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Abstract

A signed graph (or sigraph in short) is an ordered pair S = (Su, σ),
where Su is a graph G = (V,E), called the underlying graph of S and
σ : E → {+,−} is a function from the edge set E of Su into the set
{+,−}, called the signature of S. The ×-line sigraph of S denoted by
L×(S) is a sigraph defined on the line graph L(Su) of the graph Su by
assigning to each edge ef of L(Su), the product of signs of the adjacent
edges e and f in S. In this paper, first we define semi-total line sigraph

and semi-total point sigraph of a given sigraph and then characterize
balance and consistency of semi-total line sigraph and semi-total point
sigraph.

Keywords: sigraph, semi-total line sigraph, semi-total point sigraph,
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1. Introduction

For standard terminology and notation in graph theory we refer Harary [14]
and West [21] and Zaslavsky [22, 23] for sigraphs. Throughout the text, we
consider finite, undirected graph with no loops or multiple edges.
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A signed graph (or sigraph in short; see [7, 11] is an ordered pair S = (Su, σ),
where Su is a graphG = (V,E), called the underlying graph of S and σ : E →
{+,−} is a function from the edge set E of Su into the set {+,−}, called the
signature of S. Alternatively, the sigraph can be written as S = (V,E, σ),
with V , E, σ in the above sense. Let E+(S) = {e ∈ E(G) : σ(e) = +}
and E−(S) = {e ∈ E(G) : σ(e) = −}. The elements of E+(S) and E−(S)
are called positive and negative edges of S, respectively. A sigraph is said
to be homogeneous if all its edges are of the same sign and heterogeneous

otherwise.

A sigraph S is called a regular sigraph if the number of positive edges,
d+(v) incident at a vertex v in S, is independent of the choice of v in S

and the number of negative edges, d−(v) incident at a vertex v in S is also
independent of the choice of v in S, i.e., S is a sigraph of order n and
regular of degree k = i + j, where i=d+(v) is the positive degree of v in S

and j=d−(v) is the negative degree of v in S.

For a sigraph S, Behzad and Chartrand [7] defined its line sigraph L(S)
as the sigraph in which the edges of S are represented as vertices, two of
these vertices are defined adjacent whenever the corresponding edges in S

have a vertex in common and any such edge ef is defined to be negative
whenever both e and f are negative edges in S. In [12], the author introduced
a variation of the above standard notion of line sigraph L(S) of a given
sigraph S as follows: L×(S) is a sigraph defined on the line graph L(Su) of
the graph Su by assigning to each edge ef of L(Su), the product of signs of
the adjacent edges e and f of S. L×(S) is called the ×-line sigraph of S.

A path in a sigraph S is said to be all-negative if each of its edge is
negative. A cycle in a sigraph S is said to be all-positive(all-negative) if
each of its edge is positive (negative). A cycle in a sigraph S is said to be
positive if it contains an even number of negative edges. A given sigraph S

is said be balanced if every cycle in S is positive, i.e., it contains an even
number of negative edges [4, 10, 13]. A spectral characterization of balanced
sigraphs was given by Acharya [2]. Harary and Kabell [15, 16] developed a
simple algorithm to get balanced sigraphs and also enumerated them. The
following important lemma on balanced sigraph is given by Zaslavsky.

Lemma 1 [24]. A signed graph in which every chordless cycle is positive,

is balanced.

A marked signed graph is an ordered pair Sµ = (S, µ), where S = (Su, σ) is
a sigraph and µ : V (Su) → {+,−} is a function from the vertex set V (Su)
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of Su into the set {+,−}, called a marking of S. A cycle Z in Sµ is said
to be consistent if it contains an even number of negative vertices. A given
sigraph S is said be consistent if every cycle in it is consistent [8, 9]. To
this end, we define the following canonical marking on S: for each vertex
v ∈ V (S),

µ(v) =
∏

e∈Ev

σ(e)

where Ev is set of edges e incident at v in S.

The semi-total line graph T1(G) of a graph G [19] is the graph whose
vertex set is V (G) ∪ E(G) where V (G) and E(G) are vertex set and edge
set of G, respectively and in T1(G) two vertices are adjacent if and only if
(i) they are adjacent edges in G (ii) one is a vertex and the other is an edge
in G incident to it.
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Figure 1. Showing T1(S) and T2(S) of a sigraph S.

