CONNECTED GLOBAL OFFENSIVE \boldsymbol{k}-ALLIANCES IN GRAPHS

Lutz Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen University
Templergraben 55, D-52056 Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Abstract

We consider finite graphs G with vertex set $V(G)$. For a subset $S \subseteq V(G)$, we define by $G[S]$ the subgraph induced by S. By $n(G)=$ $|V(G)|$ and $\delta(G)$ we denote the order and the minimum degree of G, respectively. Let k be a positive integer. A subset $S \subseteq V(G)$ is a connected global offensive k-alliance of the connected graph G, if $G[S]$ is connected and $|N(v) \cap S| \geq|N(v)-S|+k$ for every vertex $v \in V(G)-S$, where $N(v)$ is the neighborhood of v. The connected global offensive k-alliance number $\gamma_{o}^{k, c}(G)$ is the minimum cardinality of a connected global offensive k-alliance in G.

In this paper we characterize connected graphs G with $\gamma_{o}^{k, c}(G)=$ $n(G)$. In the case that $\delta(G) \geq k \geq 2$, we also characterize the family of connected graphs G with $\gamma_{o}^{k, c}(G)=n(G)-1$. Furthermore, we present different tight bounds of $\gamma_{o}^{k, c}(G)$. Keywords: alliances in graphs, connected global offensive k-alliance, global offensive k-alliance, domination. 2010 Mathematics Subject Classification: 05C69.

1. TERMINOLOGY AND Introduction

We consider finite, undirected and simple graphs G with vertex set $V(G)$. The number of vertices $|V(G)|$ of a graph G is called the order and is denoted by $n=n(G)$. The neighborhood $N(v)=N_{G}(v)$ of a vertex v consists of the
vertices adjacent to v and $d(v)=d_{G}(v)=|N(v)|$ is the degree of v. By $\delta=\delta(G)$ and $\Delta=\Delta(G)$, we denote the minimum degree and the maximum degree of the graph G, respectively. For a subset $S \subseteq V(G)$, we define by $G[S]$ the subgraph induced by S.

The complete graph of order n is denoted by K_{n}, and $K_{s, t}$ is the complete bipartite graph with the two parts of cardinality s and t.

Two vertices that are not adjacent in a graph G are said to be independent. A set I of vertices is independent if every two vertices of I are independent. The independence number $\alpha(G)$ of a graph G is the maximum cardinality among the independent sets of vertices of G.

A vertex-cut in a connected graph G is a set S of vertices of G such that $G-S$ is disconnected. The connectivity $\kappa(G)$ of a graph G is the minimum cardinality of a vertex-cut of G if G is not complete, and $\kappa(G)=n-1$ if G is isomorphic to the complete graph K_{n}.

Kristiansen, Hedetniemi and Hedetniemi [9] introduced several types of alliances in graphs, including defensive and offensive alliances. As a generalization of the offensive alliance, Shafique and Dutton [11, 12] defined the global offensive k-alliance for a positive integer k as follows. A subset $S \subseteq V(G)$ is a global offensive k-alliance of the graph G if $|N(v) \cap S| \geq$ $|N(v)-S|+k$ for every vertex $v \in V(G)-S$. The global offensive k-alliance number $\gamma_{o}^{k}(G)$ is the minimum cardinality of a global offensive k-alliance in G. A global offensive k-alliance set of the minimum cardinality of a graph G is called a $\gamma_{o}^{k}(G)$-set. Results on global offensive k-alliances were given, for example, by Bermudo, Rodríguez-Velázquez, Sigarreta and Yero [1], Chellali [2], Chellali, Haynes, Randerath and Volkmann [3] and Fernau, Rodríguez and Sigarreta [4].

In this paper, we are interested in connected global offensive k-alliances. Analogously to the definition above, a subset $S \subseteq V(G)$ is a connected global offensive k-alliance of the connected graph G, if $G[S]$ is connected and $|N(v) \cap S| \geq|N(v)-S|+k$ for every vertex $v \in V(G)-S$. The connected global offensive k-alliance number $\gamma_{o}^{k, c}(G)$ is the minimum cardinality of a connected global offensive k-alliance in G. A connected global offensive k alliance set of the minimum cardinality of a connected graph G is called a $\gamma_{o}^{k, c}(G)$-set.

