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Abstract

We consider finite graphs G with vertex set V (G). For a subset
S ⊆ V (G), we define by G[S] the subgraph induced by S. By n(G) =
|V (G)| and δ(G) we denote the order and the minimum degree of G,
respectively. Let k be a positive integer. A subset S ⊆ V (G) is a
connected global offensive k-alliance of the connected graphG, ifG[S] is
connected and |N(v)∩S| ≥ |N(v)−S|+k for every vertex v ∈ V (G)−S,
where N(v) is the neighborhood of v. The connected global offensive

k-alliance number γk,c
o (G) is the minimum cardinality of a connected

global offensive k-alliance in G.
In this paper we characterize connected graphs G with γk,c

o (G) =
n(G). In the case that δ(G) ≥ k ≥ 2, we also characterize the family of
connected graphs G with γk,c

o (G) = n(G)−1. Furthermore, we present
different tight bounds of γk,c

o (G).
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1. Terminology and Introduction

We consider finite, undirected and simple graphs G with vertex set V (G).
The number of vertices |V (G)| of a graph G is called the order and is denoted
by n = n(G). The neighborhood N(v) = NG(v) of a vertex v consists of the
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vertices adjacent to v and d(v) = dG(v) = |N(v)| is the degree of v. By
δ = δ(G) and ∆ = ∆(G), we denote the minimum degree and the maximum

degree of the graph G, respectively. For a subset S ⊆ V (G), we define by
G[S] the subgraph induced by S.

The complete graph of order n is denoted by Kn, and Ks,t is the com-
plete bipartite graph with the two parts of cardinality s and t.

Two vertices that are not adjacent in a graph G are said to be inde-

pendent. A set I of vertices is independent if every two vertices of I are
independent. The independence number α(G) of a graph G is the maximum
cardinality among the independent sets of vertices of G.

A vertex-cut in a connected graph G is a set S of vertices of G such that
G− S is disconnected. The connectivity κ(G) of a graph G is the minimum
cardinality of a vertex-cut of G if G is not complete, and κ(G) = n− 1 if G
is isomorphic to the complete graph Kn.

Kristiansen, Hedetniemi and Hedetniemi [9] introduced several types of
alliances in graphs, including defensive and offensive alliances. As a gen-
eralization of the offensive alliance, Shafique and Dutton [11, 12] defined
the global offensive k-alliance for a positive integer k as follows. A subset
S ⊆ V (G) is a global offensive k-alliance of the graph G if |N(v) ∩ S| ≥
|N(v)−S|+k for every vertex v ∈ V (G)−S. The global offensive k-alliance

number γko (G) is the minimum cardinality of a global offensive k-alliance in
G. A global offensive k-alliance set of the minimum cardinality of a graph G

is called a γko (G)-set. Results on global offensive k-alliances were given, for
example, by Bermudo, Rodŕıguez-Velázquez, Sigarreta and Yero [1], Chellali
[2], Chellali, Haynes, Randerath and Volkmann [3] and Fernau, Rodŕıguez
and Sigarreta [4].

In this paper, we are interested in connected global offensive k-alliances.
Analogously to the definition above, a subset S ⊆ V (G) is a connected

global offensive k-alliance of the connected graph G, if G[S] is connected and
|N(v) ∩ S| ≥ |N(v)− S|+ k for every vertex v ∈ V (G) − S. The connected

global offensive k-alliance number γ
k,c
o (G) is the minimum cardinality of a

connected global offensive k-alliance in G. A connected global offensive k-
alliance set of the minimum cardinality of a connected graph G is called a
γ
k,c
o (G)-set.

A subsetD ⊆ V (G) is a k-dominating set of the graph G if |NG(v)∩D| ≥
k for every v ∈ V (G)−D. The k-domination number γk(G) is the minimum
cardinality among the k-dominating sets of G. Note that the 1-domination
number γ1(G) is the usual domination number γ(G). A subset D ⊆ V (G) is
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a connected k-dominating set of a connected graph G, if D is a k-dominating
set of G and the induced subgraph G[D] is connected. The connected k-

domination number γk,c(G) is the minimum cardinality among the connected
k-dominating sets of G.

