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Abstract

Let G = (V (G), E(G)) be a simple graph, and let k be a positive
integer. A subset D of V (G) is a k-dominating set if every vertex
of V (G) − D is dominated at least k times by D. The k-domination
number γk(G) is the minimum cardinality of a k-dominating set of
G. In [5] Volkmann showed that for every nontrivial tree T, γ2(T ) ≥
γ1(T ) + 1 and characterized extremal trees attaining this bound. In
this paper we characterize all trees T with γ2(T ) = γ1(T ) + 2.
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1. Introduction

In a graph G = (V (G), E(G)) = (V,E) of order n(G), or simply n when
the graph G is clear from the context, the neighborhood NG(v) = N(v) of
a vertex v ∈ V (G) consists of the vertices adjacent with v, and NG[v] =
N [v] = N(v) ∪ {v} is the closed neighborhood. If S is a subset of vertices,
then the subgraph induced by S in G is denoted G[S]. The degree of a
vertex v, denoted by degG(v), is the size of its open neighborhood. A vertex
of degree one is called a leaf, and its neighbor is called a support vertex. We
also denote the set of leaves of a graph G by L(G) and the set of support
vertices by S(G). A tree T is a double star if it contains exactly two vertices
that are not leaves. A double star with respectively p and q leaves attached
at each support vertex is denoted by Sp,q. The subdivision graph of a graph
G is that graph obtained from G by replacing each edge uv of G by a
vertex w and edges uw and vw. If a tree T is a subdivision graph of a
nontrivial tree T ′, then we say that T is a subdivided tree, and the n(T ′)− 1
new vertices resulting from the subdivision of the edges of T ′ are called
subdivision vertices. Note that a subdivided tree has order at least three
and at least one subdivision vertex. The corona graph G ◦K1 of a graph G
is the graph constructed from a copy of G, where for each vertex v ∈ V (G),
a new vertex v′ and a pendant edge vv′ are added. Let Pn denote the path
graph of order n.

Let k be a positive integer. A subset D ⊆ V (G) is a k-dominating set of
the graph G, if |NG(v)∩D| ≥ k for every v ∈ V (G)−D. The k-domination

number γk(G) is the minimum cardinality among the k-dominating sets of G.
Note that the 1-domination number γ1(G) is the usual domination number

γ(G). A set S ⊆ V (G) is independent if no edge of G has its two endvertices
in S.
We make a couple of straightforward observations.

Observation 1. For every graph G and positive integer k, every vertex with

degree at most k − 1 belongs to every γk(G)-set.

Observation 2. For any tree T of order at least three, there exists a γ(T )-
set that contains no leaves of T .

The following results will be useful for the next.

Theorem 3 (Fink and Jacobson [2] 1985). If T is a tree of order n, then
γ2(T ) ≥ (n+1)/2, with equality if and only if T = P1 or T is the subdivided

graph of another tree.
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Theorem 4 (Volkmann [5] 2007). For every nontrivial tree T , γ2(T ) ≥
γ(T ) + 1 with equality if and only if T is a subdivided star, the corona of a

star, or a subdivided double star.

Let T be the family of extremal trees achieving equality in Theorem 4, that
is, T is the family of nontrivial trees T, where T is a subdivided star, the
corona of a star, or a subdivided double star. For a subdivided tree in T ,
we let B(T ) denote the set of subdivided vertices. Note that the corona of a
star can also be described as a subdivided star with an added leaf adjacent
to its center vertex. Thus, if T ′′ is the subdivision graph of a star T ′, then
for the corona T of a star T ′, we let B(T ) = B(T ′′). Note that the paths
P2 and P4 are coronas of stars, and for the path P2, B(T ) = ∅, and for the
path P4, B(T ) consists of exactly one support vertex. For any tree in T , we
let A(T ) = V (T )−B(T ). (Note that if T is a subdivision of a tree T ′, then
A(T ) = V (T ′) and if T is a corona, that is, a subdivision of a star T ′ with
a leaf neighbor u added to its center, then A(T ) = V (T ′) ∪ {u}).

