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Abstract

We consider finite graphs G with vertex set V(G). For a subset
S C V(G), we define by G[S] the subgraph induced by S. By n(G) =
|[V(G)| and §(G) we denote the order and the minimum degree of G,
respectively. Let k be a positive integer. A subset S C V(G) is a
connected global offensive k-alliance of the connected graph G, if G[S] is
connected and | N (v)NS| > |N(v)—S|+k for every vertex v € V(G)—S9,
where N (v) is the neighborhood of v. The connected global offensive
k-alliance number v¥¢(G) is the minimum cardinality of a connected
global offensive k-alliance in G.

In this paper we characterize connected graphs G with v%¢(G) =
n(G). In the case that §(G) > k > 2, we also characterize the family of
connected graphs G with v%¢(G) = n(G) — 1. Furthermore, we present
different tight bounds of v*¢(G).
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1. TERMINOLOGY AND INTRODUCTION

We consider finite, undirected and simple graphs G with vertex set V(G).
The number of vertices |V (G)| of a graph G is called the order and is denoted
by n = n(G). The neighborhood N(v) = Ng(v) of a vertex v consists of the
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vertices adjacent to v and d(v) = dg(v) = |[N(v)| is the degree of v. By
d =0(G) and A = A(G), we denote the minimum degree and the mazimum
degree of the graph G, respectively. For a subset S C V(G), we define by
G|[S] the subgraph induced by S.

The complete graph of order n is denoted by K,,, and K, is the com-
plete bipartite graph with the two parts of cardinality s and ¢.

Two vertices that are not adjacent in a graph G are said to be inde-
pendent. A set I of vertices is independent if every two vertices of I are
independent. The independence number a(G) of a graph G is the maximum
cardinality among the independent sets of vertices of G.

A wvertex-cut in a connected graph G is a set S of vertices of G such that
G — S is disconnected. The connectivity k(G) of a graph G is the minimum
cardinality of a vertex-cut of G if G is not complete, and k(G) =n—1if G
is isomorphic to the complete graph K.

Kristiansen, Hedetniemi and Hedetniemi [9] introduced several types of
alliances in graphs, including defensive and offensive alliances. As a gen-
eralization of the offensive alliance, Shafique and Dutton [11, 12] defined
the global offensive k-alliance for a positive integer k as follows. A subset
S C V(Q) is a global offensive k-alliance of the graph G if |[N(v) N S| >
|N(v) — S|+ k for every vertex v € V(G)—S. The global offensive k-alliance
number v¥(G) is the minimum cardinality of a global offensive k-alliance in
G. A global offensive k-alliance set of the minimum cardinality of a graph G
is called a v¥(G)-set. Results on global offensive k-alliances were given, for
example, by Bermudo, Rodriguez-Veldzquez, Sigarreta and Yero [1], Chellali
[2], Chellali, Haynes, Randerath and Volkmann [3] and Fernau, Rodriguez
and Sigarreta [4].

In this paper, we are interested in connected global offensive k-alliances.
Analogously to the definition above, a subset S C V(G) is a connected
global offensive k-alliance of the connected graph G, if G[S] is connected and
|IN(v) NS| > |N(v) — S|+ k for every vertex v € V(G) — S. The connected
global offensive k-alliance number vﬁ’c(G) is the minimum cardinality of a
connected global offensive k-alliance in G. A connected global offensive k-
alliance set of the minimum cardinality of a connected graph G is called a
vE¢(G)-set.

A subset D C V(G) is a k-dominating set of the graph G if |[Ng(v)ND| >
k for every v € V(G) — D. The k-domination number v*(G) is the minimum
cardinality among the k-dominating sets of G. Note that the 1-domination
number 7! (G) is the usual domination number v(G). A subset D C V(G) is
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a connected k-dominating set of a connected graph G, if D is a k-dominating
set of G and the induced subgraph G[D] is connected. The connected k-
domination number v*¢(G) is the minimum cardinality among the connected
k-dominating sets of G.

In [5, 6], Fink and Jacobson introduced the concept of k-domination.
For a comprehensive treatment of domination in graphs, see the monographs
by Haynes, Hedetniemi and Slater [7, 8].

In this paper we characterize the connected graphs G with 75 “(G) =
n(G). If G is a connected graph with §(G) > k > 3, then we show that
75 “(G) = n(G) — 1 if and only if G is isomorphic to the complete graph
K1 or Ki1o. In addition, we derive different sharp bounds on 'yf “(@), as
for example, 70°(G) < 2v%(G) — k + 1.

2. MAIN RESULTS

Observation 1. If kK > 1 is an integer, then vﬁ’c(G) > ARC(Q) for any
connected graph G.

Proof. If S is a v2°(G)-set, then G[S] is connected and every vertex of
V(G)— S has at least k neighbors in S. Thus S is a connected k-dominating
set of G and so ¥¥¢(G) < |9 = ¥5%(G). |

In view of Observation 1, each lower bound of v*(G) is also a lower bound
of v(lf “(@G). Now we characterize all connected graphs G with the property
that 72°(G) = n(G).