In [5, 6], Fink and Jacobson introduced the concept of k-domination.
For a comprehensive treatment of domination in graphs, see the monographs
by Haynes, Hedetniemi and Slater [7, 8].

In this paper we characterize the connected graphs G with γ
k,c
o (G) =

n(G). If G is a connected graph with δ(G) ≥ k ≥ 3, then we show that

γ
k,c
o (G) = n(G) − 1 if and only if G is isomorphic to the complete graph

Kk+1 or Kk+2. In addition, we derive different sharp bounds on γ
k,c
o (G), as

for example, γk,co (G) ≤ 2γko (G) − k + 1.

2. Main Results

Observation 1. If k ≥ 1 is an integer, then γ
k,c
o (G) ≥ γk,c(G) for any

connected graph G.

Proof. If S is a γ
k,c
o (G)-set, then G[S] is connected and every vertex of

V (G)−S has at least k neighbors in S. Thus S is a connected k-dominating

set of G and so γk,c(G) ≤ |S| = γ
k,c
o (G).

In view of Observation 1, each lower bound of γk,c(G) is also a lower bound

of γk,co (G). Now we characterize all connected graphs G with the property

that γk,co (G) = n(G).

Observation 2. Let k ≥ 2 be an integer, and let G be a connected graph

of order n ≥ 2. Then γ
k,c
o (G) = n if and only if all vertices of G are either

cut-vertices or vertices of degree less than k.

Proof. If each vertex of G is either a cut-vertex or has degree less than k,
then the definition of the connected global offensive k-alliance number leads
to γ

k,c
o (G) = n immediately.

Conversely, assume that γ
k,c
o (G) = n. Suppose to the contrary that G

contains a non-cut-vertex u with dG(u) ≥ k. This implies that G − u is
a connected graph. Since dG(u) ≥ k, we deduce that V (G − u) is a con-
nected global offensive k-alliance ofG. Therefore we obtain the contradiction
γ
k,c
o (G) ≤ n− 1, and the proof is complete.
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Corollary 3. Let k ≥ 2 be an integer. If T is a tree, then γ
k,c
o (T ) = n(T ).

Corollary 4. If k ≥ 2 is an integer, and G is a connected graph with

δ(G) ≥ k, then γ
k,c
o (G) ≤ n(G)− 1.

Next we derive a characterization of all connected graphs G with γ
k,c
o (G) =

n(G)− 1 when δ(G) ≥ k ≥ 2.

Theorem 5. Let k ≥ 2 be an integer, and let G be a connected graph of

order n and minimum degree δ.

(i) If δ ≥ 2, then γ
2,c
o (G) = n − 1 if and only if G is a cycle or G is

isomorphic to the complete graph K4.

(ii) If δ ≥ k ≥ 3, then γ
k,c
o (G) = n− 1 if and only if G is isomorphic to the

complete graph Kk+1 or Kk+2.

Proof. Obviously, if G is a cycle or G is isomorphic to K4, then γ
2,c
o (G) =

n − 1, and if G is isomorphic to the complete graphs Kk+1 or Kk+2, then
γ
k,c
o (G) = n− 1.

Conversely, assume that γ
k,c
o (G) = n − 1, and let P = u1u2 . . . ut be

the longest path in G. The condition δ ≥ k ≥ 2 implies that u1 6= ut and
G− {u1, ut} is a connected subgraph of G. If u1 and ut are not adjacent in
G, then we arrive at the contradiction that V (G) − {u1, ut} is a connected
global offensive k-alliance of G. In the remaining case that u1 and ut are
adjacent in G, we observe that C = u1u2 . . . utu1 is a Hamiltonian cycle of
G, because P is the longest path in G. This yields t = n.

(i) Assume that k = 2. Suppose that the Hamiltonian cycle C =
u1u2 . . . unu1 has a chord. If, without loss of generality, u1us with 3 ≤ s ≤
n−1 is a chord of C, then we obtain the contradiction that V (G)−{u2, un}
is a connected global offensive 2-alliance of G or u2 and un are adjacent.
Therefore assume in the following that u2 and un are adjacent. If n = 4,
then G = K4. If n ≥ 5, then we distinguish the cases s = 3 and s ≥ 4.