Thus, by Theorem 4, if T is a tree and T is not in T , then γ2(T ) ≥ γ(T )+
2. Our aim in this paper is to characterize all trees T with γ2(T ) = γ(T )+2.
We close this section by the following observation.

Observation 5. If T ∈ T , then A(T ) is a γ2(T )-set. Moreover, if T ∈ T
and T 6= P4, then A(T ) is the unique γ2(T )-set.

2. The Families G and F

Let T1 denote the subdivided stars, T2 the coronas of stars, and T3 the
subdivided double stars of T . Thus, T = T 1 ∪ T2 ∪ T3. Recall that L(T )
denotes the set of leaves of T and S(T ) the set of support vertices. Let
X = X(T ) consist of the leaf adjacent to the vertex of maximum degree if
T ∈ T2 and T 6= P2, and X = ∅ otherwise. We also let H = H(T ) consist of
the center vertex if T ∈ T3 and H = ∅ otherwise.

Observation 6. If T is a tree in T of order at least three, then every vertex

of B(T ) is either a support vertex or the center vertex if T ∈ T3.

We define the following families of trees G1,G2,G3 and G4, and let G =⋃
4

i=1
Gi, where
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• G1 is the family of trees obtained by a path P2 = uv and a tree T ′ ∈ T
different to the path P4, by adding an edge uw, where w ∈ B(T ′)−H(T ′).

• G2 is the family of trees obtained by a tree T ∈ T different to the path
P2, by adding a new vertex attached to any support vertex of T.

• G3 is the family of trees obtained by a path P3 and a tree T ′ ∈ T2 ∪ T3
different to P2 and P4, by adding an edge xy, where x is any leaf of P3

and y ∈ L(T ′)−X.

• G4 is the family of trees that are a subdivision graph of a caterpillar
having three or four support vertices and the remaining vertices of the
caterpillar are leaves.

A tree T is in F if it can be constructed using one of the following operations.

• Operation F0: Let T1 and T2 be in T , each of order at least three.
Form T from T1 ∪ T2 by adding an edge xy, where x ∈ B(T1) −H(T1)
and y ∈ B(T2)−H(T2).

• Operation F1: Let T1 ∈ T1 and T2 ∈ T1. Form T from T1∪T2 by adding
an edge xy, where x ∈ V (T1), y ∈ A(T2).

• Operation F2: Let T1 ∈ T3 and T2 ∈ T1. Form T from T1∪T2 by adding
an edge xy, where x ∈ H(T1) and y ∈ A(T2).

• Operation F3: Let T1 ∈ T and T2 ∈ T2 ∪ T3 with T2 6= P2. Form
T from T1 ∪ T2 by adding an edge xy, where x ∈ B(T1) − H(T1) and
y ∈ A(T2)− L(T2).

• Operation F4: Let T1 and T2 be in T , each of order at least four. Form
T from T1 ∪ T2 by adding an edge xy, where either x ∈ A(T1) − L(T1)
and y ∈ A(T2)−L(T2), or x ∈ L(T1)−X, y ∈ A(T2)−L(T2) and at least
T1 or T2 is in T1.

• Operation F5: Let T1 ∈ T2 and T2 ∈ T but not both a path P2. Form
T from T1 ∪ T2 by adding a path xzy, where x is a vertex of maximum
degree in T1, y ∈ A(T2)−X(T2) and z is a new vertex.

• Operation F6: Let T1 ∈ T1 and T2 ∈ T3. Form T from T1∪T2 by adding
a path xvwzy, where v,w, z are new vertices, x ∈ A(T1), y ∈ A(T2), and
at least one of x and y is not in L(T1) ∪ L(T2) or x ∈ L(T1), y ∈ L(T2)
and T1 = P3.

