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Abstract

A b-coloring of a graph G by k colors is a proper vertex coloring
such that every color class contains a color-dominating vertex, that is, a
vertex having neighbors in all other k−1 color classes. The b-chromatic
number χb(G) is the maximum integer k for which G has a b-coloring
by k colors. Moreover, the graph G is called b-continuous if G admits
a b-coloring by k colors for all k satisfying χ(G) ≤ k ≤ χb(G). In this
paper, we establish four general upper bounds on χb(G). We present
results on the b-chromatic number and the b-continuity problem for
special graphs, in particular for disconnected graphs and graphs with
independence number 2. Moreover we determine χb(G) for graphs
G with minimum degree δ(G) ≥ |V (G)| − 3, graphs G with clique
number ω(G) ≥ |V (G)| − 3, and graphs G with independence number
α(G) ≥ |V (G)| − 2. We also prove that these graphs are b-continuous.
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1. Introduction

We refer to [3] for terminology and notation not defined here and consider
in this paper only finite, simple, and undirected graphs.

The concept of b-colorings and the b-chromatic number were introduced
by Irving and Manlove [5] and have already been investigated in several
papers (cf. [1, 2, 4, 5, 6, 8, 9]). A b-coloring of a graph G by k colors is a
proper vertex coloring such that each color class contains a vertex having
neighbors in all other k − 1 color classes. Such a vertex is called a color-

dominating vertex. The b-chromatic number χb(G) is the maximum integer
k for which G has a b-coloring by k colors. Irving and Manlove [5] proved
that the problem to decide whether χb(G) ≥ K for a given graph G and
an integer K is NP-complete. So we are interested in the determination of
bounds for χb(G) in general and exact values on χb(G) for special graphs or
graph classes, respectively.

Since any optimal vertex coloring by χ(G) colors is a b-coloring, it follows
that χb(G) ≥ χ(G) for every graph G. The b-spectrum Sb(G) of a graph
G is the set of integers k, for which a b-coloring of G by k colors exists.
Clearly, Sb(G) ⊆ {χ(G), . . . , χb(G)}. A graph G is called b-continuous if
Sb(G) = {χ(G), . . . , χb(G)}. Interestingly enough, there exist graphs which
are not b-continuous. For instance, a graph that can be obtained from the
complete bipartite graph Kr,r, r ≥ 4, by removing a perfect matching is not
b-continuous since it only has b-colorings by k colors for k = 2 and k = r.
Barth, Cohen, and Faik [1] proved that the problem to decide whether a
graph G is b-continuous is NP-complete, even if b-colorings by χ(G) and by
χb(G) colors are part of the input. So it is an intriguing task to find (classes
of) graphs which are b-continuous.

In Section 3, we establish four general upper bounds on χb(G) and give
sharpness examples. Then we deal with restricted graph classes. In Section
4.1 we consider disconnected graphs and mainly investigate whether there
is a connection between χb(G1 ∪ · · · ∪ Gr) and the b-chromatic numbers
χb(G1), . . . , χb(Gr) of the single components. After this, graphs with inde-
pendence number 2 are discussed in Section 4.2. We present bounds on the
b-chromatic number for these graphs and prove that they are b-continuous.
In the last two Sections 4.3 and 4.4 we determine the b-chromatic number for
graphsG having δ(G) ≥ |V (G)|−3, ω(G) ≥ |V (G)|−3, or α(G) ≥ |V (G)|−2,
and we also prove that these graphs are b-continuous.
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Further Notation. Let G = (V,E) be a graph.

Throughout the paper we use several graph invariants of G, which are:
the order n(G) = |V (G)|, the chromatic number χ(G), the maximum degree
∆(G), the minimum degree δ(G), the independence number α(G), the clique
number ω(G), the clique cover number θ(G), and the matching number ν(G).
G denotes the complement of G.

For a vertex v ∈ V , N(v) or NG(v) is the set of vertices which are
adjacent to v in G. The degree of v is the cardinality of NG(v) and is
denoted by d(v) or dG(v). For a subset V ′ ⊆ V we denote the subgraph
induced by V ′ with G[V ′].

In the following ”coloring” means a proper vertex coloring where adja-
cent vertices receive different colors. Sometimes we write ”proper coloring”
in order to emphasize that the coloring is proper. For a coloring c and
V ′ ⊆ V we define c(V ′) := {c(v) | v ∈ V ′}. Moreover, a coloring c of G by
k colors shall always be a function c : V → {1, . . . , k} where all k colors are
used.

Let Gi = (Vi, Ei), i = 1, . . . , r, be r disjoint graphs. The union G :=
G1 ∪ · · · ∪Gr has vertex set V (G) =

⋃r
i=1 Vi and edge set E(G) =

⋃r
i=1 Ei.

The join G := G1 + · · · + Gr has vertex set V (G) =
⋃r

i=1 Vi and edge set
E(G) =

⋃r
i=1Ei ∪ {{x, y} | x ∈ Vi, y ∈ Vj , i, j ∈ {1, . . . , r}, i 6= j}.

2. Preliminaries

It is known that every graph G satisfies

(1) ω(G) ≤ χ(G) ≤ χb(G) ≤ ∆(G) + 1.

Moreover, Kouider and Mahéo proved the following Nordhaus-Gaddum-type
result:

Theorem 1 [8]. For every graph G, χb(G) + χb(G) ≤ n(G) + 1.

Since χb(G) ≥ ω(G) = α(G) this implies:

Theorem 2 [8]. For every graph G, χb(G) ≤ n(G)− α(G) + 1.

From above we easily deduce:

Proposition 3. χb(G) ≤ ⌈n(G)−α(G)+∆(G)+1
2 ⌉ for every graph G.
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Definition 4. For s, t ≥ 1 let H1(s, t) = (V,E1) and H2(s, t) = (V,E2) be
the graphs with V = X ∪ Y ∪ Z, E1 = A ∪B ∪ C, and E2 = B ∪C where:

X = {x1, . . . , xs}, Y = {y1, . . . , yt}, Z = {z1, . . . , zt},
A =

{

{xi, xj} | 1 ≤ i < j ≤ s
}

,

B =
{

{xi, yj} | 1 ≤ i ≤ s, 1 ≤ j ≤ t
}

, and

C =
{

{yi, zj} | 1 ≤ i, j ≤ t, i 6= j
}

.

Lemma 5. For s, t ≥ 1 the graphs H1 := H1(s, t) and H2 := H2(s, t) satisfy
n(H1) = n(H2) = s+ 2t, ∆(H1) = ∆(H2) = s+ t− 1, and

(a) α(H1) = t + 1, ω(H1) = χ(H1) = s + 1, χb(H1) = s + t, and if t ≥ 3,
then H1 has no b-coloring by s+ 2 colors,

(b) α(H2) = s + t, ω(H2) = χ(H2) = 2, χb(H2) = t + 1, and if t ≥ 3,
then H2 has no b-coloring by 3 colors.

Proof. Clearly, n(H1) = n(H2) = s+ 2t and ∆(H1) = ∆(H2) = s+ t− 1.

(a) It can easily be verified that ω(H1) = s+1, and α(H1) = t+1. The
coloring cχ : V → {1, . . . , s + 1} defined by cχ(xi) = i for i = 1, . . . , s and
cχ(yj) = s + 1, cχ(zj) = 1 for j = 1, . . . , t, is a proper coloring of H1 by
ω(H1) colors. Hence, χ(H1) = ω(H1).

Moreover, the b-chromatic number satisfies χb(G) ≤ ∆(H1) + 1 = s+ t
(by (1)). We notice that this bound is attained since the coloring cb : V →
{1, . . . , s+t} defined by cb(xi) = i for i = 1, . . . , s and cb(yj) = cb(zj) = j+s
for j = 1, . . . , t is a proper b-coloring of H1.

Let t ≥ 3 and suppose that there exists a b-coloring c of H1 by s + 2
colors.

Since the vertices from X induce a clique we may assume w.l.o.g. that
c(xi) = i for i = 1, . . . , s. This (along with s ≥ 1) implies c(yj) ∈ {s+1, s+2}
and 1 /∈ c(N(zj)) ⊆ {s + 1, s + 2} for j ∈ {1, . . . , t}. Hence, the color-
dominating vertices of color s + 1 and s+ 2, respectively, are not in Z but
in Y . W.l.o.g. let y1, y2 be color-dominating vertices with c(y1) = s + 1
and c(y2) = s + 2. The former implies c(z2) = s + 2 and the latter implies
c(z1) = s + 1. Since N(y3) = {x1, . . . , xs, z1, z2} it follows that c(N(y3)) =
{1, . . . , s + 2}. So there is no color left for y3 and therefore c cannot be a
proper vertex coloring by s+ 2 colors, a contradiction.