Assume first that s = 3. Then we obtain the contradiction that V (G)−
{u2, u4} is a connected global offensive 2-alliance of G or u2 and u4 are
adjacent. If u2 and u4 are adjacent, then we have the contradiction that
V (G)−{u3, un} is a connected global offensive 2-alliance of G or u3 and un
are adjacent. However, if u3 and un are adjacent, then dG(u2), dG(un) ≥ 4,
and thus we arrive at the contradiction that V (G)−{u2, un} is a connected
global offensive 2-alliance of G.

Assume now that s ≥ 4. Then we obtain the contradiction that V (G)−
{u1, u3} is a connected global offensive 2-alliance of G or u1 and u3 are
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adjacent. If u1 and u3 are adjacent, then we have the contradiction that
V (G)−{u3, un} is a connected global offensive 2-alliance of G or u3 and un
are adjacent. However, if u3 and un are adjacent, then dG(u1), dG(un) ≥ 4,
and thus we arrive at the contradiction that V (G)−{u1, un} is a connected
global offensive 2-alliance of G.

(ii) Assume that k ≥ 3. In the following all indices are taken modulo
n. If the vertices ui and ui+2 are not adjacent for any index i with 1 ≤
i ≤ n, then the hypothesis δ ≥ k ≥ 3 leads to the contradiction that
V (G) − {ui, ui+2} is a connected global offensive k-alliance of G. Hence
assume that ui and ui+2 are adjacent for each index i ∈ {1, 2, . . . , n}. Now
let s be an arbitrary integer with 3 ≤ s ≤ n − 3. If ui and ui+s are not
adjacent, then V (G) − {ui, ui+s} is a connected global offensive k-alliance
of G, since there exists the edge ui−1ui+1 in G. Therefore it remains the
case that G is a complete graph. If G is isomorphic to Kk+1 or Kk+2, then
γ
k,c
o (G) = n−1. However, if G is isomorphic to Kq for any integer q ≥ k+3,

then V (G) − {u1, u2} is a connected global offensive k-alliance of G. This
contradiction completes the proof of Theorem 5.

Proposition 6. Let G be a graph of order n, and let k, p be two integers

such that k ≥ 1 and −1 ≤ p ≤ α(G)− 2. If δ(G) ≥ k and κ(G) ≥ α(G)− p,

then

γk,co (G) ≤ n(G)− α(G) + p+ 1.

Proof. Let I ⊂ V (G) be an independent set of cardinality α(G)−p−1. The
hypothesis κ(G) ≥ α(G)− p implies that G[V (G)− I] is connected. Since I
is an independent set, the condition δ(G) ≥ k shows that each vertex in I

has at least k neighbors in V (G) − I. Thus V (G) − I is a connected global
offensive k-alliance of G such that |V (G)− I| ≤ n− (α(G)− p− 1), and the
proof is complete.

If H is the complete bipartite graph Kk,k, then δ(H) = α(H) = κ(H) = k

and γ
k,c
o (H) = k + 1 = n(H)− α(H) + 1. This example demonstrates that

Proposition 6 is the best possible, at least for p = 0.

Theorem 7. Let G be a connected graph and k an integer with 1 ≤ k ≤
∆(G). Then

γk,co (G) ≤ 2γko (G) − k + 1.
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Proof. Let S be a γko (G)-set. Since k ≤ ∆(G), we observe that |S| =
γko (G) ≤ n(G)− 1. Now let x ∈ V (G) − S be an arbitrary vertex.

If G[S ∪ {x}] is connected, then the inequality k ≤ γko (G) implies that

γ
k,c
o (G) ≤ γko (G) + 1 ≤ 2γko (G)− k + 1, and we are done.

