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Abstract

The Wiener index, denoted byW (G), of a connected graph G is the
sum of all pairwise distances of vertices of the graph, that is, W (G) =
1
2

∑

u,v∈V (G) d(u, v). In this paper, we obtain the Wiener index of the
tensor product of a path and a cycle.
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1. Introduction

For two simple graphs G and H their tensor product, denoted by G×H, has
vertex set V (G)×V (H) in which (g1, h1) and (g2, h2) are adjacent whenever
g1g2 is an edge in G and h1h2 is an edge in H. Let G and H be graphs with
vertex sets V (G) = {x1, x2, . . . , xm} and V (H) = {y1, y2, . . . , yn} . Then
V (G×H) = V (G)× V (H) and for our convenience, we write V (G×H) =
⋃m

i=1 Xi, where Xi = {xi}×V (H); we may also write V (G×H) =
⋃n

j=1 Yj,

where Yj = V (G) × {yj} . We shall denote the vertices of Xi by {xi,j |1 ≤
j ≤ n} and the vertices of Yj by {xi,j |1 ≤ i ≤ m}, where xi,j stands for
the vertex (xi, yj). We shall call Xi, 1 ≤ i ≤ m, the i-th layer of G×H and
Yj , 1 ≤ j ≤ n, the j-th column of G×H; see Figure 1.



738 K. Pattabiraman and P. Paulraja

For two disjoint subsets A and B of V (G), E(A,B) denotes the set of edges
of G having one end in A and other end in B. Let Pr denote a path on r

vertices and let Cs denote a cycle on s vertices. For terms not defined here
see [1] or [8].
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Figure 1. Tensor Product of P3 and C4.

The Wiener index of a connected graph G, W (G), is defined as
1
2

∑

u,v∈V (G) d(u, v), where d is the distance function on G. The Wiener index
has important applications in chemistry. The graphical invariant W (G) has
been studied by many researchers under different names such as distance,
transmissions, total status and sum of all distances; see [5, 6, 9]. The chemist
Harold Wiener was the first to point out in 1947 thatW (G) is well correlated
with certain physico-chemical properties of the organic compound.

Besides applications in chemistry, there are many situations in commu-
nication, facility location, cryptology, etc., that are effectively modeled by a
connected graph G satisfying certain restrictions. Because of cost restraints
one is often interested in finding a spanning tree of G that is optimal with
respect to one or more properties. Average distance between vertices is fre-
quently one of these properties. Finding a spanning tree T of G that has
minimum Wiener index is proved to be important see, [7]. For recent results
on Wiener index, see [2, 3, 4, 10]. In this paper, we compute the Wiener
index of Pr × Cs.

2. Wiener Index of P2m+1 ×C2n+1

The following lemma can be seen in [12].

Lemma 1. 1. W (Pn) = (n+1
3 ), n ≥ 2.
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2. W (C2n) = n3.

3. W (C2n+1) =
n(n+1)(2n+1)

2 .

It is known that G × H is connected if G or H is nonbipartite. Hence we
consider the tensor product of a path and an odd cycle.

We use the following observations implicitly while finding distances be-
tween the vertices of Pr × Cs.

Observation 2. Let H = (Pr × Cs) − E(Y1, Ys), where Yi are as defined

above; there are two components H1 and H2 in H. The vertices in one of

the components, say H1, (resp. H2) are those (i, j) with i and j are of same

(resp. different) parity. By the nature of the graph Pr ×Cs, in any shortest

path between a pair of distinct vertices of it, consecutive vertices of the path

are either in different layers or different columns and hence the length of

a shortest path between the vertices is either the number of layers the path

visits minus one or number of columns it visits minus one. Further, in any

shortest path in Pr × Cs from xk,1, k is odd (resp. even) to a vertex in H2

(resp. H1), the path has to use the first edge xk,1xk−1,s or xk,1xk+1,s.

The following observation is helpful in finding a shortest path between a
pair of distinct vertices in Pr ×Cs.

Observation 3. A path of length l exists between (u, v) and (x, y) in G×H

only if there exists in G a walk of length l between u and x and a walk of

length l between v and y in H.

The Observation 3 is explained in a different context in [11, p. 273]. In this
section, we compute the Wiener index of Pr × Cs, where r and s are odd
integers.

Theorem 4. The Wiener index of P2m+1×C2n+1 is 2n+1
3

(
2m(m+1) (m2+

m+ 1) + 3n(n+ 1)(2m + 1)2
)
.

