SOME RESULTS ON SEMI-TOTAL SIGNED GRAPHS ¹

DEEPA SINHA AND PRAVIN GARG

Centre for Mathematical Sciences Banasthali University Banasthali-304022, Rajasthan, India

e-mail: deepa_sinha2001@yahoo.com garg.pravin@gmail.com

Abstract

A signed graph (or sigraph in short) is an ordered pair $S = (S^u, \sigma)$, where S^u is a graph G = (V, E), called the underlying graph of S and $\sigma: E \to \{+, -\}$ is a function from the edge set E of S^u into the set $\{+, -\}$, called the signature of S. The ×-line sigraph of S denoted by $L_{\times}(S)$ is a sigraph defined on the line graph $L(S^u)$ of the graph S^u by assigning to each edge ef of $L(S^u)$, the product of signs of the adjacent edges e and f in S. In this paper, first we define semi-total line sigraph and semi-total point sigraph of a given sigraph and then characterize balance and consistency of semi-total line sigraph and semi-total point sigraph.

Keywords: sigraph, semi-total line sigraph, semi-total point sigraph, balanced sigraph, consistent sigraph.

2010 Mathematics Subject Classification: Primary: 05C22; Secondary: 05C75.

1. Introduction

For standard terminology and notation in graph theory we refer Harary [14] and West [21] and Zaslavsky [22, 23] for sigraphs. Throughout the text, we consider finite, undirected graph with no loops or multiple edges.

 $^{^1{\}rm Research}$ supported by the Department of Science and Technology (Govt. of India), New Delhi, India under the Project SR/S4/MS: 409/06.

A signed graph (or signaph in short; see [7, 11] is an ordered pair $S = (S^u, \sigma)$, where S^u is a graph G = (V, E), called the underlying graph of S and $\sigma : E \to \{+, -\}$ is a function from the edge set E of S^u into the set $\{+, -\}$, called the signature of S. Alternatively, the signaph can be written as $S = (V, E, \sigma)$, with V, E, σ in the above sense. Let $E^+(S) = \{e \in E(G) : \sigma(e) = +\}$ and $E^-(S) = \{e \in E(G) : \sigma(e) = -\}$. The elements of $E^+(S)$ and $E^-(S)$ are called positive and negative edges of S, respectively. A signaph is said to be homogeneous if all its edges are of the same sign and heterogeneous otherwise.

A sigraph S is called a regular sigraph if the number of positive edges, $d^+(v)$ incident at a vertex v in S, is independent of the choice of v in S and the number of negative edges, $d^-(v)$ incident at a vertex v in S is also independent of the choice of v in S, i.e., S is a sigraph of order n and regular of degree k = i + j, where $i = d^+(v)$ is the positive degree of v in S and $j = d^-(v)$ is the negative degree of v in S.

For a sigraph S, Behzad and Chartrand [7] defined its line sigraph L(S) as the sigraph in which the edges of S are represented as vertices, two of these vertices are defined adjacent whenever the corresponding edges in S have a vertex in common and any such edge ef is defined to be negative whenever both e and f are negative edges in S. In [12], the author introduced a variation of the above standard notion of line sigraph L(S) of a given sigraph S as follows: $L_{\times}(S)$ is a sigraph defined on the line graph $L(S^u)$ of the graph S^u by assigning to each edge ef of $L(S^u)$, the product of signs of the adjacent edges e and f of S. $L_{\times}(S)$ is called the \times -line sigraph of S.

A path in a sigraph S is said to be all-negative if each of its edge is negative. A cycle in a sigraph S is said to be all-positive (all-negative) if each of its edge is positive (negative). A cycle in a sigraph S is said to be positive if it contains an even number of negative edges. A given sigraph S is said be balanced if every cycle in S is positive, i.e., it contains an even number of negative edges [4, 10, 13]. A spectral characterization of balanced sigraphs was given by Acharya [2]. Harary and Kabell [15, 16] developed a simple algorithm to get balanced sigraphs and also enumerated them. The following important lemma on balanced sigraph is given by Zaslavsky.

