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Abstract

Let G = (V(G), E(G)) be a simple graph, and let k& be a positive
integer. A subset D of V(@) is a k-dominating set if every vertex
of V(G) — D is dominated at least k times by D. The k-domination
number 7;(G) is the minimum cardinality of a k-dominating set of
G. In [5] Volkmann showed that for every nontrivial tree T, vo(T) >
7 (T) + 1 and characterized extremal trees attaining this bound. In
this paper we characterize all trees T' with vo(T') = v (T) + 2.
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1. INTRODUCTION

In a graph G = (V(G), E(G)) = (V, E) of order n(G), or simply n when
the graph G is clear from the context, the neighborhood Ng(v) = N(v) of
a vertex v € V(G) consists of the vertices adjacent with v, and Ng[v] =
N[v] = N(v) U{v} is the closed neighborhood. If S is a subset of vertices,
then the subgraph induced by S in G is denoted G[S]. The degree of a
vertex v, denoted by degq(v), is the size of its open neighborhood. A vertex
of degree one is called a leaf, and its neighbor is called a support vertex. We
also denote the set of leaves of a graph G by L(G) and the set of support
vertices by S(G). A tree T is a double star if it contains exactly two vertices
that are not leaves. A double star with respectively p and ¢ leaves attached
at each support vertex is denoted by S, ;. The subdivision graph of a graph
G is that graph obtained from G by replacing each edge uv of G by a
vertex w and edges ww and vw. If a tree T is a subdivision graph of a
nontrivial tree T”, then we say that T is a subdivided tree, and the n(T") — 1
new vertices resulting from the subdivision of the edges of T” are called
subdivision vertices. Note that a subdivided tree has order at least three
and at least one subdivision vertex. The corona graph G o K; of a graph G
is the graph constructed from a copy of G, where for each vertex v € V(G),
a new vertex v’ and a pendant edge vv’ are added. Let P, denote the path
graph of order n.

Let k be a positive integer. A subset D C V(G) is a k-dominating set of
the graph G, if |[Ng(v) N D| > k for every v € V(G) — D. The k-domination
number v (G) is the minimum cardinality among the k-dominating sets of G.
Note that the 1-domination number 7 (G) is the usual domination number
v(G). A set S C V(G) is independent if no edge of G has its two endvertices
in S.

We make a couple of straightforward observations.

Observation 1. For every graph G and positive integer k, every vertex with
degree at most k — 1 belongs to every vx(G)-set.

Observation 2. For any tree T of order at least three, there exists a ~y(T)-
set that contains no leaves of T'.

The following results will be useful for the next.

Theorem 3 (Fink and Jacobson [2] 1985). If T is a tree of order n, then
v2(T) > (n+1)/2, with equality if and only if T = Py or T is the subdivided
graph of another tree.
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Theorem 4 (Volkmann [5] 2007). For every nontrivial tree T, ~vo(T) >
Y(T) + 1 with equality if and only if T is a subdivided star, the corona of a
star, or a subdivided double star.

Let 7 be the family of extremal trees achieving equality in Theorem 4, that
is, 7 is the family of nontrivial trees T, where T is a subdivided star, the
corona of a star, or a subdivided double star. For a subdivided tree in T,
we let B(T') denote the set of subdivided vertices. Note that the corona of a
star can also be described as a subdivided star with an added leaf adjacent
to its center vertex. Thus, if T” is the subdivision graph of a star T’ then
for the corona T of a star T', we let B(T) = B(T"). Note that the paths
P, and Py are coronas of stars, and for the path Py, B(T) = ), and for the
path Py, B(T) consists of exactly one support vertex. For any tree in 7, we
let A(T)=V(T)— B(T). (Note that if T is a subdivision of a tree 7", then
A(T) =V(T') and if T is a corona, that is, a subdivision of a star 7" with
a leaf neighbor u added to its center, then A(T) = V(T") U {u}).

Thus, by Theorem 4, if T" is a tree and 7" is not in 7, then o (7") > v(T')+
2. Our aim in this paper is to characterize all trees T' with v2(T") = y(T') + 2.
We close this section by the following observation.