Proof. Let Skj denote the sum of the distances from xk,j to all other vertices
of G = P2m+1 × C2n+1, that is,

∑

v 6=xk,j∈V (G) dG(xk,j, v). Since there is
an automorphism of G which maps xk,i to xk,j, i 6= j, Skj = Ski. Hence,
instead of computing Srs for every r and s, it is enough to compute Sk1 for
k = 1, 2, . . . , 2m+1, and then multiply each Sk1 with number of columns of
G to compute

∑

u,v∈V (G) dG(u, v).
For the computation of Sk1, for a fixed k, we partition the layers into

three sets {X1,X2, . . . ,Xk−1}, {Xk} and {Xk+1,Xk+2, . . . ,X2m+1} (Note
that when k = 1 or 2m+ 1, the partition consists of only two sets, namely,
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{X1}, {X2,X3, . . . ,X2m+1} and {X1,X2, . . . ,X2m}, {X2m+1}, respectively)
and we find distances from xk,1 to all the vertices in the layers in the partition
separately, that is,

(1)

∑

v∈V (G)

dG(xk,1, v) =
∑

v∈Xi
1≤i≤k−1

dG(xk,1, v) +
∑

v∈Xk

dG(xk,1, v)

+
∑

v∈Xi
k+1≤i≤2m+1

dG(xk,1, v).

First we consider the case n is odd. We divide the proof of the case n is odd
into three parts (A), (B) and (C). In (A), we find the distances from xk,1 to

all the vertices of
⋃k−1

i=1 Xi, in (B), we find the distances from xk,1 to all the
vertices of Xk and in (C), we find the distances from xk,1 to all the vertices
of

⋃2m+1
i=k+1Xi.

(A) Initially we find the sum of the distances from xk,1 to all the vertices

of
⋃k−1

i=1 Xi. For this, first we assume k is odd (and the case k even will
be considered later). We compute

∑

v∈Xi
dG(xk,1, v), for a single layer Xi,

1 ≤ i ≤ k−1.
∑

v∈Xi
dG(xk,1, v) is given in (2) for i odd and i even separately.

If i is odd, then

∑

v∈Xi

dG(xk,1, v) = (k − i) + 2((k − i) + · · ·+ (k − i)
︸ ︷︷ ︸

k−i
2

times

+(k − i+ 2)

+ (k − i+ 4) + · · ·+ (n− 1)) + 2(2n + (2n − 2) + · · · + (n+ 1)).

If i is even, then

(2)

∑

v∈Xi

dG(xk,1, v) = (2n + 1) + 2((2n − 1) + (2n− 3) + · · ·+ (n + 2))

+ 2((k − i) + · · · + (k − i)
︸ ︷︷ ︸

k−i+1

2
times

+(k − i+ 2) + (k − i+ 4) + · · ·+ n).

Explanations for the terms appearing in (2) are as follows.

If i is odd, then dG(xk,1, xi,1) = k−i and, dG(xk,1, xi,j) = k−i, j = 3, 5, . . . , i
and the respective shortest paths are similar to the one shown in Fig-
ure 2. The distances from xk,1 to the vertices xi,i+2, xi,i+4, . . . , xi,n are
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k − i + 2, k − i + 4, . . . , n − 1, respectively, and the corresponding short-
est paths are similar to the one shown in Figure 3. The distances from xk,1
to the vertices xi,2, xi,4, xi,6, . . . , xi,n+1 are 2n, 2n−2, 2n−4, . . . , n+1, respec-
tively, and the corresponding shortest paths are similar to the one shown in
Figure 4.

If i is even, then dG(xk,1, xi,1) = 2n + 1 and, the distances from xk,1
to the vertices xi,3, xi,5, xi,7, . . . , xi,n are 2n − 1, 2n − 3, 2n − 5, . . . , n + 2,
respectively, and the corresponding shortest paths are similar to the one
shown in Figure 4. Further, dG(xk,1, xi,j) = k − i, j = 2, 4, . . . , i and the
corresponding shortest paths are similar to the one shown in Figure 2. The
distances from xk,1 to the vertices xi,i+2, xi,i+4, . . . , xi,n+1 are k − i + 2,
k−i+4, . . . , n, respectively, and the corresponding shortest paths are similar
to the one shown in Figure 3.
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Figure 2. Vertices of P2m+1 × C2n+1.
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The multiplication factor 2 appears in the sum of (2), except for one term,
because dG(xk,1, xk,j) = dG(xk,1, xk,2n−j+3), 2 ≤ j ≤ n + 1. Summing the
terms of (2), that is, the summing the distances from xk,1 to all the vertices
of Xi, gives,

∑

v∈Xi

dG(xk,1, v) =







(k−i)2

2 + 2n(n+ 1) if i is odd,

(k−i)2

2 + 2n(n+ 1) + 1
2 if i is even.