Lemma 1 [24]. A signed graph in which every chordless cycle is positive, is balanced.

A marked signed graph is an ordered pair $S_{\mu} = (S, \mu)$, where $S = (S^u, \sigma)$ is a sigraph and $\mu : V(S^u) \to \{+, -\}$ is a function from the vertex set $V(S^u)$

of S^u into the set $\{+,-\}$, called a marking of S. A cycle Z in S_μ is said to be consistent if it contains an even number of negative vertices. A given sigraph S is said be consistent if every cycle in it is consistent [8, 9]. To this end, we define the following canonical marking on S: for each vertex $v \in V(S)$,

$$\mu(v) = \prod_{e \in E_v} \sigma(e)$$

where E_v is set of edges e incident at v in S.

The semi-total line graph $T_1(G)$ of a graph G [19] is the graph whose vertex set is $V(G) \cup E(G)$ where V(G) and E(G) are vertex set and edge set of G, respectively and in $T_1(G)$ two vertices are adjacent if and only if (i) they are adjacent edges in G (ii) one is a vertex and the other is an edge in G incident to it.

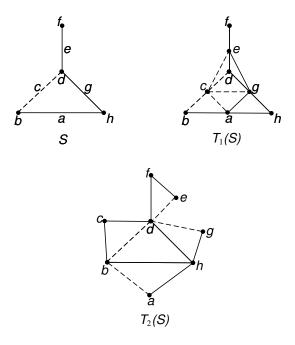


Figure 1. Showing $T_1(S)$ and $T_2(S)$ of a sigraph S.

The semi-total point graph $T_2(G)$ of a graph G [19] is the graph whose vertex set is $V(G) \cup E(G)$ where V(G) and E(G) are vertex set and edge set of G, respectively and in $T_2(G)$ two vertices are adjacent if and only if (i) they

are adjacent vertices in G, (ii) one is a vertex and the other is an edge in G incident to it

Let $S = (V, E, \sigma)$ be any sigraph. Its semi-total line sigraph $T_1(S)$ [as shown in Figure 1] has $T_1(S^u)$ as its underlying graph and for any edge uv of $T_1(S^u)$

$$\sigma_{T_1}(uv) = \begin{cases} \sigma(u)\sigma(v) & \text{if } u, v \in E, \\ \sigma(v) & \text{if } u \in V \text{ and } v \in E. \end{cases}$$

Let $S = (V, E, \sigma)$ be any sigraph. Its semi-total point sigraph $T_2(S)$ [as shown in Figure 1] has $T_2(S^u)$ as its underlying graph and for any edge uv of $T_2(S^u)$

$$\sigma_{T_2}(uv) = \begin{cases} \sigma(uv) & \text{if } u, v \in V, \\ \sigma(u) \prod_{e \in E_n} \sigma(e) & \text{if } u \in E \text{ and } v \in V. \end{cases}$$

We observe that the \times -line sigraph, $L_{\times}(S)$ is an induced subsigraph of $T_1(S)$ and S is an induced subsigraph of $T_2(S)$.

2. Balanced Semi-Total Line Sigraph

In this section, we obtain a characterization of balanced semi-total line sigraph.

Theorem 2 [6]. The \times -line sigraph $L_{\times}(S)$ of a sigraph S is a balanced sigraph.

Theorem 3 [18]. A sigraph $S = (S^u, \sigma)$ is balanced if and only if there exists a marking μ of its vertices such that for each edge uv in S one has $\sigma(uv) = \mu(u)\mu(v)$.

Theorem 4. The semi-total line sigraph $T_1(S)$ of a sigraph S is a balanced sigraph.

Proof. By the definition of $T_1(S)$, it contains $L_{\times}(S)$ as induced subsigraph, triangles formed by the adjacent edges e and f in S and the vertex v such that $e \cap f = \{v\}$ and cycles formed by the symmetric difference of these triangles and cycles in $L_{\times}(S)$. Since $L_{\times}(S)$ is a balanced sigraph due to Theorem 2, we have to only show that triangles and cycles formed as above in $T_1(S)$ are positive.