Observation 5. If T € T, then A(T) is a vy2(T)-set. Moreover, if T € T
and T # Py, then A(T) is the unique vy2(T')-set.

2. THE FAMILIES G AND F

Let 771 denote the subdivided stars, 75 the coronas of stars, and 73 the
subdivided double stars of 7. Thus, 7 =771 U T2 U T3. Recall that L(T)
denotes the set of leaves of T and S(T") the set of support vertices. Let
X = X(T) consist of the leaf adjacent to the vertex of maximum degree if
T €Ty and T # Py, and X = () otherwise. We also let H = H(T') consist of
the center vertex if T' € T3 and H = () otherwise.

Observation 6. If T is a tree in T of order at least three, then every vertex
of B(T) is either a support vertex or the center vertex if T € Ts.

We define the following families of trees Gi,G2,Gs and G4, and let G =
U?Zl G;, where
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e G is the family of trees obtained by a path P, = uv and a tree 7" € T
different to the path Py, by adding an edge uw, where w € B(T")—H (T").

e G, is the family of trees obtained by a tree T € T different to the path
P, by adding a new vertex attached to any support vertex of 7.

e (3 is the family of trees obtained by a path P3 and a tree 77 € 75 U T3
different to P> and Py, by adding an edge xy, where x is any leaf of Pj
and y € L(T') — X.

e G, is the family of trees that are a subdivision graph of a caterpillar
having three or four support vertices and the remaining vertices of the
caterpillar are leaves.

A tree T is in F if it can be constructed using one of the following operations.

e Operation Fy: Let T7 and Tb be in 7T, each of order at least three.
Form T from T; UT5 by adding an edge zy, where x € B(Ty) — H(T})
and y € B(T2) — H(Tg)

e Operation Fi: Let T} € 71 and Ty € 7. Form T from T7UT5 by adding
an edge xy, where x € V(T1), y € A(T»).

e Operation F5: Let T} € T3 and Tb € T1. Form T from 77 UT5 by adding
an edge xy, where x € H(T1) and y € A(T»).

e Operation F3: Let T3 € T and Ty € To U T3 with Ty # P,. Form
T from T} U Ty by adding an edge xy, where x € B(Ty) — H(T1) and
y € A(Tz) — L(T3).

e Operation F4: Let T7 and T be in T, each of order at least four. Form
T from Ty U T, by adding an edge xy, where either € A(Ty) — L(T})
and y € A(Ty) — L(Ty), or z € L(Ty)— X, y € A(T) — L(T%) and at least
Ty or Ty is in 7T5.

e Operation F5: Let 77 € 75 and Ty € 7 but not both a path P». Form

T from T UTs by adding a path zzy, where z is a vertex of maximum
degree in T, y € A(T2) — X(T3) and z is a new vertex.

e Operation Fg: Let T} € 71 and Ts € T3. Form T from 17 UT5 by adding
a path xvwzy, where v, w, z are new vertices, x € A(T1),y € A(T3), and
at least one of x and y is not in L(Ty) U L(Ts) or x € L(11),y € L(T»)
and T7 = Ps.

e Operation F7: Let T} € 71 and T € 7. Form T from 77 UT5 by adding
a path zvwzy, where x € A(T}), y € A(T») and v, w, z are new vertices.
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e Operation Fg: Let T} € T3 and Ts € T3. Form T from 77 UT5 by adding
a path xvwzy, where v, w, z are new vertices, z € A(Ty) — L(T1),y €
A(Ty) — L(T3).

3. TREES T WITH ¥(T) =~v(T) + 2

Theorem 7. A tree T satisfies vo(T) = ~v(T)+ 2 if and only if T € GU F.