The semi-total point graph T2(G) of a graph G [19] is the graph whose vertex
set is V (G)∪E(G) where V (G) and E(G) are vertex set and edge set of G,
respectively and in T2(G) two vertices are adjacent if and only if (i) they
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are adjacent vertices in G, (ii) one is a vertex and the other is an edge in G

incident to it.
Let S = (V,E, σ) be any sigraph. Its semi-total line sigraph T1(S) [as

shown in Figure 1] has T1(S
u) as its underlying graph and for any edge uv

of T1(S
u)

σT1
(uv) =

{

σ(u)σ(v) if u, v ∈ E,

σ(v) if u ∈ V and v ∈ E.

Let S = (V,E, σ) be any sigraph. Its semi-total point sigraph T2(S) [as
shown in Figure 1] has T2(S

u) as its underlying graph and for any edge uv

of T2(S
u)

σT2
(uv) =

{

σ(uv) if u, v ∈ V ,

σ(u)
∏

e∈Ev
σ(e) if u ∈ E and v ∈ V .

We observe that the ×-line sigraph, L×(S) is an induced subsigraph of T1(S)
and S is an induced subsigraph of T2(S).

2. Balanced Semi-Total Line Sigraph

In this section, we obtain a characterization of balanced semi-total line si-
graph.

Theorem 2 [6]. The ×-line sigraph L×(S) of a sigraph S is a balanced

sigraph.

Theorem 3 [18]. A sigraph S = (Su, σ) is balanced if and only if there

exists a marking µ of its vertices such that for each edge uv in S one has

σ(uv) = µ(u)µ(v).

Theorem 4. The semi-total line sigraph T1(S) of a sigraph S is a balanced

sigraph.

Proof. By the definition of T1(S), it contains L×(S) as induced subsigraph,
triangles formed by the adjacent edges e and f in S and the vertex v such
that e ∩ f = {v} and cycles formed by the symmetric difference of these
triangles and cycles in L×(S). Since L×(S) is a balanced sigraph due to
Theorem 2, we have to only show that triangles and cycles formed as above
in T1(S) are positive.
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Case (i). Suppose e and f both are positive adjacent edges with v as
their common vertex in S, then ef will be a positive edge in T1(S). Now by
the definition of T1(S), the triangle formed by the vertices e, f and v does
not contain any negative edge. Thus, such triangles are positive.

Case (ii). Suppose e and f both are negative adjacent edges with v as
their common vertex in S, then ef will be a positive edge in T1(S). Now
by the definition of T1(S), the triangle formed by the vertices e, f and v

contain two negative edges. Thus, such triangles are positive too.

Case (iii). Suppose e and f are edges of opposite parity and they are
adjacent with v as their common vertex in S, then ef will be a negative
edge in T1(S). Now by the definition of T1(S), the triangle formed by the
vertices e, f and v contain two negative edges. Thus, such triangles are also
positive.

Now, due to Lemma 1, it follows that T1(S) is a balanced sigraph. Hence
the theorem.

3. Consistent Semi-Total Line Sigraph

Beineke and Harary [8, 9] were the first to pose the problem of characterizing
consistent marked graphs, which was subsequently settled by Acharya [1, 2]
and Hoede [17]. Acharya and Sinha obtained consistency of sigraphs that
satisfy certain sigraph equations in [20, 5]. In this section, first we define
a µ1-marking and then obtain a characterization of µ1-consistent semi-total
line sigraph.

For any sigraph S = (Su, σ), we define µ1-marking in semi-total line
sigraph T1(S) as µ1 : V (T1(S)) → {+,−} such that

µ1(vi) =
∏

ej∈Evi

σ(ej)

and
µ1(ei) = σ(ei).

Theorem 5 [17]. A marked graph Gµ is consistent if and only if for any

spanning tree T of G all fundamental cycles with respect to T are consistent

and all common paths of pairs of those fundamental cycles have end vertices

carrying the same marks.
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Theorem 6. The semi-total line sigraph T1(S) of a sigraph S is µ1-consistent

if and only if the following conditions hold in S:

(i) each cycle Z in S is homogeneous and positive,

(ii) if d(v) ≥ 3, then d−(v) = 0 for every vertex v in S.