• Operation F7: Let T1 ∈ T1 and T2 ∈ T1. Form T from T1∪T2 by adding
a path xvwzy, where x ∈ A(T1), y ∈ A(T2) and v,w, z are new vertices.
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• Operation F8: Let T1 ∈ T3 and T2 ∈ T3. Form T from T1∪T2 by adding
a path xvwzy, where v,w, z are new vertices, x ∈ A(T1) − L(T1), y ∈
A(T2)− L(T2).

3. Trees T with γ2(T ) = γ(T ) + 2

Theorem 7. A tree T satisfies γ2(T ) = γ(T ) + 2 if and only if T ∈ G ∪ F .

Proof. Let T be a tree with γ2(T ) = γ(T )+2 and S any γ2(T )-set. For any
vertex x ∈ V − S, let Sx = N(x) ∩ S. Clearly |Sx| ≥ 2. Since T is a tree, for
every pair of vertices x, y in V − S, |Sx ∩ Sy| ≤ 1. Let x, y be two adjacent
vertices of V − S and let Tx, Ty the subtrees of T obtained by removing
the edge xy. Note that each of Tx and Ty has order at least three since
|Sx| ≥ 2 and |Sy| ≥ 2. Then S ∩V (Tx) and S ∩V (Ty) are two 2-dominating
sets of Tx and Ty, respectively. Hence γ2(Tx) + γ2(Ty) ≤ |S ∩ V (Tx)| +
|S ∩ V (Ty)| = γ2(T ). On the other hand if Dx (respectively, Dy) is any
γ(Tx)-set (respectively, γ(Ty)-set), then Dx ∪ Dy is a dominating set of T
and so γ(T ) ≤ γ(Tx) + γ(Ty). Also by Theorem 4, γ2(Tx) ≥ γ(Tx) + 1 and
γ2(Ty) ≥ γ(Ty)+1. Therefore we obtain γ(T )+2 = γ2(T ) ≥ γ2(Tx)+γ2(Ty) ≥
γ(Tx)+1+γ(Ty)+1 ≥ γ(T )+2, implying equality throughout the inequality
chain, in particular γ2(Tx) = γ(Tx)+1 and γ2(Ty) = γ(Ty)+1. It follows that
each of Tx and Ty belongs to T − {P2}, where x ∈ B(Tx) and y ∈ B(Ty). If
y ∈ H(Ty), then S(Tx)∪S(Ty)∪H(Tx) (possibly H(Tx) = ∅) is a dominating
set of T of size less than γ2(T ) − 2, a contradiction. Hence y /∈ H(Ty) and
likewise x /∈ H(Tx). Therefore T ∈ F since it can be constructed using
Operation F0. From now on we may assume that V − S is independent.

Assume that |Su| ≥ 4 for some vertex u ∈ V − S. Then {u} ∪ S − Su is
a dominating set of T with cardinality at most γ2(T ) − 3, a contradiction.
Thus every vertex of V − S has degree two or three.

Now let x be a vertex of V − S of degree three. Let y ∈ Sx such that
the subtrees obtained by removing the edge xy are both nontrivial. If such
a vertex y does not exist, then T = K1,3 that belongs to G2. Hence suppose
that y exists. Then S ∩ V (Tx) is a 2-dominating set of Tx and likewise
S∩V (Ty) for Ty. Thus γ2(Tx)+γ2(Ty) ≤ |S ∩ V (Tx)|+ |S ∩ V (Ty)| = γ2(T ).
Moreover if Dx (respectively, Dy) is any γ(Tx)-set (respectively, γ(Ty)-set),
then Dx ∪Dy is a dominating set of T and so γ(T ) ≤ γ(Tx) + γ(Ty). Using
Theorem 4 we obtain γ(T ) + 2 = γ2(T ) ≥ γ2(Tx) + γ2(Ty) ≥ γ(Tx) + 1 +
γ(Ty) + 1 ≥ γ(T ) + 2, implying equality throughout the inequality chain, in
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particular γ2(Tx) = γ(Tx) + 1 and γ2(Ty) = γ(Ty) + 1. It follows that each
of Tx and Ty belongs to T , where x ∈ B(Tx) and y ∈ A(Ty). Note that since
x ∈ B(Tx), Tx has order at least three. If Tx and Ty are in T1, then T can be
constructed using Operation F1. Thus assume that at least one of Tx and
Ty is in T2 ∪ T3, say Ty ∈ T2 ∪ T3. Since x ∈ B(Tx), by Observation 6, x is
either a support vertex or the center vertex if Tx ∈ T3.