Proof. Let T be a tree with v2(T") = y(T') +2 and S any y2(T")-set. For any
vertex € V — S, let S, = N(x) N S. Clearly |S,| > 2. Since T is a tree, for
every pair of vertices z,y in V — 5, |S; N Sy| < 1. Let z,y be two adjacent
vertices of V' — S and let T,,T, the subtrees of T" obtained by removing
the edge xy. Note that each of T, and T, has order at least three since
|Sz| > 2 and |Sy| > 2. Then SNV (T,) and SNV (T,) are two 2-dominating
sets of T, and T, respectively. Hence V(1) + v2(T,) < |SNV(Ty)| +
|ISNV(T,)| = 72(T). On the other hand if D, (respectively, D,) is any
v(Ty)-set (respectively, (T} )-set), then D, U D, is a dominating set of T
and so y(T') < ~(Ty) + v(Ty). Also by Theorem 4, v2(T) > ~v(T,) + 1 and
v2(Ty) > v(Tyy)+1. Therefore we obtain y(T')4+2 = v (T') > v2(Tx)+72(Ty) >
Y(Te)+14+~(Ty)+1 > v(T)+2, implying equality throughout the inequality
chain, in particular 2 (T}) = v(Ty)+1 and v2(T,) = v(T,)+1. It follows that
each of T and T}, belongs to T — { P}, where 2 € B(T,) and y € B(T)). If
y € H(Ty), then S(T)US(T,)UH(T},) (possibly H(T) = () is a dominating
set of T of size less than vo(T") — 2, a contradiction. Hence y ¢ H(T}) and
likewise z ¢ H(T,). Therefore T € F since it can be constructed using
Operation Fy. From now on we may assume that V — S is independent.

Assume that |S,| > 4 for some vertex u € V' — S. Then {u} US — S, is
a dominating set of T" with cardinality at most ~2(7") — 3, a contradiction.
Thus every vertex of V — S has degree two or three.

Now let x be a vertex of V — S of degree three. Let y € S, such that
the subtrees obtained by removing the edge xy are both nontrivial. If such
a vertex y does not exist, then 7' = K 3 that belongs to G». Hence suppose
that y exists. Then S N V(T,) is a 2-dominating set of T, and likewise
SNV (Ty) for T,,. Thus v2(T) +72(Ty) < |SNV(T,)|+[SNV(T,)| = v(T).
Moreover if D, (respectively, D,) is any y(7T)-set (respectively, v(T})-set),
then D, U D, is a dominating set of T" and so v(T) < v(T3) + v(Ty). Using
Theorem 4 we obtain (7)) +2 = 7%2(T) > y2(Tx) + 72(Ty) > v(Tx) + 1+
Y(Ty) +1 > ~(T) + 2, implying equality throughout the inequality chain, in
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particular vo(Ty) = v(Ty) + 1 and v2(T,) = ~(Ty) + 1. It follows that each
of T and T, belongs to T, where x € B(T,) and y € A(T,). Note that since
x € B(T;), T, has order at least three. If T,, and T}, are in 7y, then T" can be
constructed using Operation Fj. Thus assume that at least one of T, and
Ty is in To U T3, say T, € T2 U T3. Since « € B(T}), by Observation 6, x is
either a support vertex or the center vertex if T, € T3.

First assume that x is a support vertex. Suppose that y € L(T}) and let
w be the unique neighbor of y in Tj,. Since T}, € T2 U T3 either w € B(T}) or
w € A(Ty) if y € X. In addition let z be the second neighbor of w if T, € Ts.
Now if T}y = P, then T, # P, for otherwise T is a corona of a path P3 and so
by Theorem 4, v2(T') = v(T') + 1, a contradiction. It follows that 7" belongs
to Gi. Suppose now that T}, # P». Then for all possibilities of T}, to be in T,
and T, € T, U T3 with T, # P», the set S(T,) US(T,) U H(T,) U {z} — {w}
(possibly H(T,) =0 if T, ¢ T3) is a dominating set of T' of size v2(T) — 3, a
contradiction. Thus y € A(T,) — L(Ty) and so T can be constructed using
Operation F3.