Case (i). Suppose e and f both are positive adjacent edges with v as their common vertex in S, then ef will be a positive edge in $T_1(S)$. Now by the definition of $T_1(S)$, the triangle formed by the vertices e, f and v does not contain any negative edge. Thus, such triangles are positive.

Case (ii). Suppose e and f both are negative adjacent edges with v as their common vertex in S, then ef will be a positive edge in $T_1(S)$. Now by the definition of $T_1(S)$, the triangle formed by the vertices e, f and v contain two negative edges. Thus, such triangles are positive too.

Case (iii). Suppose e and f are edges of opposite parity and they are adjacent with v as their common vertex in S, then ef will be a negative edge in $T_1(S)$. Now by the definition of $T_1(S)$, the triangle formed by the vertices e, f and v contain two negative edges. Thus, such triangles are also positive.

Now, due to Lemma 1, it follows that $T_1(S)$ is a balanced sigraph. Hence the theorem.

3. Consistent Semi-Total Line Sigraph

Beineke and Harary [8, 9] were the first to pose the problem of characterizing consistent marked graphs, which was subsequently settled by Acharya [1, 2] and Hoede [17]. Acharya and Sinha obtained consistency of sigraphs that satisfy certain sigraph equations in [20, 5]. In this section, first we define a μ_1 -marking and then obtain a characterization of μ_1 -consistent semi-total line sigraph.

For any sigraph $S = (S^u, \sigma)$, we define μ_1 -marking in semi-total line sigraph $T_1(S)$ as $\mu_1 : V(T_1(S)) \to \{+, -\}$ such that

$$\mu_1(v_i) = \prod_{e_j \in E_{v_i}} \sigma(e_j)$$

and

$$\mu_1(e_i) = \sigma(e_i).$$

Theorem 5 [17]. A marked graph G_{μ} is consistent if and only if for any spanning tree T of G all fundamental cycles with respect to T are consistent and all common paths of pairs of those fundamental cycles have end vertices carrying the same marks.

Theorem 6. The semi-total line sigraph $T_1(S)$ of a sigraph S is μ_1 -consistent if and only if the following conditions hold in S:

- (i) each cycle Z in S is homogeneous and positive,
- (ii) if $d(v) \geq 3$, then $d^-(v) = 0$ for every vertex v in S.

Proof. Necessity: Suppose $T_1(S)$ of a sigraph S is μ_1 -consistent. Since $L_{\times}(S)$ is an induced subsigraph of $T_1(S)$ and $T_1(S)$ is μ_1 -consistent, it follows that $L_{\times}(S)$ is μ_1 -consistent. Let Z be a cycle in S and $v \in V(Z)$. Let d(v) = 2. If possible $d^-(v) = 1$, then let a positive edge e and a negative edge f be incident at v. Due to μ_1 -marking in $T_1(S)$, there is a μ_1 -consistent cycle Z_1 having one positively marked vertex e and two negatively marked vertices v and f in $T_1(S)$. Let Z_2 be a μ_1 -consistent cycle in $L_{\times}(S)$ having the edge ef. Now, taking the symmetric difference of the edge sets of Z_1 and Z_2 , we get a μ_1 -inconsistent cycle in $T_1(S)$, since the end vertices of the common edge ef are oppositely marked. Thus, a contradiction to the assumption that $T_1(S)$ is μ_1 -consistent. That means, each cycle Z in S is homogeneous. Again, the edges of each cycle Z in S create a cycle in $L_{\times}(S)$ and each cycle Z in S has an even number of negatively marked vertices. So, each cycle Z in S is positive. Thus, (i) follows.