(b) Since H2 is bipartite and X ∪ Z is a maximum independent set of
H2 we deduce that ω(H2) = χ(H2) = 2, and α(H2) = s+ t.
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The b-chromatic number satisfies χb(H2) ≤ n(H2) − α(H2) + 1 = t + 1
(compare Theorem 2). This bound is attained since the coloring cb : V →
{1, . . . , t+1} defined by cb(xi) = 1 for i = 1, . . . , s and cb(yj) = cb(zj) = j+1
for j = 1, . . . , t is a proper b-coloring of H2.

Let t ≥ 3 and suppose that there exists a b-coloring c of H2 by 3 colors.
Suppose that there exists an integer j ∈ {1, . . . , t} such that c(yj) 6=

c(zj). W.l.o.g. let j = 1, c(y1) = 1 and c(z1) = 2. Thus, 1 /∈ c(X ∪ Z) and
2 /∈ c(Y ). SinceX,Y, and Z are independent sets it follows that there cannot
exist a color-dominating vertex of color 3, a contradiction. Hence, c(yj) =
c(zj) is satisfied for every integer j ∈ {1, . . . , t}. Since {yj , zl} ∈ E(H2) for
j, l ∈ {1, . . . , t}, j 6= l, we may assume w.l.o.g. that c(yj) = c(zj) = j for
j = 1, . . . , t. This implies c(N(x1)) = {1, . . . , t} and c(x1) ≥ t + 1 ≥ 4.
Thus, c cannot be a proper vertex coloring by 3 colors, a contradiction.

Remark 6. By case analysis we can prove that every graph of order at
most 6 is b-continuous and the graph H1(1, 3) shown in Figure 1 is the only
non-b-continuous graph of order 7. This bipartite graph has b-chromatic
number 4 but does not allow a b-coloring by 3 colors.

Figure 1. The smallest non-b-continuous graph.

3. Upper Bounds on χb(G)

In the next four theorems we establish new bounds on the b-chromatic num-
ber. The proof of these results follows at the end of the section.

Theorem 7. For every non-complete graph G, χb(G) ≤ ⌈n(G)+ω(G)
2 ⌉ − 1.

Corollary 8. Every triangle-free graph G of order n ≥ 3 satisfies χb(G) ≤
⌈n2 ⌉. This bound is sharp for the cycle C5 and every complete bipartite graph

Kr,r where a perfect matching is removed.



714 M. Alkhateeb and A. Kohl

The graph H1(s, t) is a sharpness example for Theorem 7 as well since

χb(H1(s, t)) = s+ t = ∆(H1(s, t))+1 = ⌈n(H1(s,t))+ω(H1(s,t))
2 ⌉−1. Moreover,

we also can find sharpness examples G for which ⌈n(G)+ω(G)
2 ⌉−1 < ∆(G)+1.

Observation 9. For every integer l ≥ 2 there exists a graph G of order

n = 3(l − 1) such that ω(G) = l and χb(G) =
⌈

n+l
2

⌉

− 1.

Proof. Let G = (V,E) be a graph with vertex set V = X ∪Y ∪Z and edge
set E = A ∪B ∪ C such that

X = {x1, . . . , xl−1}, Y = {y1, . . . , yl−1}, Z = {z1, . . . , zl−1},
A =

{

{xi, xj} | 1 ≤ i < j ≤ l − 1
}

,

B =
{

{xi, zj} | 1 ≤ i, j ≤ l − 1
}

, and

C =
{

{xi, yj}, {yi, zj} | 1 ≤ i, j ≤ l − 1, i 6= j
}

.

G has n = 3(l − 1) vertices. Since X ∪ {z1} is a clique with l vertices, and
Y and Z are independent sets it is easy to see that ω(G) = χ(G) = l.

We consider the coloring cb of G that has the color classes {x1}, . . . ,
{xl−1}, {y1, z1}, . . . , {yl−1, zl−1}. Obviously, cb is a proper coloring of G
by 2(l − 1) colors. Moreover, we can easily check that xi and zi are color-
dominating vertices for every i ∈ {1, . . . , l − 1}. Hence, every color class
contains a color-dominating vertex, i.e., cb is a b-coloring of G. It follows
from this and from Theorem 7 that χb(G) = 2(l − 1) = ⌈n+l

2 ⌉ − 1.

It is known (cf. [7] and [10]) that for every graph G,

χ(G) ≤ n(G)−α(G)+ω(G)+1
2 = n(G)−α(G)+∆(G)+1

2 − ∆(G)−ω(G)
2l for l = 1, and

χ(G) ≤
⌈ω(G)

2 + n(G)+∆(G)
4

⌉

=
⌈n(G)+ω(G)

2 − n(G)−∆(G)
2l

⌉

for l = 2.

Since these bounds look similar to the bounds on χb(G) given in Proposition
3 and Theorem 7, one might ask whether these bounds on χ(G) are even
general upper bounds on χb(G) for some l ≥ 1.

Proposition 10. There exists no integer l ≥ 1 such that

(a) χb(G) ≤ ⌈n(G)−α(G)+∆(G)+1
2 − ∆(G)−ω(G)

2l ⌉ for every graph G, or

(b) χb(G) ≤ ⌈n(G)+ω(G)
2 − n(G)−∆(G)

2l ⌉ for every graph G.

Proof. Let l, s, t ≥ 1 and H := H1(s, t). By Lemma 5 it follows that:
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– if t ≥ l + 2, then
⌈n(H)−α(H)+∆(H)+1

2 − ∆(H)−ω(H)
2l

⌉

≤ s+ t− 1 < χb(H),

– if t ≥ 3l − 1, then
⌈n(H)+ω(H)

2 − n(H)−∆(H)
2l

⌉

≤ s+ t− 1 < χb(H).

Let θ(G) denote the clique cover number of G, i.e., θ(G) = χ(G). Kouider
and Zaker [9] proved that every graph G with clique cover number θ(G) = t

satisfies χb(G) ≤ t2ω(G)
2t−1 . This can slightly be improved to:

Theorem 11. For every graph G with clique cover number θ(G) ≤ t,

χb(G) ≤ ⌊ tω(G)+(t−1)n(G)
2t−1 ⌋.

Note that the pigeonhole principle yields n(G) ≤ tω(G) for every graph G
with θ(G) ≤ t (since n(G) vertices are distributed among θ(G) ≤ t cliques

in a minimum clique cover). Hence, tω(G)+(t−1)n(G)
2t−1 ≤ t2ω(G)

2t−1 . So the upper
bound from Theorem 11 is never larger than the bound of Kouider and
Zaker, and even improves the bound in case of n(G) < tω(G).

Let ν(G) denote the matching number of the complement G, i.e., the
cardinality of a maximum matching in G.

Theorem 12. For every graph G, χb(G) ≤ n(G)− ⌈2ν(G)
3 ⌉.

Corollary 13. If G has a perfect matching, then χb(G) ≤ ⌊2n(G)
3 ⌋.

At last we mention a bound that seems not so useful in the first place but
has the advantage that it can be determined in polynomial time and it yields
good results in particular for graphs whose minimum degree is close to its
maximum degree.

Theorem 14. For every graph G, χb(G) ≤ ⌊ 2n(G)−∆(G)−δ(G)−3
3n(G)−2∆(G)−δ(G)−4n(G)⌋.

Corollary 15. If G is a (n(G)− 1− r)-regular graph (i.e., G is r-regular),
then χb(G) ≤ ⌊2r−1

3r−1n(G)⌋.

For r = 1 we obtain χb(G) ≤ ⌊n(G)
2 ⌋. It will turn out in Corollary 28

that this is the exact value on χb(G). Moreover, for r = 2 we deduce that

χb(G) ≤ ⌊3n(G)
5 ⌋. As we will see in Theorem 31, this bound is attained in

case that G is connected. For r = 3, there also exist sharpness examples
for the bound χb(G) ≤ ⌊5n(G)

8 ⌋. Figure 2 shows the complement of a 12-

regular graph G of order 16 and a b-coloring of G by 10 = 5n(G)
8 colors.

Incidently, this graph G is also a sharpness example for the upper bounds
from Theorems 11 and 12 since ω(G) = 7, θ(G) = 3, and ν(G) = 8.
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Figure 2. Complement of a (n(G)− 4)-regular graph G with χb(G) = 5n(G)
8 .

In the literature, the problem of deciding which d-regular graphs G satisfy
χb(G) = d+ 1 is often discussed. Corollary 15 yields:

Corollary 16. If G is a d-regular graph with
2n(G)

3 − 1 ≤ d ≤ n(G) − 2,
then χb(G) < d+ 1.