Suppose now that x is not a support vertex. Thus z € H(T,) and hence
T, € T3. We shall show that T, € 7;. Assume that T}, is in 7o U 73 and
suppose that y is not a leaf. Then since y € A(Ty), y is either a neighbor of
H(T,) if T, € T3 or y is the neighbor of X (T})) if T;, € 75 (in the later case
y is a support vertex). Anyway it can be seen that S(7,)U S(T,) UQ is a
dominating set of T of size vo(T") — 3, where Q = {y} if T, € T3 and Q = 0)
otherwise. Hence y is a leaf in T},. Let u be the unique neighbor of y in Tj,.
Clearly if T, = P, then S(T}) U {y} is a dominating set of T of size less
than v2(T) — 2, a contradiction. Thus T} # P» and so u is a support vertex
in T,,. But then S(7,) U S(T,) U {y} U H(T,) — {u} (possibly H(T,) = 0 if
T, ¢ T3) is a dominating set of T' of size less than v5(7") — 2, a contradiction
too. Consequently T, € 71 and so T is constructed using Operation F5.
From now on we may suppose that every vertex in V' — S has degree two.

Suppose now that T contains a support vertex w with at least two
leaves. If w € V — S, then by the previous assumption deg;(w) = 2 and
so T = P3 but then v2(T) = v(T') + 1, a contradiction. Thus w € S. Let
w’ be any leaf neighbor of w and consider the tree 7" = T — {w'}. Clearly
Y(T") = A(T) and 75(T") < 72(T) — 1. Therefore ¥(T") + 1 < 75(T") <
Y2 (T) —1=(y(T)+2) — 1 =~(T") + 1, implying that v(7") = v(T") + 1.
By Theorem 4 TV € T and T” # P,. Hence T' € Go. We may assume for the
next that every support vertex is adjacent to exactly one leaf.

We now suppose that the subgraph G[S] contains an edge uv for which
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the removing provides two nontrivial subtrees. Let T, and T, the resulting
subtrees, where v € V(T,) and v € V(T,). By a similar argument to that
used above we have y(T') + 2 = %(T) > v2(Ty) + 72(Ty) > v(Ty) + 1 +
Y(Ty) +1>~4(T)+ 2 and so v2(Ty) = v(Tw) + 1, v2(Ty) = v(T3,) + 1. Hence
each of T,, and Ty, is in 7, where u € A(T,) and v € A(T,). Also each T,
and T, has order at least three for otherwise S is not minimal since either
S —{u} or S — {v} is 2-dominating set of 7. We also note that if T, € T2
and v € X(T,), then S — {u} is 2-dominating set of T, a contradiction.
Thus if T}, € Tz, then v ¢ X(7,,) and similarly if T}, € T3, then v ¢ X(T,).
Now if u and v are both not leaves, then |V (T})| > 4 and |V (T},)| > 4, and
therefore T is constructed using Operation Fy. Assume now that u and v
are both leaves in T}, and T, respectively. If T, and T, belong to 77, then
T is constructed by using Operation F;. Thus at least one of T, and T,
isin To U Ts, say T, € To U T3. If T, = Ps, then T,, # P, for otherwise
T = P; € T. Consequently T € G3. Thus we assume that each of T, and
T, has order at least four and recall that u ¢ X(T},) and v ¢ X(T,). Let
u’ be the support vertex of T, adjacent to u and let v/ the support of T,
adjacent to v. If T, € T, then S(T,,) U S(T,) U{v} UH(T,) — ({u/,v'} is a
dominating set of T of size less than ~2(7T") —2, a contradiction. Thus T, ¢ T
and likewise T, ¢ T5. Hence, without loss of generality, either T,, € 77 and
T, € T3 or T,,,T,, € T3. Since for both cases T, € T3, let v" be the second
neighbor of v" in T,,. If T}, € T1 and T, € T3, then S(T,,) U S(T,) U{u,v"}—
{u/;v'} is a dominating set of T of size vo(T) — 3. If Ty, T, € T3, then
S(T,) U S(T,) U H(T,) U {u,v"} — {u/,v'} is a dominating set of T of size
v2(T") — 3. Both cases yield to a contradiction. Finally assume, without loss
of generality, that u is a leaf in T}, and v is not a leaf in 7,. By examining
case by case, it can be seen that at least one of T;, or T, must be in 77. For
the remaining cases T' admits a dominating set of 1" of size v2(7") — 3. Thus
T can be constructed by Operation Fy.