Proof. Necessity: Suppose T1(S) of a sigraph S is µ1-consistent. Since
L×(S) is an induced subsigraph of T1(S) and T1(S) is µ1-consistent, it follows
that L×(S) is µ1-consistent. Let Z be a cycle in S and v ∈ V (Z). Let
d(v) = 2. If possible d−(v) = 1, then let a positive edge e and a negative
edge f be incident at v. Due to µ1-marking in T1(S), there is a µ1-consistent
cycle Z1 having one positively marked vertex e and two negatively marked
vertices v and f in T1(S). Let Z2 be a µ1-consistent cycle in L×(S) having
the edge ef . Now, taking the symmetric difference of the edge sets of Z1

and Z2, we get a µ1-inconsistent cycle in T1(S), since the end vertices of
the common edge ef are oppositely marked. Thus, a contradiction to the
assumption that T1(S) is µ1-consistent. That means, each cycle Z in S is
homogeneous. Again, the edges of each cycle Z in S create a cycle in L×(S)
and each cycle in L×(S) has an even number of negatively marked vertices.
So, each cycle Z in S has an even number of negative edges. That means,
each cycle Z in S is positive. Thus, (i) follows.

If for a vertex v in S, d−(v) ≥ 3, then any of the three negative edges
incident to v will form a µ1-inconsistent triangle in L×(S), a contradic-
tion that L×(S) is µ1-consistent. So, d−(v) < 3. Now, if d(v) > 3, then
d−(v) being equal to one or two would contradict the fact that L×(S) is
µ1-consistent. If d(v) = 3, then d−(v) being equal to one again contradicts
the fact that L×(S) is µ1-consistent. If d(v) = 3 and d−(v) = 2, then let
a positive edge e and two negative edges f and g be incident on v. Now
due to µ1-marking in T1(S), there is a µ1-inconsistent cycle Z having two
positively marked vertices v and e and one negatively marked vertex f in
T1(S), a contradiction to the assumption that T1(S) is µ1-consistent. Thus,
(ii) follows.

Sufficiency: Suppose both the conditions (i) and (ii) hold for a given
sigraph S. We have to show that T1(S) is µ1-consistent. By the defini-
tion of T1(S), it contains L×(S) as an induced subsigraph, triangles due to
the adjacent edges e and f in S and the vertex v such that e ∩ f = {v}
and cycles formed by the symmetric difference of these triangles and cycles
in L×(S). By these conditions, S is either an all-negative cycle of even length
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or the sigraph containing all-positive cycles and the end vertices of induced
all-negative path do not lie on any cycle.

Case (i). Suppose S is an all-negative cycle of even length. That means,
L×(S) has an even number of negatively marked vertices. That means,
L×(S) is µ1-consistent. Now we have to see the µ1-consistency of the trian-
gles formed by the edges of S and L×(S). Suppose both e and f are negative
adjacent edges with v as their common vertex in S. Then due to the µ1-
marking of T1(S), µ1(e) = µ1(f) = − and µ1(v) = +. Hence, the triangle
formed by the vertices e, f and v in T1(S) contains two negatively marked
vertices e and f . That means, such triangles are µ1-consistent. Now, since
the vertices e and f in T1(S) have the same marks, so due to Theorem 5,
cycles formed by the symmetric difference of these triangles and cycles in
L×(S) will be µ1-consistent. Hence T1(S) is µ1-consistent.

Case (ii). Suppose S is the graph containing all-positive cycles and by
the condition (ii), such cycles will be adjacent with positive edges only. That
means the end vertices of induced all-negative path do not lie on any cycle
and due to condition (ii), the end vertices of these induced all-negative path
are of degree two. Let e and f be positive and negative adjacent edges,
respectively with v as their common vertex in S, then by the µ1-marking of
T1(S), there is a µ1-consistent cycle Z having one positively marked vertex
e and two negatively marked vertices v and f in T1(S). Again, let both
e and f be negative adjacent edges with v as their common vertex in S.
Then, by the µ1-marking of T1(S), there is a consistent cycle Z having one
positively marked vertex v and two negatively marked vertices e and f in
T1(S). Hence T1(S) is µ1-consistent.