Observation 2. Let k > 2 be an integer, and let G be a connected graph
of order n > 2. Then ’yf’c(G) = n if and only if all vertices of G are either
cut-vertices or vertices of degree less than k.

Proof. If each vertex of GG is either a cut-vertex or has degree less than k,
then the definition of the connected global offensive k-alliance number leads
to Vo “(G@) = n immediately.

Conversely, assume that 75 “(G) = n. Suppose to the contrary that G
contains a non-cut-vertex u with dg(u) > k. This implies that G — u is
a connected graph. Since dg(u) > k, we deduce that V(G — u) is a con-
nected global offensive k-alliance of G. Therefore we obtain the contradiction
WE’C(G) <n —1, and the proof is complete. [
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Corollary 3. Let k > 2 be an integer. If T is a tree, then v2°(T) = n(T).

Corollary 4. If k > 2 is an integer, and G 1is a connected graph with
5(G) > k, then vF°(G) < n(@) —1.

Next we derive a characterization of all connected graphs G with 7~ “(Q) =
n(G) — 1 when 0(G) > k > 2.

Theorem 5. Let k > 2 be an integer, and let G be a connected graph of
order n and minimum degree §.
(i) If 0 > 2, then 'yg’c(G) =n—1if and only if G is a cycle or G is
isomorphic to the complete graph K.
(ii) If 0 > k > 3, then vﬁ’c(G) =n—1if and only if G is isomorphic to the
complete graph Kii1 or Kiio.

Proof. Obviously, if G is a cycle or G is isomorphic to Ky, then vg’c(G) =
n — 1, and if G is isomorphic to the complete graphs Kjy1 or Ky.o, then
V@) =n— 1.

Conversely, assume that ’yf’c(G) =n—1, and let P = wjuy...u; be
the longest path in G. The condition § > k£ > 2 implies that u; # u; and
G — {u1,us} is a connected subgraph of G. If u; and u; are not adjacent in
G, then we arrive at the contradiction that V(G) — {u1,u:} is a connected
global offensive k-alliance of GG. In the remaining case that w; and u; are
adjacent in G, we observe that C' = ujus ... usuq is a Hamiltonian cycle of
G, because P is the longest path in GG. This yields ¢ = n.

(i) Assume that & = 2. Suppose that the Hamiltonian cycle C' =
uiUs . . . upu1 has a chord. If, without loss of generality, ujus with 3 < s <
n—11is a chord of C, then we obtain the contradiction that V(G) — {uga, u, }
is a connected global offensive 2-alliance of G or us and wu, are adjacent.
Therefore assume in the following that us and w, are adjacent. If n = 4,
then G = Ky. If n > 5, then we distinguish the cases s = 3 and s > 4.

Assume first that s = 3. Then we obtain the contradiction that V(G) —
{ug,u4} is a connected global offensive 2-alliance of G or ug and uy are
adjacent. If us and uy4 are adjacent, then we have the contradiction that
V(G) — {us,un} is a connected global offensive 2-alliance of G or uz and u,,
are adjacent. However, if usz and u,, are adjacent, then dg(uz), dg(uy) > 4,
and thus we arrive at the contradiction that V(G) — {ug,u,} is a connected
global offensive 2-alliance of G.

Assume now that s > 4. Then we obtain the contradiction that V(G) —
{u1,us} is a connected global offensive 2-alliance of G or u; and us are
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adjacent. If u; and ug are adjacent, then we have the contradiction that
V(G) — {us,un} is a connected global offensive 2-alliance of G or uz and u,,
are adjacent. However, if usz and u,, are adjacent, then dg(uy), dg(uy) > 4,
and thus we arrive at the contradiction that V(G) — {u1,u,} is a connected
global offensive 2-alliance of G.

(ii) Assume that £ > 3. In the following all indices are taken modulo
n. If the vertices u; and w;192 are not adjacent for any index ¢ with 1 <
i < n, then the hypothesis § > k > 3 leads to the contradiction that
V(G) — {ui,uiy2} is a connected global offensive k-alliance of G. Hence
assume that w; and wu; o are adjacent for each index i € {1,2,...,n}. Now
let s be an arbitrary integer with 3 < s < n — 3. If u; and u;ys are not
adjacent, then V(G) — {u;, u;ys} is a connected global offensive k-alliance
of G, since there exists the edge u;_ju;41 in G. Therefore it remains the
case that G is a complete graph. If G is isomorphic to Ki 1 or Ky o, then
yf’c(G) = n—1. However, if G is isomorphic to K, for any integer ¢ > k+ 3,
then V(G) — {u1,us} is a connected global offensive k-alliance of G. This
contradiction completes the proof of Theorem 5. [ |

Proposition 6. Let G be a graph of order n, and let k,p be two integers
such that k> 1 and —1 < p < a(G) —2. If §(G) > k and k(G) > a(G) — p,
then

75°(G) < n(G) —a(G) +p+ 1.