First assume that x is a support vertex. Suppose that y ∈ L(Ty) and let
w be the unique neighbor of y in Ty. Since Ty ∈ T2 ∪T3 either w ∈ B(Ty) or
w ∈ A(Ty) if y ∈ X. In addition let z be the second neighbor of w if Ty ∈ T3.
Now if Ty = P2, then Tx 6= P4 for otherwise T is a corona of a path P3 and so
by Theorem 4, γ2(T ) = γ(T ) + 1, a contradiction. It follows that T belongs
to G1. Suppose now that Ty 6= P2. Then for all possibilities of Tx to be in T ,
and Ty ∈ T2 ∪ T3 with Ty 6= P2, the set S(Tx) ∪ S(Ty) ∪H(Tx) ∪ {z} − {w}
(possibly H(Tx) = ∅ if Tx /∈ T3) is a dominating set of T of size γ2(T )− 3, a
contradiction. Thus y ∈ A(Ty) − L(Ty) and so T can be constructed using
Operation F3.

Suppose now that x is not a support vertex. Thus x ∈ H(Tx) and hence
Tx ∈ T3. We shall show that Ty ∈ T1. Assume that Ty is in T2 ∪ T3 and
suppose that y is not a leaf. Then since y ∈ A(Ty), y is either a neighbor of
H(Ty) if Ty ∈ T3 or y is the neighbor of X(Ty) if Ty ∈ T2 (in the later case
y is a support vertex). Anyway it can be seen that S(Tx) ∪ S(Ty) ∪ Q is a
dominating set of T of size γ2(T )− 3, where Q = {y} if Ty ∈ T3 and Q = ∅
otherwise. Hence y is a leaf in Ty. Let u be the unique neighbor of y in Ty.
Clearly if Ty = P2, then S(Tx) ∪ {y} is a dominating set of T of size less
than γ2(T )− 2, a contradiction. Thus Ty 6= P2 and so u is a support vertex
in Ty. But then S(Tx) ∪ S(Ty) ∪ {y} ∪H(Ty) − {u} (possibly H(Ty) = ∅ if
Ty /∈ T3) is a dominating set of T of size less than γ2(T )− 2, a contradiction
too. Consequently Ty ∈ T1 and so T is constructed using Operation F2.
From now on we may suppose that every vertex in V − S has degree two.

Suppose now that T contains a support vertex w with at least two
leaves. If w ∈ V − S, then by the previous assumption degT (w) = 2 and
so T = P3 but then γ2(T ) = γ(T ) + 1, a contradiction. Thus w ∈ S. Let
w′ be any leaf neighbor of w and consider the tree T ′ = T − {w′}. Clearly
γ(T ′) = γ(T ) and γ2(T

′) ≤ γ2(T ) − 1. Therefore γ(T ′) + 1 ≤ γ2(T
′) ≤

γ2(T ) − 1 = (γ(T ) + 2) − 1 = γ(T ′) + 1, implying that γ2(T
′) = γ(T ′) + 1.

By Theorem 4 T ′ ∈ T and T ′ 6= P2. Hence T ∈ G2. We may assume for the
next that every support vertex is adjacent to exactly one leaf.