A subset $D \subseteq V(G)$ is a k-dominating set of the graph G if $\left|N_{G}(v) \cap D\right| \geq$ k for every $v \in V(G)-D$. The k-domination number $\gamma^{k}(G)$ is the minimum cardinality among the k-dominating sets of G. Note that the 1-domination number $\gamma^{1}(G)$ is the usual domination number $\gamma(G)$. A subset $D \subseteq V(G)$ is
a connected k-dominating set of a connected graph G, if D is a k-dominating set of G and the induced subgraph $G[D]$ is connected. The connected k domination number $\gamma^{k, c}(G)$ is the minimum cardinality among the connected k-dominating sets of G.

In $[5,6]$, Fink and Jacobson introduced the concept of k-domination. For a comprehensive treatment of domination in graphs, see the monographs by Haynes, Hedetniemi and Slater [7, 8].

In this paper we characterize the connected graphs G with $\gamma_{o}^{k, c}(G)=$ $n(G)$. If G is a connected graph with $\delta(G) \geq k \geq 3$, then we show that $\gamma_{o}^{k, c}(G)=n(G)-1$ if and only if G is isomorphic to the complete graph K_{k+1} or K_{k+2}. In addition, we derive different sharp bounds on $\gamma_{o}^{k, c}(G)$, as for example, $\gamma_{o}^{k, c}(G) \leq 2 \gamma_{o}^{k}(G)-k+1$.

2. Main Results

Observation 1. If $k \geq 1$ is an integer, then $\gamma_{o}^{k, c}(G) \geq \gamma^{k, c}(G)$ for any connected graph G.

Proof. If S is a $\gamma_{o}^{k, c}(G)$-set, then $G[S]$ is connected and every vertex of $V(G)-S$ has at least k neighbors in S. Thus S is a connected k-dominating set of G and so $\gamma^{k, c}(G) \leq|S|=\gamma_{o}^{k, c}(G)$.

In view of Observation 1, each lower bound of $\gamma^{k, c}(G)$ is also a lower bound of $\gamma_{o}^{k, c}(G)$. Now we characterize all connected graphs G with the property that $\gamma_{o}^{k, c}(G)=n(G)$.

Observation 2. Let $k \geq 2$ be an integer, and let G be a connected graph of order $n \geq 2$. Then $\gamma_{o}^{k, c}(G)=n$ if and only if all vertices of G are either cut-vertices or vertices of degree less than k.

Proof. If each vertex of G is either a cut-vertex or has degree less than k, then the definition of the connected global offensive k-alliance number leads to $\gamma_{o}^{k, c}(G)=n$ immediately.

Conversely, assume that $\gamma_{o}^{k, c}(G)=n$. Suppose to the contrary that G contains a non-cut-vertex u with $d_{G}(u) \geq k$. This implies that $G-u$ is a connected graph. Since $d_{G}(u) \geq k$, we deduce that $V(G-u)$ is a connected global offensive k-alliance of G. Therefore we obtain the contradiction $\gamma_{o}^{k, c}(G) \leq n-1$, and the proof is complete.

Corollary 3. Let $k \geq 2$ be an integer. If T is a tree, then $\gamma_{o}^{k, c}(T)=n(T)$.
Corollary 4. If $k \geq 2$ is an integer, and G is a connected graph with $\delta(G) \geq k$, then $\gamma_{o}^{k, c}(G) \leq n(G)-1$.
Next we derive a characterization of all connected graphs G with $\gamma_{o}^{k, c}(G)=$ $n(G)-1$ when $\delta(G) \geq k \geq 2$.
Theorem 5. Let $k \geq 2$ be an integer, and let G be a connected graph of order n and minimum degree δ.
(i) If $\delta \geq 2$, then $\gamma_{o}^{2, c}(G)=n-1$ if and only if G is a cycle or G is isomorphic to the complete graph K_{4}.
(ii) If $\delta \geq k \geq 3$, then $\gamma_{o}^{k, c}(G)=n-1$ if and only if G is isomorphic to the complete graph K_{k+1} or K_{k+2}.
Proof. Obviously, if G is a cycle or G is isomorphic to K_{4}, then $\gamma_{o}^{2, c}(G)=$ $n-1$, and if G is isomorphic to the complete graphs K_{k+1} or K_{k+2}, then $\gamma_{o}^{k, c}(G)=n-1$.