Proof of Theorems 7, 11, 12, and 14. We set n := n(G), ω := ω(G),
δ := δ(G), and ∆ := ∆(G).

Let c be a b-coloring of G by k colors and let V1, . . . , Vk be the corre-
sponding color classes such that |V1| ≤ |V2| ≤ · · · ≤ |Vk|. For i = 1, . . . , k
a color-dominating vertex vi ∈ Vi is chosen. By a we denote the number of
color classes of cardinality 1. Obviously, n ≥ a+ 2(k − a), i.e., a ≥ 2k − n.

Assume that a > 0.
Let A := {v1, . . . , va}, B := {va+1, . . . , vk}, and C := V (G) \ (A ∪B).

Since all vertices in A ∪ B are color-dominating and the vertices in A
are the only vertices with colors 1, . . . , a it follows that the vertices in A
are pairwise adjacent and every vertex in B is adjacent to all vertices in A.
Hence:

Fact 1. {vi, vj} ∈ E(G) for i ∈ {1, . . . , a}, j ∈ {1, . . . , k} \ {i}.
(a) If ω < n, then it is easy to see that a < k. So the vertex va+1 exists,

and according to Fact 1 the vertices v1, . . . , va+1 induce a clique of order a+1.
This implies ω ≥ a+1 ≥ 2k−n+1 and therefore k ≤ ⌊n+ω−1

2 ⌋ = ⌈n+ω
2 ⌉−1.

(b) Let t ≥ θ(G) and let {Q1, . . . , Qt} be a clique cover of G with
t cliques. The pigeonhole principle implies that there is an integer i ∈
{1, . . . , t} such that Qi contains at least s := ⌈ |B|

t
⌉ = ⌈k−a

t
⌉ vertices from

the set B. W.l.o.g. assume that va+1, . . . , va+s ∈ Qi. Since Qi is a clique,
va+1, . . . , va+s are pairwise adjacent. Together with Fact 1 this implies that
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the vertices v1, . . . , va+s induce a clique of order a+ s. Hence, ω ≥ a+ s =

a+⌈k−a
t
⌉ = ⌈k+a(t−1)

t
⌉ and by a ≥ 2k−n we deduce that ω ≥ ⌈k+(2k−n)(t−1)

t
⌉.

This yields k ≤ ⌊ tω+(t−1)n
2t−1 ⌋.

(c) Set q := ν(G) and let M be a maximum matching of G with q edges.
By Fact 1 we know that every edge from M either has both end vertices in
V (G)\A or one end vertex in A and the other in C. Let p be the number of
edges {u, v} ∈ M such that u ∈ A and v ∈ C. Thus, p ≤ |C| = n−k. For the
q−p remaining matching edges with both end vertices in V (G)\A we deduce
that q − p ≤ ⌊n−a−p

2 ⌋. By use of the inequalities p ≤ n− k and a ≥ 2k − n,

it follows 2q ≤ n+ p− a ≤ 3n− 3k and finally k ≤ ⌊n− 2q
3 ⌋ = n− ⌈2q3 ⌉.

(d) Fact 1 yields NG(u) ⊆ C for every vertex u ∈ A. Hence, there exist
at least a · δ(G) edges {u, v} ∈ E(G) such that u ∈ A and v ∈ C. Every
vertex v ∈ C belongs to a color class of cardinality larger than 1. So there
exists a vertex w ∈ B such that {v,w} ∈ E(G). Therefore, v can be adjacent
to at most ∆(G)− 1 vertices in A. Since |C| = n− k, the last two sentences
imply a · δ(G) ≤ (∆(G)− 1)(n − k). This inequality along with a ≥ 2k − n

yields k ≤ ⌊ ∆(G)+δ(G)−1

∆(G)+2δ(G)−1
n⌋ = ⌊ 2n−∆−δ−3

3n−2∆−δ−4n⌋.

Assume that a = 0.
By a ≥ 2k − n we immediately obtain k ≤ ⌊n2 ⌋. We show now that this
bound is never larger than the bounds obtained for the case a > 0.

(a) Since ω ≥ 1 we deduce that ⌊n2 ⌋ ≤ ⌊n+ω−1
2 ⌋ = ⌈n+ω

2 ⌉ − 1.

(b) By the inequality n ≤ tω mentioned above we obtain

⌊n2 ⌋ = ⌊n(2t−1)
2(2t−1) ⌋ = ⌊n+2(t−1)n

2(2t−1) ⌋ ≤ ⌊ tω+2(t−1)n
2(2t−1) ⌋ ≤ ⌊2tω+2(t−1)n

2(2t−1) ⌋ = ⌊ tω+(t−1)n
2t−1 ⌋.

(c) Since 2q ≤ n we have ⌊n2 ⌋ ≤ ⌊2n3 ⌋ = ⌊n − n
3 ⌋ ≤ ⌊n− 2q

3 ⌋ = n− ⌈2q3 ⌉.
(d) Clearly, a = 0 is only possible if G is not complete. So, δ ≤ n− 2 and

⌊n2 ⌋ = ⌊ 3n−2∆−δ−4
2(3n−2∆−δ−4)n⌋ = ⌊2(2n−∆−δ−3)+2+δ−n

2(3n−2∆−δ−4) n⌋ ≤ ⌊ 2n−∆−δ−3
3n−2∆−δ−4n⌋.

4. Results for Special Graphs

4.1. Disconnected graphs

In case that the complement G is disconnected we know the following:
If G1, . . . , Gr are the components of G, then G is a join of the graphs

Gi = Gi (i = 1, . . . , r), i.e., G = G1 + · · ·+Gr. It is well-known that a join



718 M. Alkhateeb and A. Kohl

G = G1+ · · ·+Gr has chromatic number χ(G) =
∑r

i=1 χ(Gi). An analogous
result was shown for the b-chromatic number:

Proposition 17 (Hoàng and Kouider, [4]). Let G be a graph with discon-

nected complement G and let G1, . . . , Gr be the components of G. Then

χb(G) =
∑r

i=1 χb(Gi).

Now we investigate the case that G is disconnected.

Let G1, . . . , Gr be the components of G. In [4] it was already mentioned
that χb(G) ≥ max1≤i≤r χb(Gi). Moreover, from Theorem 1 we can deduce:

Theorem 18. Let G be a disconnected graph with components G1, . . . , Gr.

Then χb(G) ≤ ∑r
i=1(n(Gi)− χb(Gi)) + 1.

Proof. Since G is the join of the graphs G1, . . . , Gr Proposition 17 yields
χb(G) =

∑r
i=1 χb(Gi). So by Theorem 1 we obtain χb(G) ≤ n(G) + 1 −

χb(G) =
∑r

i=1 n(Gi) + 1−∑r
i=1 χb(Gi) =

∑r
i=1(n(Gi)− χb(Gi)) + 1.

Lemma 19. If c is a b-coloring of a disconnected graph G with components

G1, . . . , Gr, then for each i ∈ {1, . . . , r} the component Gi contains at most

χb(Gi) color-dominating vertices of pairwise different colors.

Proof. Let c be a b-coloring of G by k colors. Suppose that there ex-
ists an integer h ∈ {1, . . . , r} such that the component Gh contains kh
color-dominating vertices v1, . . . , vkh of pairwise different colors where kh >
χb(Gh) ≥ 1. Let ch be the coloring c restricted to the subgraph Gh and
w.l.o.g. assume that ch(vi) = i for i = 1, . . . , kh.

Since there are color-dominating vertices in Gh, the component Gh must
contain vertices of all k colors. Hence, |ch(V (Gh))| = k ≥ kh > χb(Gh) and
we deduce that ch is not a b-coloring of Gh. So there exists a color class
without a color-dominating vertex. We recolor all vertices from this color
class by suitable other colors to obtain a coloring of Gh by k − 1 colors.
We repeat this recoloring of color classes in order to decrease the number of
colors as long as it is possible. If it is not possible anymore, then the obtained
coloring, say c′h, is a b-coloring of Gh. Hence, the number of remaining colors
k′ satisfies k′ ≤ χb(Gh).

During the whole recoloring procedure the vertex vi for i ∈ {1, . . . , kh}
has had neighbors in all other existing color classes. So the color class of color
i was not recolored (but may be enlarged). This implies that {1, . . . , kh} ⊆
c′h(V (Gh)) and therefore k′ ≥ kh.
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Altogether we obtain kh ≤ k′ ≤ χb(Gh), a contradiction to kh > χb(Gh).

The last lemma immediately implies:

Theorem 20. Let G be a disconnected graph with components G1, . . . , Gr.

Then χb(G) ≤ ∑r
i=1 χb(Gi).