If for a vertex v in S, $d^-(v) \geq 3$, then any of the three negative edges incident to v will form a μ_1 -inconsistent triangle in $L_\times(S)$, a contradiction that $L_\times(S)$ is μ_1 -consistent. So, $d^-(v) < 3$. Now, if d(v) > 3, then $d^-(v)$ being equal to one or two would contradict the fact that $L_\times(S)$ is μ_1 -consistent. If d(v) = 3, then $d^-(v)$ being equal to one again contradicts the fact that $L_\times(S)$ is μ_1 -consistent. If d(v) = 3 and $d^-(v) = 2$, then let a positive edge e and two negative edges f and g be incident on v. Now due to μ_1 -marking in $T_1(S)$, there is a μ_1 -inconsistent cycle Z having two positively marked vertices v and e and one negatively marked vertex f in $T_1(S)$, a contradiction to the assumption that $T_1(S)$ is μ_1 -consistent. Thus, (ii) follows.

Sufficiency: Suppose both the conditions (i) and (ii) hold for a given sigraph S. We have to show that $T_1(S)$ is μ_1 -consistent. By the definition of $T_1(S)$, it contains $L_{\times}(S)$ as an induced subsigraph, triangles due to the adjacent edges e and f in S and the vertex v such that $e \cap f = \{v\}$ and cycles formed by the symmetric difference of these triangles and cycles in $L_{\times}(S)$. By these conditions, S is either an all-negative cycle of even length

or the sigraph containing all-positive cycles and the end vertices of induced all-negative path do not lie on any cycle.

Case (i). Suppose S is an all-negative cycle of even length. That means, $L_{\times}(S)$ has an even number of negatively marked vertices. That means, $L_{\times}(S)$ is μ_1 -consistent. Now we have to see the μ_1 -consistency of the triangles formed by the edges of S and $L_{\times}(S)$. Suppose both e and f are negative adjacent edges with v as their common vertex in S. Then due to the μ_1 -marking of $T_1(S)$, $\mu_1(e) = \mu_1(f) = -$ and $\mu_1(v) = +$. Hence, the triangle formed by the vertices e, f and v in $T_1(S)$ contains two negatively marked vertices e and f. That means, such triangles are μ_1 -consistent. Now, since the vertices e and f in $T_1(S)$ have the same marks, so due to Theorem 5, cycles formed by the symmetric difference of these triangles and cycles in $L_{\times}(S)$ will be μ_1 -consistent. Hence $T_1(S)$ is μ_1 -consistent.

Case (ii). Suppose S is the graph containing all-positive cycles and by the condition (ii), such cycles will be adjacent with positive edges only. That means the end vertices of induced all-negative path do not lie on any cycle and due to condition (ii), the end vertices of these induced all-negative path are of degree two. Let e and f be positive and negative adjacent edges, respectively with v as their common vertex in S, then by the μ_1 -marking of $T_1(S)$, there is a μ_1 -consistent cycle Z having one positively marked vertex e and two negatively marked vertices v and f in $T_1(S)$. Again, let both e and f be negative adjacent edges with v as their common vertex in S. Then, by the μ_1 -marking of $T_1(S)$, there is a consistent cycle Z having one positively marked vertex v and two negatively marked vertices e and f in $T_1(S)$. Hence $T_1(S)$ is μ_1 -consistent.

4. Balanced Semi-Total Point Sigraph

In this section, we define a μ_1 -marking in semi-total point sigraph and obtain a characterization of balanced semi-total point sigraph.

For any sigraph $S = (S^u, \sigma)$, we define μ_1 -marking in semi-total point sigraph $T_2(S)$ as $\mu_1 : V(T_2(S)) \to \{+, -\}$ such that $\mu_1(v_i) = \prod_{e_j \in E_{v_i}} \sigma(e_j)$ and $\mu_1(e_i) = \sigma(e_i)$.

Theorem 7. The semi-total point sigraph $T_2(S)$ of a sigraph S is balanced if and only if the following conditions hold in S:

- (i) if e is a positive edge in S and u, v are the end vertices of e, then the number of negative edges incident at u and v are of the same parity,
- (ii) if e is a negative edge in S and u, v are the end vertices of e, then the number of negative edges incident at u and v are of the opposite parity.