Assume now that G[S] contains at least one edge but each one is pendant
in T. Let w € S be a support and v € S its unique leaf. Let w be a
vertex of V' — 5 adjacent to u for which the removing provides two nontrivial
subtrees. If such a vertex does not exist, then 7' is a corona of a star and
by Theorem 4, v2(T') = ~(T) + 1, a contradiction. Hence w exists and let r
be the second neighbor of w in S. Consider the nontrivial subtrees 7, and
T, obtained by removing w (remember that w has degree two in T'). Then
’y(T)+2 = VZ(T) > 72(Tu)+'72(T7’) > V(Tu)+1+'y(Tr)+1 2 ’Y(T)"’_Q and so
v2(Ty) = v(Tw) + 1 and 72 (T) = v(T,) + 1. It follows that T;, and T, belong
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to T, where u € A(Ty,) and r € A(T,). Moreover, since u,v € A(Ty,) and u
is a support vertex either T,, = P, or T,, € T3 and u is the center vertex of
T,. Also T, and T, can not both be a path P, for otherwise T' = P5 and
v2(T) = ~v(T)+1, a contradiction. On the other hand if T}, € T3 and T, # P,
then r ¢ X(T,) for otherwise S would also contain the support vertex of
r in T, say r/, but in this case removing the edge rr’ from G[S] provides
two nontrivial subtrees and such a case has been already considered. Thus
r € A(T,) — X(T,) and therefore T can be constructed by Operation Fs.
Now we can assume that S is independent. Since V' —S'is an independent
set in which every vertex has degree two, T is the subdivision graph of a
tree Tp. Assume that S contains a vertex x of degree k > 2 such that
T — N|[x] provides k nontrivial subtrees T}, Ty, ...,T;. Then SNV (T;) is a
2-dominating set of T; for every ¢ and clearly v(T") < 1+ Zle ~(T;). Hence

k k
YD) +2=7(T) > 14Y (T) > 1+ (V(T)+1) > «(T)+k > v(T)+2,
i=1 i=1

implying equality throughout the inequality chain, in particular k = 2, that
is degp(x) = 2, y2(T;) = v(T;) +1 for every ¢ = 1,2. Hence each of T7 and T»
belongs to 7. Let N(z) = {2/,2"} and assume, without loss of generality,
that Sy = {y/, 2} and Sp» = {y”,z}, where v/ € V(T1) and ¢’ € V(T3).
Clearly ¢ € A(T1) and y” € A(T»). Since S is independent, T} ¢ 7> and
Ty ¢ T3. Assume that ¢’ and y” are both leaves. If T1,Ty € T3, then let y;
be the neighbor of ¥’ and z; # v’ be the neighbor of y; in T}, and define
similarly yo and 25 in T5. Then S(T1) U S(To) U {z1, 2", 2", 20} — {y1,y2} is
a dominating set of T' of size less than ~2(7") — 2, a contradiction. Thus,
without loss of generality, 77 € 7; and Tb € 71 U 7T3. If T} has order three,
then T is obtained by using Operation Fg (when T, € T3) or Operation F7
(when Ty € T1). Hence suppose that T} has order at least five. Now if
Ty € T3, then let us use the notation of y1, 21, y2, 22 as have been defined
above. Then S(T7) U S(Ty) U{y', 2", 22} — {y1,y2} is a dominating set of
T of size less than vo(T) — 2, a contradiction. Thus 77 € 77 and T3 € Ty,
and therefore T' can be constructed by Operation F7. For the next we will
assume that at least one of x and y is not in L(T1) U L(T5). If T} and T» are
in 7y, then T is constructed using Operation F7. Hence either (77 € 71 and
Ty € T3) or (T1 € T3 and Ty € T3). In the first case T is constructed using
Operation Fg. In the later case it can be seen that y' € A(Ty) — L(T1) and
y" € A(Ty) — L(Ty) for otherwise T' admits a dominating set of size less than
v2(T') — 2, a contradiction. Thus T is obtained by using Operation Fg.
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Finally assume that for every vertex x € S of degree at least two the forest
T — N|x] contains a component of size one. Hence every vertex of S is
either a leaf or at distance two from some leaf. Using this fact and since
T is the subdivision graph of a tree Ty, it follows that every vertex of Tj
is either a support vertex or a leaf, that is V(Ty) = S(Tp) U L(Tp). Let
ng be the order of Ty. Then |V(T)| = n = 2ng — 1 and by Theorem 3,
v (T) = "TH = nyg, implying that v(T) = ng — 2. Suppose that a support
vertex x in Tj is adjacent to at least three other support vertices, say u, v and
w. Let u/,v',w" be the subdivision vertices resulting by subdividing edges
zu, zv and zw. Clearly v/,v',w’ € B(T) and B(T) is a dominating set of
T of size ng — 1 but then {x} U B(T) — {v/,v',w'} is a dominating set of
T with cardinality ng — 3, a contradiction. Hence every support vertex of
Ty is adjacent to at most two other support vertices, more precisely T is
a caterpillar whose support vertices induce a path. If T, has one or two
support vertices, then T' € T; or T € T3, respectively, and by Theorem
4, v9(T) = ~(T) + 1, a contradiction. Hence |S(Tp)| > 3. Suppose that
|S(To)| > 5 and let ug,us,...,us be five consecutive support vertices. Let
v; be the subdivision vertex resulting by subdividing the edge w;u; 1, where
1 < i < 4. Then {ug,us} U B(T) — {v1,v2,v3,v4} is a dominating set of T'
of size ng — 3, a contradiction. It follows that Ty is a caterpillar with three
or four support vertices. Hence T € Gy.