We now suppose that the subgraph G[S] contains an edge uv for which



Characterization of Trees with ... 693

the removing provides two nontrivial subtrees. Let Tu and Tv the resulting
subtrees, where u ∈ V (Tu) and v ∈ V (Tv). By a similar argument to that
used above we have γ(T ) + 2 = γ2(T ) ≥ γ2(Tu) + γ2(Tv) ≥ γ(Tu) + 1 +
γ(Tv) + 1 ≥ γ(T ) + 2 and so γ2(Tu) = γ(Tu) + 1, γ2(Tv) = γ(Tv) + 1. Hence
each of Tu and Tv is in T , where u ∈ A(Tu) and v ∈ A(Tv). Also each Tu

and Tv has order at least three for otherwise S is not minimal since either
S − {u} or S − {v} is 2-dominating set of T. We also note that if Tu ∈ T2
and u ∈ X(Tu), then S − {u} is 2-dominating set of T, a contradiction.
Thus if Tu ∈ T2, then u /∈ X(Tu) and similarly if Tv ∈ T2, then v /∈ X(Tv).
Now if u and v are both not leaves, then |V (Tu)| ≥ 4 and |V (Tv)| ≥ 4, and
therefore T is constructed using Operation F4. Assume now that u and v
are both leaves in Tu and Tv, respectively. If Tu and Tv belong to T1, then
T is constructed by using Operation F1. Thus at least one of Tu and Tv

is in T2 ∪ T3, say Tv ∈ T2 ∪ T3. If Tu = P3, then Tv 6= P4 for otherwise
T = P7 ∈ T . Consequently T ∈ G3. Thus we assume that each of Tu and
Tv has order at least four and recall that u /∈ X(Tu) and v /∈ X(Tv). Let
u′ be the support vertex of Tu adjacent to u and let v′ the support of Tv

adjacent to v. If Tu ∈ T2, then S(Tu) ∪ S(Tv) ∪ {v} ∪H(Tv) − ({u′, v′} is a
dominating set of T of size less than γ2(T )−2, a contradiction. Thus Tu /∈ T2
and likewise Tv /∈ T2. Hence, without loss of generality, either Tu ∈ T1 and
Tv ∈ T3 or Tu, Tv ∈ T3. Since for both cases Tv ∈ T3, let v′′ be the second
neighbor of v′ in Tv. If Tu ∈ T1 and Tv ∈ T3, then S(Tu) ∪ S(Tv) ∪ {u, v′′}−
{u′, v′} is a dominating set of T of size γ2(T ) − 3. If Tu, Tv ∈ T3, then
S(Tu) ∪ S(Tv) ∪ H(Tu) ∪ {u, v′′} − {u′, v′} is a dominating set of T of size
γ2(T )− 3. Both cases yield to a contradiction. Finally assume, without loss
of generality, that u is a leaf in Tu and v is not a leaf in Tv. By examining
case by case, it can be seen that at least one of Tu or Tv must be in T1. For
the remaining cases T admits a dominating set of T of size γ2(T )− 3. Thus
T can be constructed by Operation F4.

Assume now that G[S] contains at least one edge but each one is pendant
in T . Let u ∈ S be a support and v ∈ S its unique leaf. Let w be a
vertex of V −S adjacent to u for which the removing provides two nontrivial
subtrees. If such a vertex does not exist, then T is a corona of a star and
by Theorem 4, γ2(T ) = γ(T ) + 1, a contradiction. Hence w exists and let r
be the second neighbor of w in S. Consider the nontrivial subtrees Tr and
Tu obtained by removing w (remember that w has degree two in T ). Then
γ(T )+2 = γ2(T ) ≥ γ2(Tu)+γ2(Tr) ≥ γ(Tu)+1+γ(Tr)+1 ≥ γ(T )+2 and so
γ2(Tu) = γ(Tu)+1 and γ2(Tr) = γ(Tr)+1. It follows that Tu and Tr belong
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to T , where u ∈ A(Tu) and r ∈ A(Tr). Moreover, since u, v ∈ A(Tu) and u
is a support vertex either Tu = P2 or Tu ∈ T2 and u is the center vertex of
Tu. Also Tu and Tr can not both be a path P2 for otherwise T = P5 and
γ2(T ) = γ(T )+1, a contradiction. On the other hand if Tr ∈ T2 and Tr 6= P2,
then r /∈ X(Tr) for otherwise S would also contain the support vertex of
r in Tr, say r′, but in this case removing the edge rr′ from G[S] provides
two nontrivial subtrees and such a case has been already considered. Thus
r ∈ A(Tr)−X(Tr) and therefore T can be constructed by Operation F5.