A simple sharpness example for this bound is the graph G = G1 ∪ G2 in
Figure 3. Here, χb(G1) = χb(G2) = 2 and χb(G) = 4 (a b-coloring by 4
colors is given in the picture).

1 1

2 2

3 3

4 4

1 23 4

G1 G2

Figure 3. Disconnected graph G = G1 ∪G2 with χb(G) = χb(G1) + χb(G2).

Note that Theorem 20 outperforms Theorem 18 in the majority of cases.
Only if χb(Gi)+χb(Gi) is close to n(Gi)+ 1 (compare Theorem 1) for most
of the integers i ∈ {1, . . . , r} may Theorem 18 yield the better upper bound.

Now we investigate the b-continuity property for disconnected graphs.
One can easily check that not all disconnected graphs are b-continuous. So
we can only achieve partial results.

Proposition 21. Let G be a disconnected graph with components G1, . . . , Gr.

Then G has a b-coloring by k colors for max1≤i≤r χb(Gi) ≤ k ≤ χb(G).

Proof. Obviously, there exists a b-coloring of G by χb(G) colors. Now let c
be a b-coloring of G by k colors where max1≤i≤r χb(Gi) < k ≤ χb(G).

For h = 1, . . . , r and i = 1, . . . , k let ch denote the coloring c restricted
to the subgraph Gh, let V h

i be the set of vertices of color i in V (Gh), and
let vi be a color-dominating vertex of color i.

We now construct from c a b-coloring c′ of G by k − 1 colors.
For h = 1, . . . , r we do the following: In case of V h

k = ∅ we set c′h := ch, else:
If V h

k has no color-dominating vertex, we recolor all vertices in V h
k by

suitable colors different from k. This yields a new coloring c′h of Gh without
color k.

If V h
k has a color-dominating vertex, then Gh contains vertices of all

k > χb(Gh) colors. Thus, ch is not a b-coloring of Gh. Hence, there exists
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a color subclass V h
j , j < k, that has no color-dominating vertex. We swap

the two sets V h
j and V h

k . After this, V
h
k does not contain a color-dominating

vertex anymore and we construct a new coloring c′h of Gh without color k.

The union of all colorings c′1, . . . , c
′
r of the subgraphs G1, . . . , Gr yields

a new coloring c′ of G by k − 1 colors. Moreover, we notice that for each
i ∈ {1, . . . , k − 1} vertex vi still has its original color and has a neighbor of
color j (not necessarily the same vertex as before) for every j ∈ {1, . . . , k−1}
\{i}. Thus, v1, . . . , vk−1 are color-dominating vertices of colors 1, . . . , k − 1
implying that c′ is a b-coloring of G by k − 1 colors.

So by induction, G has a b-coloring by k colors for max1≤i≤r χb(Gi) ≤
k ≤ χb(G).

Figure 4. Cube graph Q3.

It is known that the cube graph Q3 (see Figure 4) is not b-continuous. By
considering the unions Q3 ∪ Q3, Q3 ∪ P3, and Q3 ∪ P2 we notice that the
former two are b-continuous while the latter is not. So we deduce that the
union of two non-b-continuous graphs can be b-continuous, and the union
of a b-continuous and a non-b-continuous graph can be b-continuous or not.
However, the next observation implies that the union of two b-continuous
graphs is always b-continuous.

Observation 22. Let G be a disconnected graph with components G1, . . . , Gr.

If there is an integer h ∈ {1, . . . , r} such that χb(Gh) ≥ max1≤i≤r χb(Gi)−1
and Gh is b-continuous, then G is b-continuous.

Proof. Let Gh be the component with the mentioned properties. This and
χ(G) = max1≤i≤r χ(Gi) ≥ χ(Gh) imply that Gh has a b-coloring by k colors
for every k satisfying χ(G) ≤ k ≤ max1≤i≤r χb(Gi) − 1. The b-coloring of
the subgraph Gh can easily be extended to a b-coloring of G by k colors by
coloring the component Gi for i ∈ {1, . . . , r} \ {h} with χ(Gi) colors.
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From this and Proposition 21 we conclude that G has a b-coloring by k colors
for each k satisfying χ(G) ≤ k ≤ χb(G). Thus, G is b-continuous.

At last we present a theorem that allows us to determine the complete
b-spectrum of a disconnected graph G only by considering the single com-
ponents G1, . . . , Gr. This result is useful in particular for the case that r is
large and the components G1, . . . , Gr have simple structures.

Let Ck(G) be the set of all colorings of the graph G by k colors. For
a coloring c ∈ Ck(G) let nc be the number of color classes that contain a
color-dominating vertex. We define dk(G) := maxc∈Ck(G) nc for χ(G) ≤ k ≤
∆(G) + 1 and dk(G) := 0 for k > ∆(G) + 1. Note that dk(G) ≥ 0 for all
k ≥ χ(G).

Theorem 23. Let G be a disconnected graph with components G1, . . . , Gr.

Then G has a b-coloring by k colors if and only if χ(G) ≤ k ≤ ∑r
i=1 dk(Gi).

Proof. (⇒) Assume that G has a b-coloring c by k colors.
For h = 1, . . . , r let ah denote the number of color classes that have a
color-dominating vertex in Gh and let ch be the coloring c restricted to the
subgraph Gh. It is obvious that χ(G) ≤ k ≤ ∑r

h=1 ah.
If ah = 0, then ah ≤ dk(Gh) is trivial. If ah > 0, then all k colors occur

in Gh and therefore ch is a coloring of Gh by k colors. Hence, ah = nch ≤
maxc∈Ck(Gh) nc = dk(Gh).

So, ah ≤ dk(Gh) for h = 1, . . . , r which yields
∑r

h=1 ah ≤ ∑r
h=1 dk(Gh).

Altogether we obtain χ(G) ≤ k ≤ ∑r
h=1 ah ≤ ∑r

h=1 dk(Gh).

(⇐) Assume that χ(G) ≤ k ≤ ∑r
i=1 dk(Gi).

We order the components of G in the way that dk(G1) ≥ · · · ≥ dk(Gr).
Moreover, let r′ := max{i | 1 ≤ i ≤ r, dk(Gi) > 0}.

We construct a b-coloring c of G by k colors as follows:
At first we choose a coloring c1 ∈ Ck(G1) such that the color classes of the
colors 1, . . . , dk(G1) have a color-dominating vertex. By the definition of
dk(G1) and since 0 < dk(G1) ≤ k, the coloring c1 always exists. After this
we choose a coloring c2 ∈ Ck(G2) such that the color classes of the colors
1 + dk(G1), . . . , dk(G1) + dk(G2) have a color-dominating vertex, and we
continue analogously with c3, . . . , cr′ (note that we have to calculate modulo
k if we exceed color k).

In summary, we color the graph Gh for h = 2, . . . , r′ by k colors in such
a way that the color classes of the colors 1 + (

∑h−1
i=1 dk(Gi)) mod k, . . . , 1 +

(
∑h

i=1 dk(Gi) − 1) mod k contain a color-dominating vertex. This coloring
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is denoted by ch. We notice that ch must satisfy nch = dk(Gh) and by the
definition of dk(Gh) and because of dk(Gh) > 0 the coloring ch exists. If
r′ < r, then for h = r′+1, . . . , r we choose a coloring ch ∈ Cχ(Gh)(Gh) (recall
that χ(Gh) ≤ χ(G) ≤ k).

The union of all colorings c1, . . . , cr of the subgraphs G1, . . . , Gr yields a
coloring c of G by k colors. Moreover, since k ≤ ∑r

i=1 dk(Gi) =
∑r′

i=1 dk(Gi)
the selection of the colorings c1, . . . , cr′ guarantees that every color class
contains at least one color-dominating vertex. Therefore, c is a proper b-
coloring of G by k colors.

4.2. Graphs with independence number 2

It is well-known that every graph G with independence number 2 satisfies
χ(G) = n(G) − ν(G) ≥ ⌈n(G)

2 ⌉. So by χb(G) ≥ χ(G) and Theorem 12 we
immediately obtain:

Proposition 24. If G is a graph with independence number α(G) = 2, then

n(G)− ν(G) ≤ χb(G) ≤ n(G)− ⌈2ν(G)
3 ⌉.

Note that the upper bound may also be written in terms of χ(G) as χb(G) ≤
⌊n(G)+2χ(G)

3 ⌋. Moreover, since χ(G) ≤ ∆(G)+ω(G)+2
2 is satisfied for ev-

ery graph G with α(G) = 2 ([7]) we can deduce another upper bound
on χb(G) with respect to the maximum degree ∆(G), namely χb(G) ≤
n(G)+∆(G)+ω(G)+2

3 .