(3)
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Hence,

∑

v∈Xi

1≤i≤k−1

dG(xk,1, v) =
∑

1≤i≤k−1

(
(k − i)2

2
+ 2n(n+ 1)

)

+
1

2
+

1

2
+ · · ·+

1

2
︸ ︷︷ ︸

k−1

2
times

=
k(k − 1)(2k − 1)

12
+ 2n(n+ 1)(k − 1) +

k − 1

4
.(4)

b
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Figure 3. Vertices of P2m+1 × C2n+1.
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Figure 4. Vertices of P2m+1 × C2n+1.
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Next we assume that k is even. If i is odd, then this case is similar to
the case k odd and i even considered above further, if i is even, then this
case is similar to the case k and i are odd discussed above. Consequently,
the following equation is same as Equation (3) except for the parity of i.
Therefore, for a fixed i,

∑

v∈Xi

dG(xk,1, v) =







(k−i)2

2 + 2n(n+ 1) + 1
2 , if i is odd,

(k−i)2

2 + 2n(n+ 1), if i is even.
(5)

Hence,

∑

v∈Xi

1≤i≤k−1

dG(xk,1, v) =
∑

1≤i≤k−1

(
(k − i)2

2
+ 2n(n+ 1)

)

+
1

2
+

1

2
+ · · ·+

1

2
︸ ︷︷ ︸

k
2

times

=
k(k − 1)(2k − 1)

12
+ 2n(n+ 1)(k − 1) +

k

4
.(6)

Thus the Equations (4) and (6) give the sum of the distances from u = xk,1

to all the vertices of
⋃k−1

i=1 Xi.

(B) Next we find the sum of the distances from u = xk,1 to all other vertices
of Xk.

(7)

∑

v=xk,j∈Xk

dG(xk,1, v) = 2 (2 + 4 + · · · + (n− 1))

+ 2 (2n+ (2n − 2) + · · ·+ (n+ 1)) .

Explanations for the terms appearing in (7) are described below.
dG(xk,1, xk,j) = j − 1, j = 3, 5, . . . , n and the corresponding shortest paths
are similar to the one shown in Figure 5. Further, dG(xk,1, xk,j) = 2n−j+2,
j = 2, 4, . . . , n + 1, the corresponding shortest paths are similar to the one
shown in Figure 6. The multiplication factor 2 appears in the Equation (7)
because dG(xk,1, xk,j) = dG(xk,1, xk,2n−j+3), 2 ≤ j ≤ n+ 1. Hence

∑

v=xk,j∈Xk

dG(xk,1, v) = 2(2 + 4 + 6 + · · · + 2n)

= 2n(n+ 1).(8)

Thus we have obtained the sum of the distances from xk,1 to all other vertices
of Xk.
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Figure 5. Vertices of P2m+1 × C2n+1.
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Figure 6. Vertices of P2m+1 × C2n+1.
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(C) Finally, we find the sum of the distances from u = xk,1 to all the vertices
of

⋃2m+1
i=k+1Xi. For this, it is enough to replace k − i by i− k, in the

argument given in (A). Hence, if k is odd, then for a fixed i,

∑

v∈Xi

dG(xk,1, v) =







(i−k)2

2 + 2n(n+ 1) if i is odd,

(i−k)2

2 + 2n(n+ 1) + 1
2 if i is even.

(9)
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Hence,

∑

v∈Xi

k+1≤i≤2m+1

dG(xk,1, v) =
∑

k+1≤i≤2m+1

(
(i − k)2

2
+ 2n(n+ 1)

)

+
1

2
+

1

2
+ · · ·+

1

2
︸ ︷︷ ︸

2m−k+1

2
times

(10) =

(
(2m− k + 1)(2m− k + 2)(4m− 2k + 3)

12
+ 2n(n+ 1)(2m− k + 1)

)

+
(2m− k + 1)

4
.

If k is even, then for a fixed i,

∑

v∈Xi

dG(xk,1, v) =







(i−k)2

2 + 2n(n+ 1) + 1
2 if i is odd,

(i−k)2

2 + 2n(n+ 1) if i is even.
(11)

Hence,

∑

v∈Xi

k+1≤i≤2m+1

dG(xk,1, v) =
∑

k+1≤i≤2m+1

(
(i − k)2

2
+ 2n(n+ 1)

)

+
1

2
+

1

2
+ · · ·+

1

2
︸ ︷︷ ︸

2m−k+2

2
times

(12) =
(2m− k + 1)(2m− k + 2)(4m− 2k + 3)

12
+ 2n(n+ 1)(2m− k + 1)

+
(2m− k + 2)

4
.