Proof. Necessity: Suppose $T_2(S)$ is a balanced sigraph, then every cycle in $T_2(S)$ must have an even number of negative edges. The vertex e being adjacent to the vertices u and v in $T_2(S)$, where uv is an edge e in S, we get a triangle Z in $T_2(S)$ due to the vertices u, v and e which is balanced due to hypothesis. Now,

Case (i). If e is a positive edge in Z, then the edges ue and ve must be of the same parity. That means,

$$\prod_{e_i \in E_u} \sigma(e_i) = \prod_{e_j \in E_v} \sigma(e_j),$$

whence, the number of negative edges incident at u and v are of the same parity. Thus, (i) follows.

Case (ii). If e is a negative edge in Z, then the edges ue and ve must be of the opposite parity. That means,

$$\prod_{e_i \in E_u} \sigma(e_i) \neq \prod_{e_j \in E_v} \sigma(e_j),$$

whence, the number of negative edges incident at u and v are of the opposite parity. Thus, (ii) follows.

Sufficiency: Suppose conditions (i) and (ii) hold for a given sigraph S. We have to show that $T_2(S)$ is a balanced sigraph. Let e be an edge in S whose end vertices are u and v. By the definition of $T_2(S)$, $T_2(S)$ contains S as an induced subsigraph, triangles due to the vertices u, v and e and the cycles due to the symmetric difference of these triangles and cycles in S.

By condition (i) and (ii), the sign of each edge in S is the product of μ_1 -marking of corresponding end vertices in S. So, using Theorem 3, S is balanced. Now, we have to only show that the triangles and cycles formed as above in $T_2(S)$ are also positive.

By condition (i), e is a positive edge in S whose end vertices are u and v and the number of negative edges incident at u and v are of the same parity. That means,

$$\prod_{e_i \in E_u} \sigma(e_i) = \prod_{e_j \in E_v} \sigma(e_j)$$

and

$$\sigma(e) = +.$$

Hence, by the definition of $T_2(S)$, the triangle due to the vertices u, v and e, contains either no negative edge or two negative edges. Thus, such triangles are positive.

By condition (ii), e is a negative edge in S, whose end vertices are u and v and the number of negative edges incident at u and v are of the opposite parity. That means,

$$\prod_{e_i \in E_u} \sigma(e_i) \neq \prod_{e_j \in E_v} \sigma(e_j)$$

and

$$\sigma(e) = -.$$

Hence, by the definition of $T_2(S)$, the triangle due to the vertices u, v and e, contains two negative edges. Thus, such triangles are positive.

Thus, due to Lemma 1, it follows that $T_1(S)$ is a balanced sigraph. Hence the theorem.

Corollary 8. The semi-total point sigraph $T_2(S)$ of a regular heterogeneous sigraph S is not balanced.

5. Consistent Semi-Total Point Sigraph

In this section, we obtain a characterization of μ_1 -consistent semi-total point sigraph.

Theorem 9. The semi-total point sigraph $T_2(S)$ of a sigraph $S = (S^u, \sigma)$ is μ_1 -consistent if and only if the following conditions hold in S:

- (i) if e is a positive edge in S and u, v are the end vertices of e, then the vertices u and v are of the same parity,
- (ii) if e is a negative edge in S and u, v are the end vertices of e, then the vertices u and v are of the opposite parity,
- (iii) each cycle Z in S is all-positive and if for any $v \in V(Z)$

$$\prod_{e \in E_v} \sigma(e) = -,$$

then Z is of even length.

Proof. Necessity: Suppose $T_2(S)$ is μ_1 -consistent, then every cycle in $T_2(S)$ must have an even number of negative vertices. Since $T_2(S)$ has S as an induced subgraph and $T_2(S)$ is μ_1 -consistent, it follows that the induced S in $T_2(S)$ is μ_1 -consistent. Now, the vertex e being adjacent to the vertices e and e in e0, we get a triangle e1 in e1 in e1 due to the vertices e2 in e2 in e3 due to the vertices e3 is e4.

Case (i). Let e be a positive edge in Z and $\mu_1(e) = \sigma(e)$, then the number of negative edges incident at u and v are of the same parity. That means,

$$\prod_{e_i \in E_u} \sigma(e_i) = \prod_{e_j \in E_v} \sigma(e_j).$$

This implies, the vertices u and v are of the same parity. Thus, (i) follows.