Thus assume next that G[S ∪ {x}] is not connected. We will add suc-
cessively vertices from V (G) − (S ∪ {x}) to S ∪ {x} in order to decrease
the number of components, at least one in each step, until we obtain a set
of vertices whose induced subgraph is connected. Note that if we partition
S∪{x} into two parts A and B such that there is no edge between A and B,
and we take vertices a ∈ A and b ∈ B such that the distance between a and
b is minimum in G, then the property of S of being dominating implies that
dG(a, b) ≤ 3. It follows that in each step of increasing S ∪ {x} we need to
add at most 2 vertices from V (G)− (S ∪{x}). Let r1 and r2 be the number
of steps where we include one vertex and two vertices from V (G)−(S∪{x}),
respectively, and define r = r1 + r2. Let S0 ⊂ S ∪ {x} be the set of vertices
of the component of G[S ∪ {x}] to which x belongs, and let Si ⊂ S be the
set of vertices connected to

⋃i−1

j=0
Sj in step i ≥ 1. Clearly, |S0| ≥ k + 1 and

|Si| ≥ 1 for 1 ≤ i ≤ r. Furthermore, since S is a global offensive k-alliance,
in the steps where two vertices from V (G)− (S ∪{x}) are added, we observe
that |Si| ≥ k + 1. This leads to

γko (G) = |S| = |S0 − {x}|+
r∑

i=1

|Si| ≥ k + r2(k + 1) + r1

and therefore r1 ≤ γko (G) − k − r2(k + 1). As a further consequence, we
see that S ∪ {x} together with all vertices from V (G)− (S ∪ {x}) added in
steps 1 to r form a connected global offensive k-alliance of G. Altogether,
we deduce that

γk,co (G) ≤ |S|+ 1 + r1 + 2r2

≤ γko (G) + 1 + γko (G)− k − r2(k + 1) + 2r2

= 2γko (G)− k + 1− r2(k + 1) + 2r2

≤ 2γko (G)− k + 1,

and the proof is complete.

If H is the complete bipartite graph Kk,p, then γko (H) = k and γ
k,c
o (H) =

k + 1. This example shows that the bound given in Theorem 7 is tight.
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Theorem 8. Let G be a connected graph and k ≥ 1 an integer. If δ(G) ≥
k + 1, then

γk+1,c
o (G) ≤

γ
k,c
o (G) + n(G)

2
.

Proof. Let S be a γ
k,c
o (G)-set, and let A be the set of isolated vertices in

the subgraph G − S. Then the subgraph G − (S ∪ A) contains no isolated
vertices. If D is a minimum dominating set of G − (S ∪ A), then the well-
known inequality of Ore [10] implies

|D| ≤
|V (G)− (S ∪A)|

2
≤

|V (G)− S|

2
=

n(G)− γ
k,c
o (G)

2
.

If S′ = S ∪ D, then G[S′] is connected. In addition, for each vertex v ∈
V (G)− (S′ ∪A), we have

|N(v) ∩ S′| = |N(v) ∩ S|+ |N(v) ∩D|

≥ |N(v) − S|+ k + 1

= |N(v) − S′|+ |N(v) ∩D|+ k + 1

≥ |N(v) − S′|+ k + 2.

Since δ(G) ≥ k+1, every vertex of A has at least k+1 neighbors in S, and
therefore S′ is a connected global offensive (k + 1)-alliance of G and thus

γk+1,c
o (G) ≤ |S′| = |S|+ |D| = γk,co (G) + |D|

≤ γk,co (G) +
n(G)− γ

k,c
o (G)

2
=

n(G) + γ
k,c
o (G)

2
.

The inequality |N(v)∩S′| ≥ |N(v)−S′|+ k+2 for each vertex v ∈ V (G)−
(S′ ∪A) in the proof of Theorem 8 leads immediately to the next result.

Theorem 9. Let G be a connected graph and k ≥ 1 an integer. If δ(G) ≥
k + 2, then

γk+2,c
o (G) ≤

γ
k,c
o (G) + n(G)

2
.

If H = Kk+3, then γ
k+2,c
o (H) = γ

k+1,c
o (H) = k+ 2 and γ

k,c
o (H) = k+1 and

thus
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γk+2,c
o (H) = γk+1,c

o (H) = k + 2 =
γ
k,c
o (H) + n(H)

2
.

Let k ≥ 2 be an even integer, and let F = Kk+6 −M , where M is a perfect
matching of the complete graph Kk+6. Then γ

k+2,c
o (F ) = γ

k+1,c
o (F ) = k+4

and γ
k,c
o (F ) = k + 2, and so

γk+2,c
o (F ) = γk+1,c

o (F ) = k + 4 =
γ
k,c
o (F ) + n(F )

2
.

These two graphs H and F demonstrate that Theorem 8 as well as Theorem
9 are the best possible.
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