4. Balanced Semi-Total Point Sigraph

In this section, we define a µ1-marking in semi-total point sigraph and obtain
a characterization of balanced semi-total point sigraph.

For any sigraph S = (Su, σ), we define µ1-marking in semi-total point
sigraph T2(S) as µ1 : V (T2(S)) → {+,−} such that µ1(vi) =

∏

ej∈Evi
σ(ej)

and µ1(ei) = σ(ei).

Theorem 7. The semi-total point sigraph T2(S) of a sigraph S is balanced

if and only if the following conditions hold in S:
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(i) if e is a positive edge in S and u, v are the end vertices of e, then the

number of negative edges incident at u and v are of the same parity,

(ii) if e is a negative edge in S and u, v are the end vertices of e, then the

number of negative edges incident at u and v are of the opposite parity.

Proof. Necessity: Suppose T2(S) is a balanced sigraph, then every cycle
in T2(S) must have an even number of negative edges. The vertex e being
adjacent to the vertices u and v in T2(S), where uv is an edge e in S, we get
a triangle Z in T2(S) due to the vertices u, v and e which is balanced due
to hypothesis. Now,

Case (i). If e is a positive edge in Z, then the edges ue and ve must be
of the same parity. That means,

∏

ei∈Eu

σ(ei) =
∏

ej∈Ev

σ(ej),

whence, the number of negative edges incident at u and v are of the same
parity. Thus, (i) follows.

Case (ii). If e is a negative edge in Z, then the edges ue and ve must
be of the opposite parity. That means,

∏

ei∈Eu

σ(ei) 6=
∏

ej∈Ev

σ(ej),

whence, the number of negative edges incident at u and v are of the opposite
parity. Thus, (ii) follows.

Sufficiency: Suppose conditions (i) and (ii) hold for a given sigraph S.
We have to show that T2(S) is a balanced sigraph. Let e be an edge in S

whose end vertices are u and v. By the definition of T2(S), T2(S) contains
S as an induced subsigraph, triangles due to the vertices u, v and e and the
cycles due to the symmetric difference of these triangles and cycles in S.

By condition (i) and (ii), the sign of each edge in S is the product of
µ1-marking of corresponding end vertices in S. So, using Theorem 3, S is
balanced. Now, we have to only show that the triangles and cycles formed
as above in T2(S) are also positive.

By condition (i), e is a positive edge in S whose end vertices are u and v

and the number of negative edges incident at u and v are of the same parity.
That means,

∏

ei∈Eu

σ(ei) =
∏

ej∈Ev

σ(ej)
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and
σ(e) = +.

Hence, by the definition of T2(S), the triangle due to the vertices u, v and e,
contains either no negative edge or two negative edges. Thus, such triangles
are positive.

By condition (ii), e is a negative edge in S, whose end vertices are u and
v and the number of negative edges incident at u and v are of the opposite
parity. That means,

∏

ei∈Eu

σ(ei) 6=
∏

ej∈Ev

σ(ej)

and
σ(e) = −.

Hence, by the definition of T2(S), the triangle due to the vertices u, v and
e, contains two negative edges. Thus, such triangles are positive.

Thus, due to Lemma 1, it follows that T1(S) is a balanced sigraph.
Hence the theorem.

Corollary 8. The semi-total point sigraph T2(S) of a regular heterogeneous

sigraph S is not balanced.

5. Consistent Semi-Total Point Sigraph

In this section, we obtain a characterization of µ1-consistent semi-total point
sigraph.

Theorem 9. The semi-total point sigraph T2(S) of a sigraph S = (Su, σ)
is µ1-consistent if and only if the following conditions hold in S:

(i) if e is a positive edge in S and u, v are the end vertices of e, then the

vertices u and v are of the same parity,

(ii) if e is a negative edge in S and u, v are the end vertices of e, then the

vertices u and v are of the opposite parity,

(iii) each cycle Z in S is all-positive and if for any v ∈ V (Z)

∏

e∈Ev

σ(e) = −,

then Z is of even length.
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Proof. Necessity: Suppose T2(S) is µ1-consistent, then every cycle in T2(S)
must have an even number of negative vertices. Since T2(S) has S as an
induced subgraph and T2(S) is µ1-consistent, it follows that the induced S

in T2(S) is µ1-consistent. Now, the vertex e being adjacent to the vertices
u and v in T2(S), where uv is an edge e in S, we get a triangle Z in T2(S)
due to the vertices u, v and e which is µ1-consistent by hypothesis.