Now we can assume that S is independent. Since V −S is an independent
set in which every vertex has degree two, T is the subdivision graph of a
tree T0. Assume that S contains a vertex x of degree k ≥ 2 such that
T −N [x] provides k nontrivial subtrees T1, T2, . . . , Tk. Then S ∩ V (Ti) is a
2-dominating set of Ti for every i and clearly γ(T ) ≤ 1+

∑k
i=1

γ(Ti). Hence

γ(T )+2 = γ2(T ) ≥ 1+

k∑

i=1

γ2(Ti) ≥ 1+

k∑

i=1

(γ(Ti)+1) ≥ γ(T )+k ≥ γ(T )+2,

implying equality throughout the inequality chain, in particular k = 2, that
is degT (x) = 2, γ2(Ti) = γ(Ti)+1 for every i = 1, 2. Hence each of T1 and T2

belongs to T . Let N(x) = {x′, x′′} and assume, without loss of generality,
that Sx′ = {y′, x} and Sx′′ = {y′′, x}, where y′ ∈ V (T1) and y′′ ∈ V (T2).
Clearly y′ ∈ A(T1) and y′′ ∈ A(T2). Since S is independent, T1 /∈ T2 and
T2 /∈ T2. Assume that y′ and y′′ are both leaves. If T1, T2 ∈ T3, then let y1
be the neighbor of y′ and z1 6= y′ be the neighbor of y1 in T1, and define
similarly y2 and z2 in T2. Then S(T1) ∪ S(T2) ∪ {z1, x

′, x′′, z2} − {y1, y2} is
a dominating set of T of size less than γ2(T ) − 2, a contradiction. Thus,
without loss of generality, T1 ∈ T1 and T2 ∈ T1 ∪ T3. If T1 has order three,
then T is obtained by using Operation F6 (when T2 ∈ T3) or Operation F7

(when T2 ∈ T1). Hence suppose that T1 has order at least five. Now if
T2 ∈ T3, then let us use the notation of y1, z1, y2, z2 as have been defined
above. Then S(T1) ∪ S(T2) ∪ {y′, x′′, z2} − {y1, y2} is a dominating set of
T of size less than γ2(T ) − 2, a contradiction. Thus T1 ∈ T1 and T2 ∈ T1,
and therefore T can be constructed by Operation F7. For the next we will
assume that at least one of x and y is not in L(T1)∪L(T2). If T1 and T2 are
in T1, then T is constructed using Operation F7. Hence either (T1 ∈ T1 and
T2 ∈ T3) or (T1 ∈ T3 and T2 ∈ T3). In the first case T is constructed using
Operation F6. In the later case it can be seen that y′ ∈ A(T1)− L(T1) and
y′′ ∈ A(T2)−L(T2) for otherwise T admits a dominating set of size less than
γ2(T )− 2, a contradiction. Thus T is obtained by using Operation F8.
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Finally assume that for every vertex x ∈ S of degree at least two the forest
T − N [x] contains a component of size one. Hence every vertex of S is
either a leaf or at distance two from some leaf. Using this fact and since
T is the subdivision graph of a tree T0, it follows that every vertex of T0

is either a support vertex or a leaf, that is V (T0) = S(T0) ∪ L(T0). Let
n0 be the order of T0. Then |V (T )| = n = 2n0 − 1 and by Theorem 3,
γ2(T ) = n+1

