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1. Introduction

The concept of oriented colouring was introduced by Bruno Courcelle in [4].
Since then, many researchers have worked on the problem. It can be viewed
as the ‘natural’ oriented version of ordinary undirected vertex colouring
when one looks at it in terms of homomorphism [8]. The edge analogue of
this has applications in wireless sensor networks [9]. Even for simple classes
of graphs like 2-dimensional grid graphs or planar graphs, we do not know
tight bounds on the associated chromatic number.

We first define what an oriented colouring is. An oriented graph
#»

G =
(V,A) is an orientation of the edges of a simple undirected graph G = (V,E).
That is,

#»

G does not contain loops or opposite arcs. An oriented k-colouring
of an oriented graph is a partition of its vertex set into k labelled subsets
such that no two adjacent vertices belong to the same subset, and all the arcs
between a pair of subsets have the same orientation. Precisely, an oriented

k-colouring of an oriented graph
#»

G is a mapping C : V 7→ [k] such that (i)
C(x) 6= C(y) for any arc (x, y) ∈ A(

#»

G) and (ii) for all arcs (x, y) and (z, w)
in A(

#»

G), C(x) = C(w) implies C(y) 6= C(z) . Notice that C(x) stands for the
colour of the vertex x with respect to the colouring C and [k] stands for the
set {1, 2, . . . , k}.

The oriented chromatic number of an oriented graph
#»

G is the smallest
k ∈ N that admits an oriented vertex k-colouring of

#»

G and is denoted by
χo(

#»

G). One can also view an oriented k-colouring as a homomorphism from
#»

G to a suitable oriented graph on k vertices. A homomorphism from a
directed graph

#»

G to a directed graph
#»

H is a mapping that preserves the
arcs. That is, φ : V (

#»

G) 7→ V (
#»

H) is a homomorphism if (φ(u), φ(v)) ∈ A(
#»

H)
for every arc (u, v) in A(

#»

G). Hence we note that χo(
#»

G) is the smallest order
of an oriented graph

#»

H such that there is a homomorphism from
#»

G to
#»

H.
The oriented chromatic number of an undirected graph G, denoted χo(G),
is the maximum of χo(

#»

G) taken over all orientations
#»

G of G.

Bounds for the oriented chromatic number have been obtained in terms
of the maximum degree [11] as well as for various special families of graphs
such as trees, partial k-trees [17], 1-planar graphs [3] and graphs of bounded
genus [1]. As mentioned earlier, the oriented chromatic number of planar
graphs is unknown and an important open problem in this area. The best
known lower bound is 17 [12] while the best upper bound proved so far is 80
[16]. By considering subclasses of planar graphs, we might expect to prove
improved and possibly tight bounds. In this direction, bounds have been
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obtained for triangle-free planar graphs [14], for planar graphs with girth
restrictions [13], for outerplanar graphs [15], 2-outerplanar graphs [5] and
for grid graphs [6]. The last-mentioned result uses the ”product” structure of
grids and suggests the natural problem of obtaining bounds for products of
graphs in terms of the oriented chromatic number of the individual graphs.
Our work in this paper is a step in this direction.

For an excellent survey of oriented colouring, see [18]. In this paper, we
obtain bounds on the oriented chromatic number of Cartesian products and
strong products of arbitrary graphs with paths.

We now start with a few important definitions and then proceed to
present the results we have obtained.

2. Definitions and Results

For any graph G (directed or undirected), we use |G| to denote |V (G)|, the
order of G.

An automorphism of an oriented graph
#»

G is a bijection from V (
#»

G) to
itself that preserves edges, non-edges and directions of the edges. If an
automorphism does not map any vertex to itself, we call it a non-fixing

automorphism.
In the following, K2 denotes an edge and Pk denotes an undirected path

on k vertices. The Cartesian and strong product of graphs are defined as
follows.

