(i, j) | i ∈ [m],
j ∈ [n]} which corresponds to the cells of the m × n chessboard. A vertex
(i, j) in a rook’s graph is adjacent to (i′, j′) if and only if a rook at the cell
(i, j) can move to the cell (i′, j′) (see Figure 1). In other words, (i, j) is
adjacent to (i′, j′) if and only if either i = i′ and j 6= j′, or i 6= i′ and j = j′.
It is also known that Km � Kn is the line graph of the complete bipartite
graph Km,n. Line graphs of bipartite graphs are used in the proof of the
Strong Perfect Graph Theorem [6]. Several properties of rook’s graphs have
been studied [1, 2, 7, 11, 14].
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(3, 1)
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(1, 4)
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Figure 1. The rook’s graph K4 �K5.

Since K1 �Kn
∼= Kn and stc(Kn) = n − 1 [16], we henceforth assume that

2 ≤ m ≤ n. We also write θ for θKm�Kn
and ι for ιKm�Kn

. We call the
subgraph induced by the vertex set {(i, j) | j ∈ [n]} the row i, and the
subgraph induced by the vertex set {(i, j) | i ∈ [m]} the column j. The
following lemma is our main tool.

Lemma 3.1. Let 2 ≤ m ≤ n, and let s = qn + r ≤ mn for nonnegative

integers q and r < n. Then, θ(s) = (m− q)qn+ (m+ n− 2q − r − 1)r.

Proof. Let S ⊆ V (Km �Kn) be the set of the first s vertices taken in the
order ≺lex. By Lemma 2.3, |θ(S)| = θ(s). It is easy to see that S consists of
q rows and r vertices included in another row. Let R denote the set of these
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r vertices (R may be empty). There are
(

n
2

)

edges in each row, and n edges
between each two rows. There are

(

r
2

)

edges in R, and r edges between R and
any other of the q rows of S. Hence, we have |ι(S)| = q

(

n
2

)

+
(

q
2

)

n+
(

r
2

)

+ qr.
Since Km �Kn is (m+ n− 2)-regular, we have

|θ(S)| = (m+ n− 2)(qn + r)− 2|ι(S)| = (m− q)qn+ (m+ n− 2q− r− 1)r,

by Lemma 2.1.

3.1. Lower bound

Using Lemmas 2.2 and 3.1, we derive a lower bound for stc(Km �Kn). We
divide the range

⌈

(mn− 1)/(m+n− 2)
⌉

≤ s ≤
⌊

mn/2
⌋

, in Lemma 2.2, into
two ranges

⌈

(mn − 1)/(m + n − 2)
⌉

≤ s ≤ n and n < s ≤
⌊

mn/2
⌋

. This is
possible since m,n ≥ 2 implies

⌈

(mn− 1)/(m + n− 2)
⌉

≤ n ≤
⌊

mn/2
⌋

.

Lemma 3.2. If 2 ≤ m ≤ n, then θ(s) ≥ min
{

θ(n), θ
(⌈

mn−1
m+n−2

⌉)}

for
⌈

mn−1
m+n−2

⌉

≤ s ≤ n.

Proof. By Lemma 3.1, θ(s) = −s(s −m− n + 1) for s ≤ n. Since −s(s −
m− n+ 1) is a concave function in s, the lemma holds.

Lemma 3.3. If 2 ≤ m ≤ n, then θ(s) ≥ θ(n) for n < s ≤
⌊

mn/2
⌋

.

Proof. Let q and r be defined as in Lemma 3.1. Clearly, 1 ≤ q ≤ m/2.
By Lemma 3.1, we have θ(s) = (m − q)qn + (m + n − 2q − r − 1)r, and
θ(n) = (m − 1)n. Since 1 ≤ q ≤ m/2, we have (m − q)q ≥ m − 1, and so,
(m−q)qn ≥ (m−1)n. Since q ≤ m/2 and r < n, we have m+n−2q−r−1 ≥
0, and so, (m+ n − 2q − r − 1)r ≥ 0. Therefore, θ(s) = (m− q)qn + (m +
n− 2q − r − 1)r ≥ (m− 1)n = θ(n).

Corollary 3.4. If 2 ≤ m ≤ n, then stc(Km�Kn)≥ min
{

θ(n), θ
(⌈

mn−1
m+n−2

⌉)}

.

3.2. Upper bound

We show upper bounds that meet the lower bound in the above corollary.

Lemma 3.5. If 2 ≤ m ≤ n, then stc(Km �Kn) ≤ θ(n).

Proof. The spanning tree T is defined as follows (see Figure 2):

1. For each row i, construct the star K1,n−1 with the center (i, 0);
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2. For the column 0, construct the star K1,m−1 with the center (0, 0);
3. The union of the constructed stars is T .

Each edge e constructed in the first step is a leaf edge of T . Thus cng(e) =
θ(1). If an edge e is constructed in the second step, cng(e) = θ(n). Since
m,n ≥ 2, θ(1) = m+ n− 2 ≤ (m− 1)n = θ(n). Thus the lemma holds.
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(3, 1)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(0, 3) (0, 4)

(3, 3) (3, 4)

(1, 1)

(2, 1)

(1, 2)

(2, 2)

(1, 3)

(2, 3)

(1, 4)

(2, 4)

Figure 2. The spanning tree of K4 �K5 in Lemma 3.5.