By use of Ramsey numbers we can improve Theorem 7 for graphs with
independence number 2. The Ramsey number R(s, t) is the smallest integer
N such that every graph of order at least N contains a clique with s or an
independent set with t vertices (cf. [11]).

Theorem 25. If G is a graph with independence number α(G) = 2 and

clique number ω(G) ≤ n(G)−4, then χb(G) ≤ ⌊n(G)+ω(G)+1−
√

n(G)−ω(G)+3

2 ⌋.

Proof. Let n := n(G) and ω := ω(G) ≤ n − 4. We consider a b-coloring
of G by k colors. Let V1, . . . , Vk be the corresponding color classes such
that |V1| ≤ |V2| ≤ . . . ≤ |Vk|. Choose a color-dominating vertex vi ∈ Vi

for all i = 1, . . . , k. Again, a = 2k − n shall denote the number of color
classes of cardinality 1 (note that a < k since G is not complete). Since the
vertices v1, . . . , va induce a clique and vertex vi is adjacent to all vertices
in {v1, . . . , va} for i ∈ {a + 1, . . . , k}, it follows that a < ω and the vertices
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va+1, . . . , vk must not induce a clique of order larger than ω − a. Hence,
k − a = n− k ≤ R(ω − a+ 1, 3) − 1.

If ω−a+1 = 2, then k−a = n−k ≤ 2 implying n ≤ k+2 ≤ a+4 = ω+3,
a contradiction to ω ≤ n− 4. Hence, ω − a+ 1 ≥ 3.

It is well-known that the Ramsey number R(s, 3) satisfies R(s, 3) <
(

s+1
2

)

for s ≥ 3. So we deduce that n− k ≤
(

ω−a+2
2

)

− 2 =
(

ω−2k+n+2
2

)

− 2.

This inequality yields k2−k(n+ω+1) ≥ 2n+4−(n+ω+2)(n+ω+1)
4 and by com-

pleting the square we obtain
[

k − 1
2(n+ ω + 1)

]2 ≥ 2n+4−(n+ω+2)(n+ω+1)
4 +

(n+ω+1)2

4 = n−ω+3
4 . Hence,

∣

∣k − 1
2 (n+ ω + 1)

∣

∣ ≥
√
n−ω+3

2 and since k −
1
2 (n+ω+1) < 0 (compare Theorem 7) we conclude that k ≤ 1

2(n+ω+1−√
n− ω + 3).

Recall that the graph G whose complement is shown in Figure 2 has 16
vertices and b-chromatic number 10. Moreover, it satisfies α(G) = 2 and
ω(G) = 7. Hence, it is a sharpness example for the upper bound from

Theorem 25 since ⌊n(G)+ω(G)+1−
√

n(G)−ω(G)+3

2 ⌋ = 12− ⌈
√
3⌉ = 10.

Theorem 26. If G is a graph with independence number α(G) = 2, then G
is b-continuous.

Proof. If χb(G) = χ(G), then G is obviously b-continuous. Now assume
that χb(G) > χ(G). Let c be a b-coloring of G by k > χ(G) colors and
let V1, . . . , Vk be the corresponding color classes such that |Vi| = 1 for i =
1, . . . , a and |Vi| = 2 for i = a + 1, . . . , k. Moreover, for i = 1, . . . , k we
choose a color-dominating vertex vi ∈ Vi and for i = a+ 1, . . . , k we denote
the vertex in Vi \ {vi} by wi. Additionally, we set A := {v1, . . . , va} and
D shall denote the set of vertices from V (G) \ A which are adjacent to all
vertices in A.

Clearly, A induces a clique in G and M :=
⋃k

i=a+1 Vi is a matching in G.

We now construct from c a b-coloring c′ of G by k − 1 colors.

Since M is not a maximum matching of G (|M | = n(G) − k < n(G) −
χ(G) = ν(G)), there exists a M -augmenting path in G. We choose such a
path P = (p1, p2, . . . , p2l) of minimum length 2l − 1. By the definition of a
M -augmenting path, {p2j−1, p2j} /∈ M for j = 1, . . . , l and {p2j , p2j+1} ∈ M
for j = 1, . . . , l−1. We augment M with this path P obtaining the matching
M ′ := (M \⋃l−1

j=1{p2j , p2j+1})∪
⋃l

j=1{p2j−1, p2j}. Now we consider the new
coloring c′ with color classes V ′

1 , . . . , V
′
k−1 where the a − 2 vertices from

V (G) \ V (M ′) yield the color classes V ′
1 , . . . , V

′
a−2 of cardinality 1 and the
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k− a+1 matching edges from M ′ induce the color classes V ′
a−1, . . . , V

′
k−1 of

cardinality 2. Obviously, c′ is a proper vertex coloring of G by k − 1 colors.
We have to prove that c′ is also a b-coloring.

Because of α(G) = 2 it suffices to verify that every color class V ′
f for

f ∈ {1, . . . , k − 1} contains a vertex that is adjacent to all vertices in A′ :=
⋃a−2

i=1 V ′
i . Since every vertex that is unmatched by M ′ was also unmatched

by M it follows that A′ ⊂ A. This implies that every vertex v ∈ A ∪ D is
adjacent to all vertices w ∈ A′ (v 6= w).

So if V ′
f contains a vertex from A∪D, then it has a color-dominating ver-

tex. Now assume that V ′
f contains no vertex from A∪D. Since {v1, . . . , vk} ⊆

A∪D, this is only possible if there exist two integers i, j ∈ {a+1, . . . , k} such
that V ′

f = {wi, wj}. We reconsider the M -augmenting path P in G. Obvi-
ously, p1, p2l ∈ A. W.l.o.g. we assume that p1 = v1, p2l = v2, and wi and wj

occur in P in this order. Since vi, vj ∈ D, there are two integers g, h ∈ {a+
1, . . . , k} \ {i, j} such that P = (v1, wg, vg, . . . , vi, wi, wj , vj , . . . , vh, wh, v2).
If there exists a vertex v3 ∈ A\{v1, v2} = A′ that is not adjacent to wi, then
P ′ = (v1, wg, vg, . . . , vi, wi, v3) is a M -augmenting path of length smaller
than 2l − 1. This contradicts the choice of P . Hence, wi is adjacent to all
vertices in A′ and therefore wi is a color-dominating vertex of V ′

f .

Since every color class has a color-dominating vertex, c′ is a b-coloring
by k − 1 colors. So by induction we deduce that G is b-continuous.

4.3. Graphs with large minimum degree

It is obvious that χb(G) = χ(G) = n(G) is satisfied for a graph G with
minimum degree δ(G) = n(G)− 1.

Theorem 27. Let G be a graph of order n and minimum degree δ(G) =
n − 2. Moreover, let ζ be the number of vertices of degree n − 2. Then

χb(G) = χ(G) = n− ζ
2 .

Proof. Let s := ζ
2 . Obviously, the ζ vertices of degree n − 2 induce a

matching M of cardinality s in G. Let M = {e1, . . . , es} such that ei =
{ui, vi} ∈ E(G) for i ∈ {1, . . . , s}. We notice that V (G)\{v1, . . . , vs} induces
a clique Q of order n− s in G. Hence, χb(G) ≥ χ(G) ≥ ω(G) ≥ n− s.

Suppose that there is a b-coloring c of G by n− s+ a colors for a ≥ 1.
W.l.o.g. let c(V (Q)) = {1, . . . , n− s} such that c(uh) = h for h ∈ {1, . . . , s}.
Since the clique Q can contain at most n−s color-dominating vertices, there
exists an integer i ∈ {1, . . . , s} such that vi is a color-dominating vertex with
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color c(vi) > n− s. Moreover, since {ui, vi} /∈ E(G), there exists an integer
j ∈ {1, . . . , s}\{i} such that vj ∈ N(vi) and c(vj) = i. Because of {ui, vj} ∈
E(G) and c(ui) = c(vj), c is not a proper coloring of G, a contradiction.

Thus, χb(G) ≤ n− s and altogether, χb(G) = χ(G) = n− s = n− ζ
2 .

Corollary 28. If G is a (n(G) − 2)-regular graph, then χb(G) = χ(G) =
n(G)
2 .

Since χb(G) = χ(G) for every graph G with minimum degree δ(G) ≥ n(G)−
2, we conclude:

Proposition 29. If G is a graph with minimum degree δ(G) ≥ n(G) − 2,
then G is b-continuous.

For a connected graph G with maximum degree ∆(G) = 2 a segmentation

S(G) of G shall denote a set of disjoint paths that cover all vertices of G.

Let P 1, P 2 ∈ S(G).