2
= n0, implying that γ(T ) = n0 − 2. Suppose that a support

vertex x in T0 is adjacent to at least three other support vertices, say u, v and
w. Let u′, v′, w′ be the subdivision vertices resulting by subdividing edges
xu, xv and xw. Clearly u′, v′, w′ ∈ B(T ) and B(T ) is a dominating set of
T of size n0 − 1 but then {x} ∪ B(T ) − {u′, v′, w′} is a dominating set of
T with cardinality n0 − 3, a contradiction. Hence every support vertex of
T0 is adjacent to at most two other support vertices, more precisely T0 is
a caterpillar whose support vertices induce a path. If T0 has one or two
support vertices, then T ∈ T1 or T ∈ T3, respectively, and by Theorem
4, γ2(T ) = γ(T ) + 1, a contradiction. Hence |S(T0)| ≥ 3. Suppose that
|S(T0)| ≥ 5 and let u1, u2, . . . , u5 be five consecutive support vertices. Let
vi be the subdivision vertex resulting by subdividing the edge uiui+1, where
1 ≤ i ≤ 4. Then {u2, u4} ∪ B(T ) − {v1, v2, v3, v4} is a dominating set of T
of size n0 − 3, a contradiction. It follows that T0 is a caterpillar with three
or four support vertices. Hence T ∈ G4.

Conversely, if T ∈ G ∪ F , then T /∈ T and so by Theorem 4, γ2(T ) ≥
γ(T ) + 2. Equality can be checked by examining case by case the trees of
G ∪ F .

Observe that any tree T ∈ T ∪ G∪F has diameter at most 12, indeed the tree
of larger diameter is obtained by using Operation F7 or F8. Consequently
Theorems 4 and 7 imply the following corollary.

Corollary 8. If T is a tree of diameter at least 13, then γ2(T ) ≥ γ(T ) + 3.

4. Trees T with γô(T ) = γ(T ) + 2

Hedetniemi, Hedetniemi, and Kristiansen [4] introduced several types of
alliances in graphs, including the global strong offensive alliances defined as
follow: A set S ⊆ V (G) is a global strong offensive alliance (abbreviated,
gsoa) of G if |N [v] ∩ S| > |N [v] − S| for every vertex v ∈ V (G) − S. The
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global strong offensive number γô(G) is the minimum cardinality of a global
strong offensive alliance of G.

Note if S is any global strong offensive alliance of G, then every vertex
of V (G) − S has at least two neighbors in S. Thus S is a 2-dominating set
of G, and we obtain γ2(G) ≤ γô(G). Using this fact, it has been observed
in [1] that for every nontrivial tree T , γô(T ) ≥ γ(T )+ 1 with equality if and
only if T ∈ T .

Next we present a characterization of trees T with γô(T ) = γ(T )+2. For
this purpose let F ′ be the subfamily of F consisting of all trees constructed
by performing Operation F0.

Theorem 9. A tree T satisfies γô(T ) = γ(T ) + 2 if and only if T ∈ G ∪
(F − F ′) .

Proof. Let T be a tree with γô(T ) = γ(T )+2 and S any γô(T )-set. Clearly
γ2(T ) = γ(T ) + 2 and so S is also a γ2(T )-set. For a vertex x ∈ V − S, let
Sx = N(x)∩S. Then since T is a tree, |Sx ∩ Sy| ≤ 1 for every pair of vertices
x, y in V −S. Assume now that u, v are two adjacent vertices in V −S. Then
since S is a γô(T )-set, |Su| ≥ 3 and |Sv| ≥ 3, and so S ∪ {u, v} − (Su ∪ Sv)
is a dominating set of T with cardinality at most |S ∪ {u, v} − (Su ∪ Sv)| ≤
γô(T )− 4, a contradiction. Thus V − S is independent. Since S is a γ2(T )-
set, all steps in the proof of the Theorem 7 remain valid here and therefore
T ∈ G ∪ (F − F ′) .

Conversely, every tree T ∈ G ∪ (F − F ′) admits a γ2(T )-set that is also
a global strong offensive alliance of T. Thus γ(T ) + 2 ≤ γ2(T ) ≤ γô(T ) ≤
γ2(T ) = γ(T ) + 2. Therefore γô(T ) = γ(T ) + 2.
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