Lemma 3.6. If 2 ≤ m ≤ n, then stc(Km �Kn) ≤ θ
(⌈

mn−1
m+n−2

⌉)

.

Proof. Let x =
⌈

mn−1
m+n−2

⌉

. First, we prove the next fact.

Proposition 3.7. If 2 ≤ m ≤ n, then θ(s) ≤ θ(x) for s ≤ x.

Proof. Lemma 3.1 implies θ(s) = −s(s −m− n + 1) for s ≤ n. Since this
term is monotonously increasing for s ≤

⌈

m+n−1
2

⌉

, the proposition holds
provided that x ≤

⌈

m+n−1
2

⌉

. Suppose x >
⌈

m+n−1
2

⌉

; that is,
⌈

mn−1
m+n−2

⌉

>
⌈

m+n−1
2

⌉

. This implies mn−1
m+n−2 > m+n−1

2 . Simplifying this inequation, we
have (m− 1)(m− 2) + (n− 1)(n− 2) < 0, which contradicts 2 ≤ m ≤ n.

The spanning tree T is constructed as follows (see Figure 3):

1. Construct the star K1,m+n−2 with the center (0, 0) and the set of the
leaves NKm�Kn

((0, 0)) = {(i, 0) | 1 ≤ i ≤ m−1}∪{(0, j) | 1 ≤ j ≤ n−1};

2. For each column j, construct the star K1,x−1 with the center (0, j) and
the leaves {(h(ij), j), (h(ij + 1), j), . . . , (h(ij + x − 2), j)}, where ij =
(j − 1)(x − 1) and h(i) = (i mod m− 1) + 1 (see Figure 3(a));
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3. For each row i, construct the star with the center (i, 0) whose leaves are
the vertices of the row that are not included in any other star constructed
in the first and the second steps;

4. The union of the constructed stars is T (see Figure 3(b)).

(a) Consecutive property of leaves of stars
in the second step (x = 4).

(b) The union of the stars.

Figure 3. The spanning tree of K6 �K7 in Lemma 3.6.

If an edge e in T is not incident to the vertex (0, 0), then e is a leaf edge,
and e has congestion θ(1) ≤ θ(x). Suppose that e is incident to (0, 0). Then,
either e = {(0, 0), (0, j)} or e = {(0, 0), (i, 0)}.

Case 1. e = {(0, 0), (0, j)}.

In this case, cng(e) = |θ(V (Tj))|, where Tj is the star in the column j
constructed in the second step. Thus |V (Tj)| = x and V (Tj) induces a
clique. Hence, cng(e) = θ(x).

Case 2. e = {(0, 0), (i, 0)}.

In this case, cng(e) = |θ(V (Ti))|, where Ti is the star in the row i constructed
in the third step. Thus V (Ti) induces a clique, which implies |θ(V (Ti))| =
θ(|V (Ti)|). Now, it suffices to show that |V (Ti)| ≤ x. In the second step,
(x − 1)(n − 1) vertices of {(i, j) | 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1} are
used. Since the vertices are consecutively taken in the second step, the
numbers of the remaining vertices in any two rows can differ by at most
one. Thus Ti has at most

⌈ (m−1)(n−1)−(x−1)(n−1)
m−1

⌉

=
⌈ (m−x)(n−1)

m−1

⌉

leaves.



760 K. Kozawa and Y. Otachi

Suppose x − 1 <
⌈ (m−x)(n−1)

m−1

⌉

, which implies x − 1 < (m−x)(n−1)
m−1 since x is

an integer. Then, we have x < mn−1
m+n−2 , which contradicts x =

⌈

mn−1
m+n−2

⌉

.

Corollary 3.8. If 2≤ m≤ n, then stc(Km�Kn)≤ min
{

θ(n), θ
(⌈

mn−1
m+n−2

⌉)}

.

Corollaries 3.4 and 3.8 together imply that stc(Km �Kn) =
min

{

θ(n), θ
(⌈

mn−1
m+n−2

⌉)}

. We give the main theorem in a more transparent
form.

Theorem 3.9. If 2 ≤ m ≤ n, then

stc(Km �Kn) =

{

(m− 1)n if m2 − 3m+ 3 < n,
(

m+ n− 1−
⌈

mn−1
m+n−2

⌉)⌈

mn−1
m+n−2

⌉

otherwise.

Proof. Let x =
⌈

mn−1
m+n−2

⌉

. By Lemma 3.1, θ(s) = (m + n − 1 − s)s for
x ≤ s ≤ n. Let f(s) = −s(s − m − n + 1). Then f(s) is quadratic with
maximum in s = m+n−1

2 . Thus f(n) = f(m − 1) = θ(n). Since m ≤ n,
it holds that m − 1 < m+n−1

2 < n. It is easy to see that x ≤ n. So,
f(m − 1) < f(x) if and only if m − 1 < x. Since m − 1 is an integer,
m−1 <

⌈

mn−1
m+n−2

⌉

if and only if m−1 < mn−1
m+n−2 . Simplifying this inequation,

we have m2 − 3m+ 3 < n.

For readers’ convenience, we explicitly state the spanning tree congestion
of the square rook’s graph K2

n = Kn � Kn, which is a direct corollary to
Theorem 3.9.

Corollary 3.10. If n ≥ 2, then

stc(K2
n) =

{

(3n− 4)(n + 2)/4 if n is even,

(3n− 3)(n + 1)/4 if n is odd.
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