If V (P 1) ∪ V (P 2) induces a path of order |V (P 1)|+ |V (P 2)| in G, then we
say that P 1 and P 2 are consecutive.

If P 1 and P 2 are non-consecutive, then there exists a so-called separating

set {Q1, . . . , Ql} ⊆ S(G) of l ≥ 1 paths such that by setting Q0 := P 1 and
Ql+1 := P 2 the subset V (Qi) ∪ V (Qi+1) induces a path of order |V (Qi)| +
|V (Qi+1)| in G for i ∈ {0, . . . , l}. In case that every separating set for P 1

and P 2 contains at least two paths of order 2 we say that P 1 and P 2 are
separated by at least two paths of order 2.

Note that if G is a path, then the separating set is unique and if G is a
cycle, then there exist exactly two distinct separating sets.

Lemma 30. Let G be a graph of order n ≥ 4, minimum degree δ(G) = n−3,
and with connected complement G. Moreover, let c be a vertex coloring of

G by k colors where V1, . . . , Vk are the corresponding color classes.

Then c is a b-coloring of G if and only if {G[V1], . . . , G[Vk]} is a seg-

mentation of G into paths of order 1 and 2 such that any two distinct paths

of order 1 are separated by at least two paths of order 2.

Proof. Since G is connected and ∆(G) = n − 1 − δ(G) = 2, G is isomor-
phic to a cycle Cn or a path Pn of order n ≥ 4. Moreover, because of
α(G) = ω(G) = 2, it is obvious that c is a proper vertex coloring of G if and
only if |Vi| ∈ {1, 2} and G[Vi] ≃ P|Vi| for i ∈ {1, . . . , k}. This implies that c is
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a proper vertex coloring of G if and only if S(G) := {G[V1], . . . , G[Vk]} is a
segmentation of G into paths of order 1 and 2.

In the following let Vh = {uh, vh}, Vi = {ui} and Vj = {uj} denote three
distinct color classes of cardinality 2 and 1, respectively (h, i, j ∈ {1, . . . , k}).

(⇒) Assume that c is a b-coloring of G.

– Suppose that G[Vi] and G[Vj] are consecutive. Then {ui, uj} ∈ E(G) and
ui has no neighbor in color class Vj. Hence, Vi has no color-dominating
vertex, a contradiction.

– Suppose that {G[Vh]} is a separating set for G[Vi] and G[Vj ] and w.l.o.g. let
G[Vh∪Vi∪Vj] = (ui, uh, vh, uj). Since {ui, uh} ∈ E(G) and {vh, uj} ∈ E(G),
the vertex uh has no neighbor in color class Vi and vh has no neighbor in
color class Vj. So there is no color-dominating vertex in Vh, a contradiction.

It follows from this that any two distinct paths of order 1 are separated
by at least two paths of order 2.

(⇐) Assume that S(G) is a segmentation of G into paths of order 1 and 2
such that any two distinct paths of order 1 are separated by at least two
paths of order 2.

– Consider the color class Vi of cardinality 1.

Since G[Vi] and G[Vj ] are non-consecutive, it follows {ui, uj} ∈ E(G). More-
over, because of α(G) = 2, ui has at least one neighbor in each color class
of cardinality 2. So, ui is a color-dominating vertex of the color class Vi.

– Consider the color class Vh of cardinality 2.

Since ∆(G) = 2 and {uh, vh} ∈ E(G), it follows that |NG(uh) \ {vh}| ≤ 1
and |NG(vh) \ {uh}| ≤ 1. If |NG(uh) \ {vh}| = 0 or (|NG(uh) \ {vh}| = 1
and wu ∈ NG(uh) \ {vh} belongs to a color class of cardinality 2), then
uh has a neighbor in each other color class, i.e., uh is a color-dominating
vertex. The same can be shown for vh. So it remains to consider the case
where |NG(uh) \ {vh}| = |NG(vh) \ {uh}| = 1 and wu ∈ NG(uh) \ {vh},
wv ∈ NG(vh) \ {uh} belong to color classes of cardinality 1. Because of
ω(G) = 2, we know wu 6= wv. So, w.l.o.g. let wu = ui and wv = uj .
Then {G[Vh]} is a separating set for G[Vi] and G[Vj], a contradiction to the
properties of the segmentation. Hence, we can deduce that Vh contains a
color-dominating vertex.

We conclude that every color class of cardinality 1 and 2, respectively,
has a color-dominating vertex. Thus, c is a b-coloring of G.
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Theorem 31. Let G be a graph of order n ≥ 3 and minimum degree δ(G) =
n− 3 such that G is connected. Then

χb(G) =

{

⌊3n5 ⌋ , if G ≃ Cn ∨
(

G ≃ Pn ∧ 2 | (n mod 5)
)

,

⌈3n5 ⌉ , if G ≃ Pn ∧ 2 ∤ (n mod 5) .

Proof. Since G is connected and ∆(G) = 2, G ≃ Cn or G ≃ Pn.

Let n = 3. If G ≃ C3, then G is an empty graph and therefore χb(G) = 1 =
⌊3n5 ⌋. If G ≃ P3, then G = K1 ∪K2 yielding χb(G) = 2 = ⌈3n5 ⌉.

Now let n ≥ 4 and c be a b-coloring of G by k colors where V1, . . . , Vk

are the corresponding color classes.

By Lemma 30 we know that {G[V1], . . . , G[Vk]} is a segmentation of G
into paths of order 1 and 2 such that any two distinct paths of order 1 are
separated by at least two paths of order 2.

Let p and q denote the number of color classes of cardinality 2 and 1,
respectively. Then we obtain q = n−2p and k = p+q = p+(n−2p) = n−p.

Moreover, since any two distinct paths of order 1 are separated by at
least two paths of order 2, we deduce that p ≥ 2q if G ≃ Cn and p ≥ 2(q−1)
if G ≃ Pn. In case of G ≃ Pn and 2 | (n mod 5) we also can verify p ≥ 2q as
follows:

2 | (n mod 5) implies ∃Q ∈ Z ∃R ∈ {0, 2, 4} : n = 5Q + R. Hence,
n = 5Q + R = 2p + q which yields 5(q − Q) = R + 2(2q − p). Thus, 5 |
(

R+2(2q−p)
)

and since R is even we further deduce that 10 |
(

R+2(2q−p)
)

.
This is not possible for p = 2(q − 1) and p = 2q − 1.

Obviously, the b-chromatic number χb(G) is the largest possible value
for k. Since k = n − p, we obtain this maximum integer k by minimizing
p. So it remains to determine pmin which shall denote the smallest integer p
that satisfies the inequality mentioned above.

– If G ≃ Cn or
(

G ≃ Pn and 2 | (n mod 5)
)

, then p ≥ 2q = 2(n − 2p) and
therefore p ≥ 2n

5 . Thus, pmin ≥ ⌈2n5 ⌉. There exists a segmentation of G with
exactly ⌈2n5 ⌉ paths of order 2 (see Figure 5).

So we deduce that pmin = ⌈2n5 ⌉ and therefore χb(G) = n− pmin = ⌊3n5 ⌋.
– If G ≃ Pn and 2 ∤ (n mod 5), then p ≥ 2(q−1) = 2(n−2p−1) and therefore

p ≥ 2(n−1)
5 . Hence, pmin ≥ ⌈2(n−1)

5 ⌉. Moreover, since ⌈2(n−1)
5 ⌉ = ⌊2n5 ⌋ for

(n mod 5) ∈ {1, 3} we deduce that pmin ≥ ⌊2n5 ⌋. We can find a segmentation
of G with exactly ⌊2n5 ⌋ paths of order 2 (see Figure 6).

This yields pmin = ⌊2n5 ⌋ and therefore χb(G) = n− pmin = ⌈3n5 ⌉.
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Figure 5. Segmentation of G with ⌈ 2n
5 ⌉ paths of order 2.
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Figure 6. Segmentation of G with ⌊ 2n
5 ⌋ paths of order 2.

If the complement G is disconnected and G1, . . . , Gr are the components of
G, then we already know from Subsection 4.1 that χ(G) =

∑r
i=1 χ(Gi) and

χb(G) =
∑r

i=1 χb(Gi). This allows us to determine χb(G) for all graphs G
with minimum degree δ(G) = n− 3.