Conversely, assume that $\gamma_{o}^{k, c}(G)=n-1$, and let $P=u_{1} u_{2} \ldots u_{t}$ be the longest path in G. The condition $\delta \geq k \geq 2$ implies that $u_{1} \neq u_{t}$ and $G-\left\{u_{1}, u_{t}\right\}$ is a connected subgraph of G. If u_{1} and u_{t} are not adjacent in G, then we arrive at the contradiction that $V(G)-\left\{u_{1}, u_{t}\right\}$ is a connected global offensive k-alliance of G. In the remaining case that u_{1} and u_{t} are adjacent in G, we observe that $C=u_{1} u_{2} \ldots u_{t} u_{1}$ is a Hamiltonian cycle of G, because P is the longest path in G. This yields $t=n$.
(i) Assume that $k=2$. Suppose that the Hamiltonian cycle $C=$ $u_{1} u_{2} \ldots u_{n} u_{1}$ has a chord. If, without loss of generality, $u_{1} u_{s}$ with $3 \leq s \leq$ $n-1$ is a chord of C, then we obtain the contradiction that $V(G)-\left\{u_{2}, u_{n}\right\}$ is a connected global offensive 2 -alliance of G or u_{2} and u_{n} are adjacent. Therefore assume in the following that u_{2} and u_{n} are adjacent. If $n=4$, then $G=K_{4}$. If $n \geq 5$, then we distinguish the cases $s=3$ and $s \geq 4$.

Assume first that $s=3$. Then we obtain the contradiction that $V(G)-$ $\left\{u_{2}, u_{4}\right\}$ is a connected global offensive 2 -alliance of G or u_{2} and u_{4} are adjacent. If u_{2} and u_{4} are adjacent, then we have the contradiction that $V(G)-\left\{u_{3}, u_{n}\right\}$ is a connected global offensive 2-alliance of G or u_{3} and u_{n} are adjacent. However, if u_{3} and u_{n} are adjacent, then $d_{G}\left(u_{2}\right), d_{G}\left(u_{n}\right) \geq 4$, and thus we arrive at the contradiction that $V(G)-\left\{u_{2}, u_{n}\right\}$ is a connected global offensive 2-alliance of G.

Assume now that $s \geq 4$. Then we obtain the contradiction that $V(G)-$ $\left\{u_{1}, u_{3}\right\}$ is a connected global offensive 2-alliance of G or u_{1} and u_{3} are
adjacent. If u_{1} and u_{3} are adjacent, then we have the contradiction that $V(G)-\left\{u_{3}, u_{n}\right\}$ is a connected global offensive 2-alliance of G or u_{3} and u_{n} are adjacent. However, if u_{3} and u_{n} are adjacent, then $d_{G}\left(u_{1}\right), d_{G}\left(u_{n}\right) \geq 4$, and thus we arrive at the contradiction that $V(G)-\left\{u_{1}, u_{n}\right\}$ is a connected global offensive 2 -alliance of G.
(ii) Assume that $k \geq 3$. In the following all indices are taken modulo n. If the vertices u_{i} and u_{i+2} are not adjacent for any index i with $1 \leq$ $i \leq n$, then the hypothesis $\delta \geq k \geq 3$ leads to the contradiction that $V(G)-\left\{u_{i}, u_{i+2}\right\}$ is a connected global offensive k-alliance of G. Hence assume that u_{i} and u_{i+2} are adjacent for each index $i \in\{1,2, \ldots, n\}$. Now let s be an arbitrary integer with $3 \leq s \leq n-3$. If u_{i} and u_{i+s} are not adjacent, then $V(G)-\left\{u_{i}, u_{i+s}\right\}$ is a connected global offensive k-alliance of G, since there exists the edge $u_{i-1} u_{i+1}$ in G. Therefore it remains the case that G is a complete graph. If G is isomorphic to K_{k+1} or K_{k+2}, then $\gamma_{o}^{k, c}(G)=n-1$. However, if G is isomorphic to K_{q} for any integer $q \geq k+3$, then $V(G)-\left\{u_{1}, u_{2}\right\}$ is a connected global offensive k-alliance of G. This contradiction completes the proof of Theorem 5.

Proposition 6. Let G be a graph of order n, and let k, p be two integers such that $k \geq 1$ and $-1 \leq p \leq \alpha(G)-2$. If $\delta(G) \geq k$ and $\kappa(G) \geq \alpha(G)-p$, then

$$
\gamma_{o}^{k, c}(G) \leq n(G)-\alpha(G)+p+1 .
$$

Proof. Let $I \subset V(G)$ be an independent set of cardinality $\alpha(G)-p-1$. The hypothesis $\kappa(G) \geq \alpha(G)-p$ implies that $G[V(G)-I]$ is connected. Since I is an independent set, the condition $\delta(G) \geq k$ shows that each vertex in I has at least k neighbors in $V(G)-I$. Thus $V(G)-I$ is a connected global offensive k-alliance of G such that $|V(G)-I| \leq n-(\alpha(G)-p-1)$, and the proof is complete.