From (4), (8) and (10), when k is odd,

(13)

∑

v∈V (G)

dG(xk,1, v) =

=
k(k − 1)(2k − 1)

12
+ 2n(n + 1)(k − 1) +

k − 1

4
+ 2n(n+ 1)

+
(2m− k + 1)(2m− k + 2)(4m− 2k + 3)

12

+ 2n(n+ 1)(2m− k + 1) +
(2m− k + 1)

4
.
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From (6), (8) and (12), when k is even,

(14)

∑

v∈V (G)

dG(xk,1, v) =

=
k(k − 1)(2k − 1)

12
+ 2n(n+ 1)(k − 1) +

k

4
+ 2n(n+ 1)

+
(2m− k + 1)(2m− k + 2)(4m − 2k + 3)

12

+ 2n(n+ 1)(2m− k + 1) +
2m− k + 2

4
.

Combining (13) and (14) and summing over k = 1, 2, . . . , 2m+ 1, we get
(15)

2m+1∑

k=1

∑

v∈V (G)

dG(xk,1, v) =

=

2m+1∑

k=1

(
k(k − 1)(2k − 1)

12
+

(2m− k + 1)(2m− k + 2)(4m − 2k + 3)

12

)

+

2m+1∑

k=1

(

2n(n + 1)(k − 1) + 2n(n+ 1) + 2n(n+ 1)(2m − k + 1)
)

+
m

2
+

m

2
+ · · ·+

m

2
︸ ︷︷ ︸

(m+1) times

+
m+ 1

2
+

m+ 1

2
+ · · ·+

m+ 1

2
︸ ︷︷ ︸

m times

=
m

6
(m+ 1)(2m + 1)2 +

m

6
(m+ 1)(2m + 1)2 + 2n(n+ 1)m(2m + 1)

+ 2n(n+ 1)(2m + 1) + 2n(n+ 1)m(2m+ 1) +
m(m+ 1)

2

+
m(m+ 1)

2

=
2

3
(2m(m+ 1)(m2 +m+ 1) + 3n(n+ 1)(2m + 1)2).

As there is an automorphism of G which maps xk,1 to xk,j, j 6= 1, the sum
of the distances from xk,1 to all the vertices of G is same as the sum of the
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distances from xk,j, 2 ≤ j ≤ 2n+ 1, to all the vertices of G, we have

(16)

∑

u,v∈V (G)

dG(u, v) =

= (2n+ 1)





2m+1∑

k=1

∑

v∈V (G)

dG(xk,1, v)





= (2n+ 1)

(
2

3
(2m(m+ 1)(m2 +m+ 1) + 3n(n+ 1)(2m+ 1)2)

)

=
2(2n + 1)

3

(
2m(m+ 1)(m2 +m+ 1) + 3n(n+ 1)(2m + 1)2

)
.

The proof is similar when n is even and in this case also
∑

u,v∈V (G) dG(u, v)
is found to be the same as (16); we omit the details. Hence, irrespective of
the parity of n, we have

∑

u,v∈V (G)

dG(u, v) =
2(2n + 1)

3

(
2m(m+1)(m2+m+ 1) + 3n(n+1)(2m+1)2

)
.

Hence,

W (P2m+1 × C2n+1) =
1

2

∑

u,v∈V (G)

dG(u, v)

=
(2n + 1)

3

(
2m(m+ 1)(m2 +m+ 1) + 3n(n+ 1)(2m + 1)2

)
.

3. Wiener Index of P2m × C2n+1.

In this section, we compute the Wiener index of the tensor product of an
even length path and an odd cycle.

Theorem 5. The Wiener index of P2m × C2n+1 is
m2(2n+1)

3 ((2m2 + 1) +
12n(n + 1)).

Proof. As in the proof of the previous theorem, we consider (A), (B) and
(C). (A) and (B) are the same as in the previous theorem and hence, for (A)
and (B) we consider the sum as in the proof of the previous theorem. Also,
in (C), the summation varies from k + 1 to 2m instead of k + 1 to 2m+ 1.
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Hence we consider the sum corresponding to (C) of the above theorem.
Therefore, if k is odd, then for a fixed i,

∑

v∈Xi

dG(xk,1, v) =







(i−k)2

2 + 2n(n+ 1) if i is odd,

(i−k)2

2 + 2n(n+ 1) + 1
2 if i is even.