Definition 2.1 Cartesian Product. Let G1 = (V1, E1) and G2 = (V2, E2) be
two graphs. Their Cartesian product, denoted G1 � G2 is the graph (V,E)
where V = V1 × V2 and ([u1, u2], [v1, v2]) ∈ E if and only if either u1 = v1
and (u2, v2) ∈ E2 or u2 = v2 and (u1, v1) ∈ E1.

Definition 2.2 Strong Product. Let G1 = (V1, E1) and G2 = (V2, E2) be
two graphs. Their strong product denoted G1⊠G2 is the graph (V,E) where
V = V1 × V2 and ([u1, u2], [v1, v2]) ∈ E if and only if either u1 = v1 and
(u2, v2) ∈ E2 or u2 = v2 and (u1, v1) ∈ E1 or (u1, v1) ∈ E1 and (u2, v2) ∈ E2.

The Cartesian and strong products are both associative and commutative up
to isomorphism. Furthermore, there is a unique prime factorisation (UPF)
of any connected graph into a Cartesian (strong) product of prime graphs
[10]. The directed Cartesian product and directed strong product are defined
analogously with the edge set being replaced by the arc set.
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For any graph G, let Gn
�

and Gn
⊠

denote respectively the Cartesian and
strong products of G with itself n times. The graph Hd = K2

d
�
is called the

hypercube of dimension d. In other words Hd is the Cartesian product of
d edges. The d-dimensional hypergrid (mesh) denoted Md is the Cartesian
product of d paths. The graph Mm,n = Pm � Pn is called an m × n grid.
We call the graph Sm,n = Pm ⊠ Pn an m× n strong-grid.

A tournament is an orientation of an undirected complete graph. Let
n be a prime number of the form 4k + 3. Let c1, c2, . . . , cd be the non-zero
quadratic residues of n. It is known that d = n−1

2
. Define the directed

graph
#»

T n = T (n; c1, . . . , cd) over V = {0, 1, . . . , n− 1} as follows. For every
x, y ∈ V, x 6= y, (x, y) is an arc if and only if y = x+ ci for some i ∈ [d]. It
is well-known that

#»

T n is a tournament and is called the Paley tournament

of order n.
A graph G is arc transitive if for any two arcs e, f in G, there exists

an automorphism mapping e to f . In other words an arc-transitive graph
is a graph such that any two arcs are equivalent under some element of its
automorphism group. It is a well-known fact [7] that Paley tournaments are
arc transitive.

We obtain the following results on χo(G) when G is a product of undi-
rected graphs or oriented graphs. We also propose a conjecture. Specifically,
we prove the following.

Theorem 1. Let
#»

G be an oriented graph and
#»

T be a Paley tournament such

that χo(
#»

G) = |
#»

T |. Let
#»

P k be any orientation of Pk. Assume that there is a

homomorphism φ : V (
#»

G) 7→ V (
#»

T ). Then χo(
#»

G �
#»

P k) = χo(
#»

G), k ≥ 1.

The smallest Paley tournament is the directed cycle on three vertices. The
Cartesian product of two edges contains directed 2-paths and thus requires
3 colours. Thus, we get the following result as a corollary to the above
theorem,

Corollary 1.1. For the oriented product
#»

Hd of d oriented edges, we have
χo(

#»

Hd) = 3.

The next result is for undirected Cartesian product of any graph with paths
or cycles.

Theorem 2. For any undirected graph G,

1. χo(G � Pk) ≤ (2k − 1)χo(G), k ≥ 1.

2. χo(G � Ck) ≤ 2kχo(G), k ≥ 3.
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We also obtain the following for the strong product of paths.

Theorem 3. For the strong product of undirected paths, we have the fol-

lowing.

1. 8 ≤ χo(S2,n) ≤ 11,

2. 10 ≤ χo(S3,n) ≤ 67.

We believe and conjecture that Theorem 1 above can be strengthened to the
following.