Remark 32. Let G be a graph of order n ≥ 3 and minimum degree
δ(G) = n − 3 such that G is disconnected. Moreover let G1, . . . , Gr be

the components of G and Gi = Gi (i = 1, . . . , r). As already mentioned
above, χb(G) =

∑r
i=1 χb(Gi) holds. So we only have to determine χb(Gi)

for i = 1, . . . , r.
Obviously, δ(Gi) ≥ n(Gi)− 3 and Gi is connected. If δ(Gi) = n(Gi)− 1

or δ(Gi) = n(Gi)− 2, then Gi ≃ K1 or Gi ≃ K1 ∪K1, respectively. Hence
we can deduce that χb(Gi) = 1 in both cases. If δ(Gi) = n(Gi) − 3, then

we can apply Theorem 31 yielding χb(Gi) = ⌊3n(Gi)
5 ⌋ or χb(Gi) = ⌈3n(Gi)

5 ⌉
depending on Gi.

If G is a (n(G)−3)-regular graph, then every component of G is a cycle. So
we deduce:

Corollary 33. If G is a (n(G)−3)-regular graph, then χb(G) =
∑r

i=1⌊
3n(Gi)

5 ⌋
where G1, . . . , Gr are the components of G.
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Lemma 34. Let G be a graph with minimum degree δ(G) = n(G) − 3.
Moreover, let G1, . . . , Gs be the components of G which are not isomorphic

to C3 and d denotes the number of components of G which are isomorphic

to C3. Then χb(G) =
∑s

i=1 χb(Gi) + d and χ(G) =
∑s

i=1 χ(Gi) + d =
∑s

i=1⌈
n(Gi)

2 ⌉+ d.

Proof. Let G′ := G1+ · · ·+Gs. Then G is the join of G′ and d independent
sets of cardinality 3 (the sets which induce the cycles of length 3 in G).
So by the properties of a join, χb(G) = χb(G

′) + d =
∑s

i=1 χb(Gi) + d and

χ(G) = χ(G′)+d =
∑s

i=1 χ(Gi)+d. It remains to prove that χ(Gi) = ⌈n(Gi)
2 ⌉

for each i ∈ {1, . . . , s}.
Since ∆(Gi) ≤ 2 and Gi 6≃ C3 it follows that α(Gi) = ω(Gi) ≤ 2.

If α(Gi) = 1, then Gi ≃ K1 and n(Gi) = 1. Hence, χ(Gi) = 1 = ⌈n(Gi)
2 ⌉.

If α(Gi) = 2, then Gi ≃ Cn(Gi) or Gi ≃ Pn(Gi). Therefore, Gi has

matching number ν(Gi) = ⌊n(Gi)
2 ⌋. Moreover for a graph Gi with indepen-

dence number 2 it is well-known that χ(Gi) = n(Gi)− ν(Gi). So we deduce

that χ(Gi) = n(Gi)− ⌊n(Gi)
2 ⌋ = ⌈n(Gi)

2 ⌉.

Proposition 35. If G is a graph with minimum degree δ(G) = n(G) − 3,
then G is b-continuous.

Proof. Let G1, . . . , Gs be the components of G which are not isomorphic to
C3 and d denotes the number of components of G which are isomorphic to
C3. Additionally, let G

′ := G1+ · · ·+Gs. By Lemma 34 we can deduce that
χb(G) = χb(G

′) + d and χ(G) = χ(G′) + d. Moreover, since ∆(G′) ≤ 2 and
G′ has no component which is isomorphic to C3 it follows that α(G′) ≤ 2.

If α(G′) = 1, then G′ is complete and therefore b-continuous. In The-
orem 26 it was proved that every graph with independence number 2 is
b-continuous. So if α(G′) = 2, then G′ is b-continuous as well.

It follows from this that G′ has a b-coloring c′ by k′ colors for χ(G′) ≤
k′ ≤ χb(G

′). Let c′(V (G′)) = {1, . . . , k′}. We can extend c′ to a coloring c
of G by k′ + d colors by coloring the d independent sets of cardinality 3 by
d pairwise different colors from {k′ + 1, . . . , k′ + d}. Due to the properties
of a join it is easy to check, that c is a b-coloring of G. Thus, G has
a b-coloring c by k := k′ + d colors for χ(G′) ≤ k′ ≤ χb(G

′), i.e., for
χ(G) = χ(G′) + d ≤ k ≤ χb(G

′) + d = χb(G). Hence, G is b-continuous.

There exist graphs G with minimum degree δ(G) = n(G)− 5 which are not
b-continuous, e.g. the bipartite graphs H1(1, 3) (see Figure 1) and Q3 (see
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Figure 4). So we ask:

Problem 36. Is every graph G with minimum degree δ(G) = n(G) − 4
b-continuous?

Concerning the determination of the b-chromatic number of graphs G with
minimum degree δ(G) = n(G) − 4 we believe that a result like Theorem
31 cannot be achieved. We even guess that this determination could be
NP-hard.

However, there are several bounds on χb(G) for such graphs that we
obtain from Section 3. If δ(G) = n(G) − 4, then ∆(G) = 3 and therefore
θ(G) = χ(G) ≤ 4. Moreover, by Brooks’ Theorem we even can deduce that
θ(G) ≤ 3 if no component of G is a K4. Along with n(G) ≤ θ(G)ω(G) and
χb(G) ≥ χ(G), Theorems 11 and 14 yield among others:

Corollary 37. Let G be a graph with δ(G) = n(G)− 4 and θ(G) = t. Then

(a) ⌈n(G)
4 ⌉ ≤ ⌈n(G)

t
⌉ ≤ χb(G) ≤ ⌊ tω(G)+(t−1)n(G)

2t−1 ⌋ ≤ ⌊4ω(G)+3n(G)
7 ⌋,

(b) χb(G) ≤ ⌊2n(G)
3 ⌋ and ⌊3n(G)

4 ⌋ if ∆(G) = δ(G) + 1 and δ(G) + 2, resp.,

(c) χb(G) ≤ ⌊5n(G)
8 ⌋ if G is regular,

(d) ⌈n(G)
2 ⌉ ≤ χb(G) ≤ ⌊5n(G)

8 ⌋ if G is regular and α(G) = 2,

(e) ⌈n(G)
2 ⌉ ≤ χb(G) ≤ ⌊2ω(G)+n(G)

3 ⌋ if G is bipartite.

The graphs mentioned in (d) are graphs whose complements are cubic and

triangle-free. The gap between lower and upper bound is here at most n(G)
8

and both bounds are sharp since the cycle C6 satisfies χb(C6) = 3 = n(C6)
2

and a sharpness example for 5n(G)
8 was already given in Figure 2.

Incidently, for complements of bipartite graphs listed in (e) a method
for determining the complete b-spectrum is established in [9].

4.4. Graphs with large clique or independence number

By Theorem 7 and Inequality (1) it follows that:

Proposition 38. If G is a graph with clique number ω(G) ≥ n(G)−2, then
χb(G) = ω(G). Moreover, χb(G) = n(G)−1 if and only if ω(G) = n(G)−1.

Moreover, for ω(G) = n(G)−3 we deduce that n(G)−3 ≤ χb(G) ≤ n(G)−2.
The following theorem gives a characterization in which cases the lower and
in which cases the upper bound is attained.
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Theorem 39. Let G be a graph of order n and clique number ω(G) = n−3.
If G contains a (not necessarily induced) subgraph H which is

(a) a path (w1, v1, u1, u2, v2, w2) of length 5 such that dG(u1) = dG(u2) =
n− 3, dG(w1) = dG(w2) = n− 2, and dG(v1), dG(v2) ≤ n− 3, or

(b) a cycle (w1, v1, u1, u2, v2, w1) of length 5 such that dG(u1) = dG(u2) =
dG(w1) = n− 3 and dG(v1), dG(v2) ≤ n− 3,

and V (G) \ V (H) induces a clique in G, then χb(G) = n − 2. Otherwise,

χb(G) = n− 3.

Proof. It suffices to prove that χb(G) = n − 2 if and only if the subgraph
H exists in G.

(⇒) Assume that there exists a b-coloring c of G by n− 2 colors.

Let V1, . . . , Vn−2 be the corresponding color classes satisfying |V1| ≥ · · · ≥
|Vn−2|. Moreover, for i = 1, . . . , n − 2 choose a color-dominating vertex
vi ∈ Vi.

Case 1. |V1| = 3 and |Vi| = 1 for i ∈ {2, . . . , n− 2}.
Then the vertices v1, . . . , vn−2 induce a clique of order n−2, a contradiction
to ω(G) = n− 3.