Case (i). Let e be a positive edge in Z and µ1(e) = σ(e), then the
number of negative edges incident at u and v are of the same parity. That
means,

∏

ei∈Eu

σ(ei) =
∏

ej∈Ev

σ(ej).

This implies, the vertices u and v are of the same parity. Thus, (i) follows.

Case (ii). Let e be a negative edge in Z and µ1(e) = σ(e), then the
number of negative edges incident at u and v are of the opposite parity.
That means,

∏

ei∈Eu

σ(ei) 6=
∏

ej∈Ev

σ(ej).

This implies, the vertices u and v are of the opposite parity. Thus, (ii)
follows.

Now, let e be a negative edge contained in a cycle Z in S and u, v are
the end vertices of e, then due to condition (ii), u and v are of the opposite
parity. That means,

µ1(u) 6= µ1(v)

and

µ1(e) = σ(e)

whence, we get a triangle Z1 in T2(S) due to the vertices u, v and e which
is µ1-consistent by hypothesis. Let Z2 be the consistent cycle in T2(S)
containing the edge e = uv. Now, if we take the symmetric difference of Z1

and Z2, then by Theorem 5, T2(S) will not be µ1-consistent, a contradiction
of our hypothesis. Thus, e can not be contained in any cycle in S. This
implies, each cycle Z in S is all-positive. Now, let for any v ∈ V (Z)

∏

e∈Ev

σ(e) = −.
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Since Z is all-positive, then by condition (i), for each v ∈ V (Z)

∏

e∈Ev

σ(e) = −,

whence, for each v ∈ V (Z)

µ1(v) = −.

Since S is an induced subsigraph of T2(S), the cycle Z will be the cycle in
T2(S) and Z will be µ1-consistent due to hypothesis. It follows that, Z is of
even length. Thus (iii) follows.

Sufficiency: Suppose conditions (i), (ii) and (iii) hold for a given sigraph
S. We have to show that T2(S) is µ1-consistent. Let e be an edge in S whose
end vertices are u and v. By the definition of T2(S), T2(S) contains S as an
induced subsigraph, triangles due to the vertices u, v and e and cycles due
to the symmetric difference of these triangles and cycles in S.

By the condition (i), e is a positive edge in S whose end vertices are u

and v and the vertices u and v are of the same parity. That means,

µ1(u) = µ1(v)

and

µ1(e) = σ(e) = +.

By the definition of T2(S), the triangle due to the vertices u, v and e, con-
tains either no negatively marked vertex or two negatively marked vertices.
Therefore, such triangles are µ1-consistent.

By the condition (ii), e is a negative edge in S whose end vertices are u

and v and the vertices u and v are of the opposite parity. That means,

µ1(u) 6= µ1(v)

and

µ1(e) = σ(e) = −.

By the definition of T2(S), the triangle due to the vertices u, v and e, contains
two negatively marked vertices. Therefore, such triangles are µ1-consistent.

By the condition (iii), each cycle Z in S is all-positive. Let e be a
positive edge of such a cycle and u, v be the end vertices of e. Then, by
condition (i) and the definition of T2(S), we get a µ1-consistent triangle Z1



636 D. Sinha and P. Garg

due to the vertices u, v and e, containing the edge e. Let Z2 be the µ1-
consistent cycle in S containing the edge e. Now, we take the symmetric
difference of Z1 and Z2. Then, by Theorem 5, we get a µ1-consistent cycle.
Since cycles in S are cycles in T2(S), Z will be the cycle in T2(S) and if for
any v ∈ V (Z)

∏

e∈Ev

σ(e) = −

then Z is of even length. Thus, Z is a µ1-consistent cycle. Hence the

theorem.

Corollary 10. The semi-total point sigraph T2(S) of a regular heterogeneous

sigraph S is not µ1-consistent.

Corollary 11. The semi-total point sigraph T2(S) of a heterogeneous cycle

S is not µ1-consistent.
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