Conjecture 2.1. Let
#»

H be an arc transitive oriented graph having a non-
fixing automorphism. Then, if φ : V (G) 7→ V (H) is a homomorphism such
that χo(

#»

G) = |
#»

H|, then χo(
#»

G �
#»

P k) = χo(
#»

G).

3. Proofs

In this section we prove the various results claimed above. First, we note
that when k = 1 in either of the possible cases, there is nothing to prove as
the cases follow trivially. We start with the proof of Theorem 1.

3.1. Proof of Theorem 1

Proof. Let
#»

G be an oriented graph and
#»

T be a Paley tournament satisfying
the conditions of the theorem. Now consider the automorphism π(i) =
i+1 mod p, where p is the order of the Paley tournament. It is not difficult
to see that π and hence π−1 are both non-fixing automorphisms. From the
definition of π and the fact that 1 is a quadratic residue of p, it follows that
(u, π(u)) ∈ A(

#»

T ) for every u ∈ V (
#»

T ).
Now, we colour the graph

#»

G�
#»

P k as follows. Let
#»

Gi, i = 0, 1, . . . , k− 1,
be the ith copy of

#»

G in
#»

G�
#»

P k. We colour inductively in the order
#»

G0,
#»

G1, . . ..
We colour the copy

#»

G0 with the homomorphism φ. To colour
#»

Gi, i ≥ 1,
consider the orientation of the arcs between

#»

Gi−1 and
#»

Gi. If they are from
#»

Gi−1 to
#»

Gi, each vertex x ∈
#»

Gi is coloured with π(cx) where cx is the colour
of x in

#»

Gi−1. On the other hand, if the arcs are from
#»

Gi to
#»

Gi−1, each vertex
x ∈

#»

Gi is coloured with π−1(cx).
We claim that the above colouring is an oriented colouring of the graph

#»

G�
#»

P k. Each
#»

Gi mapped to
#»

T by the homomorphism σi−1σi−2 . . . σ1φ where
each σi, i ≥ 1 is either π or π−1 depending on the orientation of

#»

P k. For any
vertex u in

#»

G, let ui and cui
denote the vertex corresponding to u and its
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colour within
#»

Gi . If (i, i + 1) ∈ A(
#»

P k), then in our colouring, (cui
, cui+1

) ∈

A(
#»

T ). Similarly, if (i + 1, i) ∈ A(
#»

P k), then we have (cui+1
, cui

) ∈ A(
#»

T ).

Thus, we have extended the homomorphism φ :
#»

G 7→
#»

T to a homomorphism
from

#»

G �
#»

P k into
#»

T . Since
#»

G is a subgraph of
#»

G �
#»

P k, it follows that
χo(

#»

G �
#»

P k) = χo(
#»

G).

3.2. Proof of Theorem 2

Proof. We now prove that χo(G� Pk) ≤ (2k − 1)χo(G). Fix any arbitrary
orientation of the product. By definition, any orientation

#»

G of G can be
coloured with χo(G) colours. For each of the k oriented (perhaps differently)
copies

#»

G0,
#»

G1, . . . ,
#»

Gk−1 of G in G�Pk, we initially colour the vertices of
#»

Gi

using a distinct set of χo(G) colours. Now starting from
#»

G0, we inductively
recolour each

#»

Gi as follows. To colour
#»

Gi, consider the copies
#»

Gi and
#»

Gi+1.
For each colour c used in

#»

Gi, consider the set C0(c) of vertices coloured c

in
#»

Gi which has arcs going to
#»

Gi+1 and the set C1(c) of vertices coloured c

having arcs coming from
#»

Gi+1. Now we split the colour class corresponding
to c into c0 and c1. We repeat this for every colour in

#»

Gi. Notice that this
ensures that there are no pair of colours c (used in

#»

Gi) and d (used in
#»

Gi+1)
having arcs in both directions between colour classes of c and d. Thus, we
have used at most 2χo(G) colours in the copy

#»

Gi. We perform this operation
on each

#»

Gi, 0 ≤ i < k − 1. Note that splitting the colour classes of
#»

Gi does
not introduce violations w.r.t. edges between

#»

Gi−1 and
#»

Gi. Thus, we have
used at most (2k−1)χo(G) colours. It is easily seen that the entire colouring
is oriented and proper.