Case 2. |V1| = |V2| = 2 and |Vi| = 1 for i ∈ {3, . . . , n− 2}.
Denote by w1 and w2 the vertices in V1 \ {v1} and V2 \ {v2}, respectively.
The vertices v3, . . . , vn−2 are pairwise adjacent and therefore form a clique
of order n− 4. Moreover, {vi, v1} ∈ E(G) and {vi, v2} ∈ E(G) are satisfied
for i ∈ {3, . . . , n−2}. So it follows immediately d(vi) ≥ n−3 for i ∈ {3, . . . ,
n − 2}. The premise ω(G) = n − 3 yields {v1, v2} /∈ E(G). Because v1 and
v2 are color-dominating vertices we deduce that {v1, w2}, {v2, w1} ∈ E(G),
and therefore d(v1) = d(v2) = n − 3. Moreover, we know that w1 is not to
all vertices v3, . . . , vn−2 adjacent since otherwise the vertices w1, v2, . . . , vn−2

would induce a clique with n−2 > ω(G) vertices. Therefore, d(w1) ≤ n−3.
In the same way we can prove that w2 is not to all vertices v3, . . . , vn−2

adjacent and therefore d(w2) ≤ n− 3.

If there exists an integer g ∈ {3, . . . , n − 2} such that {w1, vg} /∈ E(G)
and {w2, vg} /∈ E(G), then d(vg) = n−3 and (vg, w1, v1, v2, w2, vg) is a cycle
of length 5 in G.

If g does not exist, then there exist integers h1, h2 ∈ {3, . . . , n−2}, h1 6=
h2, such that {w1, vh1

}, {w2, vh2
} /∈ E(G). Hence, d(vh1

) = d(vh2
) = n − 2

and (vh1
, w1, v1, v2, w2, vh2

) is a path of length 5 in G.
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In both cases the vertices not contained in the path or the cycle, respectively,
belong to {v3, . . . , vn−2} and therefore induce a clique in G.

Altogether the subgraph H exists in G.

(⇐) Assume that the subgraph H exists in G.

Case 1. H is a path (w1, v1, u1, u2, v2, w2) in G such that dG(u1) =
dG(u2) = n− 3, dG(w1) = dG(w2) = n− 2, and dG(v1), dG(v2) ≤ n− 3.

Denote by x1, . . . , xn−6 the vertices from V (G) \ V (H) that induce a
clique.

We define a coloring c of G by n− 2 colors as follows:

Set c(u1) = c(v1) = 1, c(u2) = c(v2) = 2, c(w1) = 3, c(w2) = 4, and
c(xi) = i+ 4 for i ∈ {1, . . . , n− 6}.

Since {u1, v1}, {u2, v2} /∈ E(G) we can easily see that this coloring is
proper. Moreover, because of d(u1) = n − 3 it follows N(u1) = V (G) \
{u1, v1, u2}. So u1 has a neighbor in every other color class and therefore
it is a color-dominating vertex of color 1. Analogously, we can show that
u2 is a color-dominating vertex of color 2. Since d(w1) = n − 2 we know
N(w1) = V (G) \ {w1, v1}, so w1 is a color-dominating vertex of color 3. In
the same way we can prove that w2 is a color-dominating vertex of color 4.
For i ∈ {1, . . . , n−6} we can deduce that (V (G)\{v1, v2, xi}) ⊆ N(xi). This
implies that xi is a color-dominating vertex of color i+4 for i ∈ {1, . . . , n−6}.

Altogether, c is a b-coloring of G.

Case 2. H is a cycle (w1, v1, u1, u2, v2, w1) in G such that dG(u1) =
dG(u2) = dG(w1) = n− 3 and dG(v1), dG(v2) ≤ n− 3.

Denote by x1, . . . , xn−5 the vertices from V (G) \ V (H) that induce a
clique.

We define a coloring c of G by n− 2 colors as follows:

Set c(u1) = c(v1) = 1, c(u2) = c(v2) = 2, c(w1) = 3, and c(xi) = i + 3 for
i ∈ {1, . . . , n − 5}.

Then we can show analogously to Case 1 that c is a b-coloring of G.

Theorem 2 and Inequality (1) yield χb(G) = 2 for every graph G with
α(G) = n(G) − 1. In case of α(G) = n(G) − 2 we obtain 2 ≤ χb(G) ≤ 3.
The next theorem classifies the graphs with b-chromatic number 2 and 3:

Theorem 40. Let G be a graph of order n and independence number α(G) =
n−2. If ω(G) = 3 or G contains an induced path of order 5, then χb(G) = 3.
Otherwise, χb(G) = 2.
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Proof. It suffices to prove that there exists a b-coloring by 3 colors if and
only if ω(G) = 3 or G contains an induced path of order 5.

Let I be a maximum independent set of G.

(⇒) Assume that there exists a b-coloring c of G by 3 colors.

Let V1, V2, V3 be the corresponding color classes and for i = 1, 2, 3 choose a
color-dominating vertex vi ∈ Vi.

Case 1. {v1, v2, v3} induces a clique of order 3.

Then 3 ≤ ω(G) ≤ χb(G) ≤ 3 and therefore ω(G) = 3.

Case 2. {v1, v2, v3} does not induce a clique of order 3.

W.l.o.g. let {v1, v2} /∈ E(G).

Suppose that {v1, v2} ⊆ I. Since v1, v2 are color-dominating vertices, it
follows that V (G)\I has to contain vertices of all three colors, a contradiction
to |V (G) \ I| = 2.

Suppose that I contains exactly one vertex from {v1, v2}, say v1 ∈ I
and v2 /∈ I. Since {v1, v2} /∈ E(G) and v1 is a color-dominating vertex of V1

it follows that there must exist two vertices w2 ∈ N(v1) ∩ V2, w2 6= v2, and
w3 ∈ N(v1) ∩ V3. This implies v2, w2, w3 ∈ V (G) \ I, again a contradiction.

Hence we conclude that V (G) \ I = {v1, v2}.
Since v3 is a color-dominating vertex and v3 ∈ I, {v1, v3}, {v2, v3} ∈ E(G).
Moreover, because v1 and v2 are color-dominating and {v1, v2} /∈ E(G),
there exist two vertices u1, u2 ∈ I such that u1 ∈ N(v1) ∩ V2 and u2 ∈
N(v2) ∩ V1. Hence, (u1, v1, v3, v2, u2) is a path of order 5 in G which is an
induced path since u1, u2, v3 ∈ I, u1, v2 ∈ V2, v1, u2 ∈ V1, and {v1, v2} /∈
E(G).

(⇐) Assume that ω(G) = 3 or G contains an induced path of order 5.

If ω(G) = 3, then 3 = ω(G) ≤ χb(G) ≤ 3 and therefore χb(G) = 3.

Else ω(G) ≤ 2 and G contains an induced path (u1, v1, w, v2, u2) of
order 5. Since |V (G) \ I| = 2, we can easily verify that {u1, u2, w} ⊆ I,
{v1, v2} = V (G) \ I. Let N1 := N(v1) \ N(v2) and N2 := N(v2) \ N(v1).
Note, that N1, N2, N(v1) ∩N(v2) ⊆ I.

We define a coloring c of G by 3 colors as follows:

Set c(x) = 1 for x ∈ {v1} ∪N2, c(x) = 2 for x ∈ {v2} ∪N1, and c(x) = 3 for
x ∈ I \ (N1 ∪N2).

Since (u1, v1, w, v2, u2) is an induced path it follows that u1 ∈ N1, u2 ∈
N2, and w ∈ N(v1)∩N(v2). Moreover, it is clear that {v1}∪N2, {v2}∪N1,
and I \ (N1 ∪N2) are independent sets. Thus, the coloring c is proper.
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Because of c(u1) = 2, c(w) = 3, and {u1, w} ⊆ N(v1) we deduce that v1
is a color-dominating vertex of color 1. Analogously, we can prove that
v2 is a color-dominating vertex of color 2. Moreover, since c(w) = 3 and
w is adjacent to v1 and v2 which have color 1 and 2, respectively, w is a
color-dominating vertex of color 3.

Altogether, c is a b-coloring of G.

Since χb(G) ≤ χ(G) + 1 for every graph G with clique number at least
n(G)−4 or independence number at least n(G)−2, we immediately obtain:

Proposition 41. If G is a graph with clique number ω(G) ≥ n(G) − 4 or

independence number α(G) ≥ n(G)− 2, then G is b-continuous.

Observation 42. For every integer n ≥ 7 there exist a non-b-continuous
graph G1 of order n and clique number ω(G1) = n−5 and a non-b-continuous
graph G2 of order n and independence number α(G2) = n− 3.

Proof. Let n ≥ 7 and consider the graphs H1 := H1(n − 6, 3) and H2 :=
H2(n − 6, 3). According to Lemma 5, H1 satisfies χ(H1) = ω(H1) = n − 5
and χb(H1) = n−3 but it has no b-coloring by n−4 colors. Moreover, for H2

we deduce that α(H2) = n − 3, χ(H2) = 2, and χb(H2) = 4 but this graph
has no b-coloring by 3 colors. Hence, H1 and H2 are non-b-continuous.
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