Proof. Let I C V(G) be an independent set of cardinality a(G)—p—1. The
hypothesis k(G) > a(G) — p implies that G|V (G) — I] is connected. Since I
is an independent set, the condition §(G) > k shows that each vertex in I
has at least k neighbors in V(G) — I. Thus V(G) — I is a connected global
offensive k-alliance of G such that |V (G) —I| <n— (a(G) —p—1), and the

proof is complete. [ |

If H is the complete bipartite graph Ky, then 6(H) = o(H) = k(H) = k
and Y¥°(H) = k+ 1 = n(H) — o(H) + 1. This example demonstrates that
Proposition 6 is the best possible, at least for p = 0.

Theorem 7. Let G be a connected graph and k an integer with 1 < k <
A(G). Then
15(G) < 275(G) =k + 1.
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Proof. Let S be a v¥(G)-set. Since k¥ < A(G), we observe that |S| =
7E(@) < n(G) — 1. Now let 2 € V(G) — S be an arbitrary vertex.

If G[S U {z}] is connected, then the inequality & < 7*(G) implies that
YEU@) < AR(G) +1 < 29%(G) — k + 1, and we are done.

Thus assume next that G[S U {z}] is not connected. We will add suc-
cessively vertices from V(G) — (S U {z}) to S U {z} in order to decrease
the number of components, at least one in each step, until we obtain a set
of vertices whose induced subgraph is connected. Note that if we partition
SU{z} into two parts A and B such that there is no edge between A and B,
and we take vertices a € A and b € B such that the distance between a and
b is minimum in G, then the property of S of being dominating implies that
dg(a,b) < 3. Tt follows that in each step of increasing S U {x} we need to
add at most 2 vertices from V(G) — (SU{z}). Let 71 and 2 be the number
of steps where we include one vertex and two vertices from V(G)— (SuU{z}),
respectively, and define r = r1 + r9. Let Sy C S U {zx} be the set of vertices
of the component of G[S U {z}] to which z belongs, and let S; C S be the
set of vertices connected to U;;B S; in step ¢ > 1. Clearly, [So| > k+1 and
|S;| > 1 for 1 <14 < r. Furthermore, since S is a global offensive k-alliance,
in the steps where two vertices from V(G) — (SU{x}) are added, we observe
that |S;| > k + 1. This leads to

VE(G) = I8 = [So = {a}| + D 18i = k +ro(k + 1) + 1
i=1

and therefore r; < Y¥(G) — k — ro(k +1). As a further consequence, we
see that S U {z} together with all vertices from V(G) — (S U {z}) added in
steps 1 to r form a connected global offensive k-alliance of G. Altogether,
we deduce that

75 °(G) < IS+ 1471+ 2r
VE(G) +14+95(G) — k —ra(k + 1) + 219
298(G) — k41 —ro(k + 1) + 21y
< 29%(G) —k+1,

IN

and the proof is complete. [ |

If H is the complete bipartite graph K}, ,, then v*(H) = k and VH(H) =
k + 1. This example shows that the bound given in Theorem 7 is tight.
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Theorem 8. Let G be a connected graph and k > 1 an integer. If 6(G) >
k+1, then
75“(G) + n(G)

athe(@) < 5

Proof. Let S be a 'yf’c(G)—set, and let A be the set of isolated vertices in
the subgraph G — S. Then the subgraph G — (S U A) contains no isolated
vertices. If D is a minimum dominating set of G — (S U A), then the well-
known inequality of Ore [10] implies

k,c
pj< WO = UM V(&) =51 _ i6) ~1£°G)

If S’ = SU D, then G[S'] is connected. In addition, for each vertex v €
V(G) — (S"U A), we have

IN(w) N S| = [N(v) N S|+ |N(v) N D
> |N(w)=S|+k+1
= |[N(w) =S|+ |N@w)ND|+k+1
> |N(v) =S|+ k+2.

Since §(G) > k + 1, every vertex of A has at least k+ 1 neighbors in S, and
therefore S’ is a connected global offensive (k + 1)-alliance of G' and thus

WG < 18] = 1]+ D] = 254(6) + |

k,c k,c
< e+ MA@ _n@ a0

The inequality |[N(v)NS'| > |N(v) — S| + k + 2 for each vertex v € V(G) —
(S"U A) in the proof of Theorem 8 leads immediately to the next result.

Theorem 9. Let G be a connected graph and k > 1 an integer. If 6(G) >
k + 2, then
70(G) + n(G)

e < 22

If H = Kj,3, then 75 T2°(H) = 45T (H) = k 4+ 2 and 7¥°(H) = k + 1 and
thus
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k,c
c c Yo (H)+n(H
GEFR() = e = 42 = 2 )2 =

Let £ > 2 be an even integer, and let F' = Ky — M, where M is a perfect
matching of the complete graph K. Then 75+2’C(F) = nyrl’c(F) =k+4

and o °(F) = k +2, and so

k,c
Yo *(F) +n(F)
7éﬁLZC(F) _ ,7£3+LC(F) —k+4= Of

These two graphs H and F' demonstrate that Theorem 8 as well as Theorem
9 are the best possible.
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