Notice that the above argument can be easily and directly extended to
the case of products with cycles as well except that we need to perform the
doubling in all the k copies. Thus, for any graph G, χo(G�Ck) ≤ 2kχo(G).

3.3. Proof of Theorem 3

A property of oriented colouring that we mentioned in Section 2 and use
repeatedly in our arguments is that directed 2-paths need distinct colours
on all three vertices. If u-v-w is a directed path from u to w, then in any
oriented colouring, the colours of u,v and w are distinct.

Proof. First we show that 8 ≤ χo(S2,n) ≤ 11. We obtain the upper bound

by establishing the existence of a homomorphism from any orientation
#»

S 2,n

of S2,n into the Paley tournament
#»

T 11.
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Consider the Figure 1. We map the vertices of
#»

S 2,n to
#»

T 11 inductively. We
assume that the vertices are coloured from the left up to and including the
vertices x and y. Now we show that, for all possible orientations of the
dotted arcs across, we can extend the partial homomorphism (colouring) to
the vertices a and b.

We make use of the fact mentioned earlier that the Paley tournament
#»

T 11 is arc transitive. Hence we may assume, without loss of generality, that
the vertices x and y are coloured with 0 and 1 respectively.

Figure 1. The partially coloured 2× n grid.

Figure 2. Orientations of 2-ears in T11.

Consider the dotted 2-paths x-a-y and x-b-y. We have the following two
cases.
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Case 1. The 2-paths x-a-y and x-b-y are identically oriented. We can
see from Figure 2 that for every possible orientation of a 2-path, there are
at least 2 vertices p and q such that the ears 0-p-1 and 0-q-1 are identically
oriented. Now we colour a and b suitably by looking at the orientations of
the arcs between a and b and between p and q.

Case 2. The orientations of x-a-y and x-b-y are not the same. Now
we notice that we have at least 2 possible colours (say {r, s}) satisfying the
orientation of x-a-y as well as a disjoint set of 2-colours (say {t, u}) for x-b-y.

We show that between {r, s} and {t, u}, there is at least one arc which
satisfies the orientation of (a, b). Recall that we assumed that x and y

are respectively coloured 0 and 1. The sets of colours having the same
orientation with respect to 0 and 1 are {4, 5}, {3, 9}, {7, 8}, and {2, 6, 10}.
The following table shows that for each pair of these sets, there are valid
arcs between them in both directions (we provide one for each direction)
proving the claim. (For example, the entry (3, 7) in the table shows that an
arc from 3 to 7 is valid corresponding to the pairs of sets {3, 9} and {7, 8}
having the same colour.

Table 1. Table showing the pairs of arcs between each pair in both directions.

4,5 3,9 7,8 2,6,10

4,5 . (5,9) (4,8) (4,2)

3,9 (3,4) . (3,7) (9,2)

7,8 (7,5) (8,9) . (8,2)

2,6,10 (6,4) (2,3) (2,7) .

Hence we can inductively extend the colouring to
#»

S 2,n.
The lower bound is explicit from the oriented graph depicted in Figure 3

which requires 8 colours in any oriented colouring. To see this, notice that
the orientation is such that any 2 × 3 block of 6 vertices need to be given
distinct colours (because of oriented 3-paths and adjacency). Hence the first
6 vertices get 6 distinct colours.