Conversely, if T'€ GU F, then T ¢ T and so by Theorem 4, v,(T) >
~v(T') 4+ 2. Equality can be checked by examining case by case the trees of
GUF. ]

Observe that any tree T' € T U GUF has diameter at most 12, indeed the tree
of larger diameter is obtained by using Operation F7; or Fg. Consequently
Theorems 4 and 7 imply the following corollary.

Corollary 8. If T is a tree of diameter at least 13, then vo(T) > ~(T) + 3.

4. TREES T WITH 75(T) = v(T) + 2

Hedetniemi, Hedetniemi, and Kristiansen [4] introduced several types of
alliances in graphs, including the global strong offensive alliances defined as
follow: A set S C V(G) is a global strong offensive alliance (abbreviated,
gsoa) of G if |[N[v] N S| > |N[v] — S| for every vertex v € V(G) — S. The
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global strong offensive number ~5(G) is the minimum cardinality of a global
strong offensive alliance of G.

Note if S is any global strong offensive alliance of G, then every vertex
of V(G) — S has at least two neighbors in S. Thus S is a 2-dominating set
of G, and we obtain v3(G) < 75(G). Using this fact, it has been observed
in [1] that for every nontrivial tree T', v5(T") > v(7T') + 1 with equality if and
onlyif T € T.

Next we present a characterization of trees T with v4(7") = v(T') +2. For
this purpose let 7' be the subfamily of F consisting of all trees constructed
by performing Operation Fjy.

Theorem 9. A tree T satisfies v5(T) = v(T) + 2 if and only if T € GU
(F-F).

Proof. Let T be a tree with v5(T) = v(T')+2 and S any ~,(T)-set. Clearly
v2(T) = v(T) + 2 and so S is also a 2(T')-set. For a vertex x € V — 5, let
Sy = N(x)NS. Then since T is a tree, |S; N Sy| < 1 for every pair of vertices
z,y in V —S. Assume now that u, v are two adjacent vertices in V' — S. Then
since S is a v5(T')-set, |Sy| > 3 and |S,| > 3, and so S U {u,v} — (S, US,)
is a dominating set of 7" with cardinality at most |S U {u,v} — (S, US,)| <
v6(T) — 4, a contradiction. Thus V' — S is independent. Since S is a y2(T')-
set, all steps in the proof of the Theorem 7 remain valid here and therefore
TeGU(F—-F).

Conversely, every tree T € G U (F — F') admits a y2(T)-set that is also
a global strong offensive alliance of T. Thus y(T) + 2 < % (T) < 7(T) <
¥2(T) = Y(T) + 2. Therefore ~v4(T) = (T) + 2. ]
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