(17)

Hence,

(18)

∑

v∈Xi
k+1≤i≤2m

dG(xk,1, v) =

=
∑

k+1≤i≤2m

(
(i− k)2

2
+ 2n(n + 1)

)

+
1

2
+

1

2
+ · · · +

1

2
︸ ︷︷ ︸

2m−k+1

2
times

=
(2m− k)(2m− k + 1)(4m− 2k + 1)

12
+ 2n(n+ 1)(2m− k)

+
(2m− k + 1)

4
.

If k is even, then for a fixed i,

∑

v∈Xi

dG(xk,1, v) =







(i−k)2

2 + 2n(n+ 1) + 1
2 if i is odd,

(i−k)2

2 + 2n(n+ 1) if i is even.
(19)

Hence,

(20)

∑

v∈Xi
k+1≤i≤2m

dG(xk,1, v) =

=
∑

k+1≤i≤2m

(
(i− k)2

2
+ 2n(n + 1)

)

+
1

2
+

1

2
+ · · · +

1

2
︸ ︷︷ ︸

2m−k
2

times

=
(2m− k)(2m− k + 1)(4m− 2k + 1)

12
+ 2n(n+ 1)(2m− k)

+
(2m− k)

4
.
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From (4), (8) and (18), when k is odd,

(21)

∑

v∈V (G)

dG(xk,1, v) =

=
k(k − 1)(2k − 1)

12
+ 2n(n + 1)(k − 1) +

k − 1

4
+ 2n(n+ 1)

+
(2m− k)(2m− k + 1)(4m − 2k + 1)

12
+ 2n(n + 1)(2m − k) +

m

2

(where (4) and (8) are taken from the proof of Theorem 4).
From (6), (8) and (20), when k is even,

(22)

∑

v∈V (G)

dG(xk,1, v) =

=
k(k − 1)(2k − 1)

12
+ 2n(n + 1)(k − 1) +

k

4
+ 2n(n+ 1)

+
(2m− k)(2m− k + 1)(4m − 2k + 1)

12
+ 2n(n + 1)(2m − k) +

m

2

(where (4) and (8) are taken from the proof of Theorem 4).
Combining (21) and (22) and summing over k = 1, 2, . . . , 2m, we get

(23)

2m∑

k=1

∑

v∈V (G)

dG(xk,1, v) =

=
2m∑

k=1

(
k(k − 1)(2k − 1)

12
+

(2m− k)(2m − k + 1)(4m− 2k + 1)

12

)

+

2m∑

k=1

(2n(n + 1)(k − 1) + 2n(n+ 1) + 2n(n+ 1)(2m − k))

+
m

2
+

m

2
+ · · · +

m

2
︸ ︷︷ ︸

m times

+
m

2
+

m

2
+ · · ·+

m

2
︸ ︷︷ ︸

m times

=
m2

6
(2m+ 1)(2m − 1) +

m2

6
(2m+ 1)(2m− 1)

+ 2n(n + 1)m(2m− 1) + 4n(n+ 1)m+ 2n(n+ 1)m(2m− 1)

+
m2

2
+

m2

2
=

2m2

3

(
(2m2 + 1) + 12n(n+ 1)

)
.
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As there is an automorphism of G which maps xk,1 to xk,j, j 6= 1, the sum
of the distances from xk,1 to all the vertices of G is same as the sum of the
distances from xk,j, 2 ≤ j ≤ 2n + 1, to all the vertices of G and hence we
have

∑

u,v∈V (G)

dG(u, v) = (2n+ 1)





2m∑

k=1

∑

v∈V (G)

dG(xk,1, v)





= (2n+ 1)

(
2m2

3

(
(2m2 + 1) + 12n(n+ 1)

)
)

(24)

=
2m2(2n + 1)

3

(
(2m2 + 1) + 12n(n+ 1)

)
.

The proof is similar when n is even and in this case also
∑

u,v∈V (G) dG(u, v)
is found to be the same as (24); we omit the details. Hence, irrespective of
the parity of n, we have

∑

u,v∈V (G)

dG(u, v) =
2m2(2n + 1)

3

(
(2m2 + 1) + 12n(n+ 1)

)
.

Hence,

W (P2m × C2n+1) =
1

2

∑

u,v∈V (G)

dG(u, v)

=
m2(2n + 1)

3

(
(2m2 + 1) + 12n(n + 1)

)
.
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