Due to the same reason, the next two vertices (red vertices) cannot be
given colours 3 or 4. Hence there are two possibilities. The first one is to
reuse at least one of the colours 1 or 2 on one of the red vertices. If either
of the red vertices are coloured 1 or 2, the last two vertices (grey vertices)
cannot get 3 or 4 since the orientation of arcs are already fixed to be from
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{1, 2} to {3, 4} and we need to introduce two new colours (say 7 and 8). In
the other case, we need to colour the red vertices by 2 new colours. Thus,
in either case it requires 8 colours.

Figure 3. A 2× 5 oriented grid requiring 8 colours.

3.3.1. The second result

We now prove that 10 ≤ χo(S3,n) ≤ 67. Here we have a huge gap be-
tween the upper and lower bounds. Once again, we map the vertices to
#»

T 67 to show the upper bound. The lower bound follows from the fact
that, many orientations of S3,5 (e.g. Figure 4) requires at least 10 colours.

Figure 4. An orientation of S3,5 that requires 10 colours.
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To check this, notice first that the leftmost 3 × 3 block must use 9 distinct
colours. Assume now that we only use 9 colours for the whole graph. Notice
that only colours 1, 2 and 3 can appear on the grey vertices and thus 4, 5
and 6 on the red vertices. For any colouring of the grey vertices with 1, 2
and 3, colour 5 cannot appear on any of the red vertices since all the arcs
from 1, 2 and 3 need to be towards 5 (to preserve the orientation), and
each red vertex has at least one outgoing arrow to one of the grey vertices.
Therefore 10 colours are necessary.

Now we prove the upper bound.
Let

#»

G be any orientation of S3,n. As before, we construct a homomorphism

from
#»

G to a Paley tournament, namely
#»

T 67. We first state some definitions.
An orientation vector of size m is a sequence α = (α1, . . . , αm) in {0, 1}m.
Given a sequence X = (x1, . . . , xm) of vertices in an oriented graph

#»

G, an
α-successor of X is a vertex y such that for each i, (xi, y) ∈ A(

#»

G) if αi = 1
and (y, xi) ∈ A(

#»

G) if αi = 0. We say that an oriented graph has Property
P (m,k) if for any sequence X of m distinct vertices in the graph and for
any orientation vector α in {0, 1}m, there are at least k α-successors of X.
Note that the property P (m,k) implies the property P (n, k) for all n < m.
Paley tournaments are good candidates for satisfying such properties and in
particular, we shall use the following fact:

Fact 3.1.
#»

T 67 satisfies Property P (4, 1) [5] as well as Property P (2, 2) [2].

We now map S3,n to
#»

T 67 using induction on n.

Base case: n = 1. In this case,
#»

G is just an oriented path on 3 vertices
and it is easy to map the 3 vertices of

#»

G to 3 distinct vertices in
#»

T 67 using
Property P (2, 2).

Induction step: Assume that the subgraph induced by the vertices
[i, j] : i ∈ {0, 1, 2}, j ∈ {0, 1, . . . , n − 2} are mapped to

#»

T 67. Now [0, n − 1]
has exactly 2 neighbours which have already been mapped (coloured) to
distinct vertices in

#»

T 67 and since
#»

T 67 has Property P (2, 2), we can extend
the mapping so that [0, n− 1] is mapped to a vertex in

#»

T 67 that is different
from the image of [2, n− 2]. We now see that [1, n− 1] has four neighbours
that have already been mapped to four distinct vertices in

#»

T 67 and using
the property P (4, 1) of

#»

T 67, we extend the mapping to the vertex [1, n− 1].
We can now map [2, n−1] to

#»

T 67 as well since it has three distinct coloured
neighbours and we make use of the property P (3, 1) of

#»

T 67. This completes
the proof of part (ii) of Theorem 3.
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4. Conclusions

We obtained bounds on oriented chromatic numbers for products of arbitrary
graphs with paths. However, there are gaps between the lower and upper
bounds and we leave open the problem of narrowing them. In particular,
obtaining the exact value of χo(Sm,n) is an interesting problem.
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