If H is the complete bipartite graph $K_{k, k}$, then $\delta(H)=\alpha(H)=\kappa(H)=k$ and $\gamma_{o}^{k, c}(H)=k+1=n(H)-\alpha(H)+1$. This example demonstrates that Proposition 6 is the best possible, at least for $p=0$.

Theorem 7. Let G be a connected graph and k an integer with $1 \leq k \leq$ $\Delta(G)$. Then

$$
\gamma_{o}^{k, c}(G) \leq 2 \gamma_{o}^{k}(G)-k+1 .
$$

Proof. Let S be a $\gamma_{o}^{k}(G)$-set. Since $k \leq \Delta(G)$, we observe that $|S|=$ $\gamma_{o}^{k}(G) \leq n(G)-1$. Now let $x \in V(G)-S$ be an arbitrary vertex.

If $G[S \cup\{x\}]$ is connected, then the inequality $k \leq \gamma_{o}^{k}(G)$ implies that $\gamma_{o}^{k, c}(G) \leq \gamma_{o}^{k}(G)+1 \leq 2 \gamma_{o}^{k}(G)-k+1$, and we are done.

Thus assume next that $G[S \cup\{x\}]$ is not connected. We will add successively vertices from $V(G)-(S \cup\{x\})$ to $S \cup\{x\}$ in order to decrease the number of components, at least one in each step, until we obtain a set of vertices whose induced subgraph is connected. Note that if we partition $S \cup\{x\}$ into two parts A and B such that there is no edge between A and B, and we take vertices $a \in A$ and $b \in B$ such that the distance between a and b is minimum in G, then the property of S of being dominating implies that $d_{G}(a, b) \leq 3$. It follows that in each step of increasing $S \cup\{x\}$ we need to add at most 2 vertices from $V(G)-(S \cup\{x\})$. Let r_{1} and r_{2} be the number of steps where we include one vertex and two vertices from $V(G)-(S \cup\{x\})$, respectively, and define $r=r_{1}+r_{2}$. Let $S_{0} \subset S \cup\{x\}$ be the set of vertices of the component of $G[S \cup\{x\}]$ to which x belongs, and let $S_{i} \subset S$ be the set of vertices connected to $\bigcup_{j=0}^{i-1} S_{j}$ in step $i \geq 1$. Clearly, $\left|S_{0}\right| \geq k+1$ and $\left|S_{i}\right| \geq 1$ for $1 \leq i \leq r$. Furthermore, since S is a global offensive k-alliance, in the steps where two vertices from $V(G)-(S \cup\{x\})$ are added, we observe that $\left|S_{i}\right| \geq k+1$. This leads to

$$
\gamma_{o}^{k}(G)=|S|=\left|S_{0}-\{x\}\right|+\sum_{i=1}^{r}\left|S_{i}\right| \geq k+r_{2}(k+1)+r_{1}
$$

and therefore $r_{1} \leq \gamma_{o}^{k}(G)-k-r_{2}(k+1)$. As a further consequence, we see that $S \cup\{x\}$ together with all vertices from $V(G)-(S \cup\{x\})$ added in steps 1 to r form a connected global offensive k-alliance of G. Altogether, we deduce that

$$
\begin{aligned}
\gamma_{o}^{k, c}(G) & \leq|S|+1+r_{1}+2 r_{2} \\
& \leq \gamma_{o}^{k}(G)+1+\gamma_{o}^{k}(G)-k-r_{2}(k+1)+2 r_{2} \\
& =2 \gamma_{o}^{k}(G)-k+1-r_{2}(k+1)+2 r_{2} \\
& \leq 2 \gamma_{o}^{k}(G)-k+1
\end{aligned}
$$

and the proof is complete.
If H is the complete bipartite graph $K_{k, p}$, then $\gamma_{o}^{k}(H)=k$ and $\gamma_{o}^{k, c}(H)=$ $k+1$. This example shows that the bound given in Theorem 7 is tight.

Theorem 8. Let G be a connected graph and $k \geq 1$ an integer. If $\delta(G) \geq$ $k+1$, then

$$
\gamma_{o}^{k+1, c}(G) \leq \frac{\gamma_{o}^{k, c}(G)+n(G)}{2}
$$

Proof. Let S be a $\gamma_{o}^{k, c}(G)$-set, and let A be the set of isolated vertices in the subgraph $G-S$. Then the subgraph $G-(S \cup A)$ contains no isolated vertices. If D is a minimum dominating set of $G-(S \cup A)$, then the wellknown inequality of Ore [10] implies

$$
|D| \leq \frac{|V(G)-(S \cup A)|}{2} \leq \frac{|V(G)-S|}{2}=\frac{n(G)-\gamma_{o}^{k, c}(G)}{2} .
$$

If $S^{\prime}=S \cup D$, then $G\left[S^{\prime}\right]$ is connected. In addition, for each vertex $v \in$ $V(G)-\left(S^{\prime} \cup A\right)$, we have

$$
\begin{aligned}
\left|N(v) \cap S^{\prime}\right| & =|N(v) \cap S|+|N(v) \cap D| \\
& \geq|N(v)-S|+k+1 \\
& =\left|N(v)-S^{\prime}\right|+|N(v) \cap D|+k+1 \\
& \geq\left|N(v)-S^{\prime}\right|+k+2 .
\end{aligned}
$$

Since $\delta(G) \geq k+1$, every vertex of A has at least $k+1$ neighbors in S, and therefore S^{\prime} is a connected global offensive ($k+1$)-alliance of G and thus

$$
\begin{aligned}
\gamma_{o}^{k+1, c}(G) & \leq\left|S^{\prime}\right|=|S|+|D|=\gamma_{o}^{k, c}(G)+|D| \\
& \leq \gamma_{o}^{k, c}(G)+\frac{n(G)-\gamma_{o}^{k, c}(G)}{2}=\frac{n(G)+\gamma_{o}^{k, c}(G)}{2} .
\end{aligned}
$$

The inequality $\left|N(v) \cap S^{\prime}\right| \geq\left|N(v)-S^{\prime}\right|+k+2$ for each vertex $v \in V(G)-$ ($S^{\prime} \cup A$) in the proof of Theorem 8 leads immediately to the next result.

Theorem 9. Let G be a connected graph and $k \geq 1$ an integer. If $\delta(G) \geq$ $k+2$, then

$$
\gamma_{o}^{k+2, c}(G) \leq \frac{\gamma_{o}^{k, c}(G)+n(G)}{2}
$$

If $H=K_{k+3}$, then $\gamma_{o}^{k+2, c}(H)=\gamma_{o}^{k+1, c}(H)=k+2$ and $\gamma_{o}^{k, c}(H)=k+1$ and thus

$$
\gamma_{o}^{k+2, c}(H)=\gamma_{o}^{k+1, c}(H)=k+2=\frac{\gamma_{o}^{k, c}(H)+n(H)}{2} .
$$

Let $k \geq 2$ be an even integer, and let $F=K_{k+6}-M$, where M is a perfect matching of the complete graph K_{k+6}. Then $\gamma_{o}^{k+2, c}(F)=\gamma_{o}^{k+1, c}(F)=k+4$ and $\gamma_{o}^{k, c}(F)=k+2$, and so

$$
\gamma_{o}^{k+2, c}(F)=\gamma_{o}^{k+1, c}(F)=k+4=\frac{\gamma_{o}^{k, c}(F)+n(F)}{2} .
$$

These two graphs H and F demonstrate that Theorem 8 as well as Theorem 9 are the best possible.

References

[1] S. Bermudo, J.A. Rodríguez-Velázquez, J.M. Sigarreta and I.G. Yero, On global offensive k-alliances in graphs, Appl. Math. Lett. 23 (2010) 1454-1458.
[2] M. Chellali, Trees with equal global offensive k-alliance and k-domination numbers, Opuscula Math. 30 (2010) 249-254.
[3] M. Chellali, T.W. Haynes, B. Randerath and L. Volkmann, Bounds on the global offensive k-alliance number in graphs, Discuss. Math. Graph Theory 29 (2009) 597-613.
[4] H. Fernau, J.A. Rodríguez and J.M. Sigarreta, Offensive r-alliance in graphs, Discrete Appl. Math. 157 (2009) 177-182.
[5] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science (John Wiley and Sons, New York, 1985) 283-300.
[6] J.F. Fink and M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science (John Wiley and Sons, New York, 1985) 301-311.
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[8] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).
[9] P. Kristiansen, S.M. Hedetniemi and S.T. Hedetniemi, Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004) 157-177.
[10] O. Ore, Theory of graphs (Amer. Math. Soc. Colloq. Publ. 38 Amer. Math. Soc., Providence, R1, 1962).
[11] K.H. Shafique and R.D. Dutton, Maximum alliance-free and minimum alliance-cover sets, Congr. Numer. 162 (2003) 139-146.
[12] K.H. Shafique and R.D. Dutton, A tight bound on the cardinalities of maximum alliance-free and minimum alliance-cover sets, J. Combin. Math. Combin. Comput. 56 (2006) 139-145.

Received 11 June 2010
Revised 5 November 2010
Accepted 5 November 2010