Case (ii). Let e be a negative edge in Z and $\mu_1(e) = \sigma(e)$, then the number of negative edges incident at u and v are of the opposite parity. That means,

$$\prod_{e_i \in E_u} \sigma(e_i) \neq \prod_{e_j \in E_v} \sigma(e_j).$$

This implies, the vertices u and v are of the opposite parity. Thus, (ii) follows.

Now, let e be a negative edge contained in a cycle Z in S and u, v are the end vertices of e, then due to condition (ii), u and v are of the opposite parity. That means,

$$\mu_1(u) \neq \mu_1(v)$$

and

$$\mu_1(e) = \sigma(e)$$

whence, we get a triangle Z_1 in $T_2(S)$ due to the vertices u, v and e which is μ_1 -consistent by hypothesis. Let Z_2 be the consistent cycle in $T_2(S)$ containing the edge e = uv. Now, if we take the symmetric difference of Z_1 and Z_2 , then by Theorem 5, $T_2(S)$ will not be μ_1 -consistent, a contradiction of our hypothesis. Thus, e can not be contained in any cycle in S. This implies, each cycle Z in S is all-positive. Now, let for any $v \in V(Z)$

$$\prod_{e \in E_v} \sigma(e) = -.$$

Since Z is all-positive, then by condition (i), for each $v \in V(Z)$

$$\prod_{e \in E_v} \sigma(e) = -,$$

whence, for each $v \in V(Z)$

$$\mu_1(v) = -.$$

Since S is an induced subsigraph of $T_2(S)$, the cycle Z will be the cycle in $T_2(S)$ and Z will be μ_1 -consistent due to hypothesis. It follows that, Z is of even length. Thus (iii) follows.

Sufficiency: Suppose conditions (i), (ii) and (iii) hold for a given sigraph S. We have to show that $T_2(S)$ is μ_1 -consistent. Let e be an edge in S whose end vertices are u and v. By the definition of $T_2(S)$, $T_2(S)$ contains S as an induced subsigraph, triangles due to the vertices u, v and e and cycles due to the symmetric difference of these triangles and cycles in S.

By the condition (i), e is a positive edge in S whose end vertices are u and v and the vertices u and v are of the same parity. That means,

$$\mu_1(u) = \mu_1(v)$$

and

$$\mu_1(e) = \sigma(e) = +.$$

By the definition of $T_2(S)$, the triangle due to the vertices u, v and e, contains either no negatively marked vertex or two negatively marked vertices. Therefore, such triangles are μ_1 -consistent.

By the condition (ii), e is a negative edge in S whose end vertices are u and v and the vertices u and v are of the opposite parity. That means,

$$\mu_1(u) \neq \mu_1(v)$$

and

$$\mu_1(e) = \sigma(e) = -.$$

By the definition of $T_2(S)$, the triangle due to the vertices u, v and e, contains two negatively marked vertices. Therefore, such triangles are μ_1 -consistent.

By the condition (iii), each cycle Z in S is all-positive. Let e be a positive edge of such a cycle and u, v be the end vertices of e. Then, by condition (i) and the definition of $T_2(S)$, we get a μ_1 -consistent triangle Z_1

due to the vertices u, v and e, containing the edge e. Let Z_2 be the μ_1 -consistent cycle in S containing the edge e. Now, we take the symmetric difference of Z_1 and Z_2 . Then, by Theorem 5, we get a μ_1 -consistent cycle. Since cycles in S are cycles in $T_2(S)$, Z will be the cycle in $T_2(S)$ and if for any $v \in V(Z)$

$$\prod_{e \in E_v} \sigma(e) = -$$

then Z is of even length. Thus, Z is a μ_1 -consistent cycle. Hence the theorem.

Corollary 10. The semi-total point sigraph $T_2(S)$ of a regular heterogeneous sigraph S is not μ_1 -consistent.

Corollary 11. The semi-total point sigraph $T_2(S)$ of a heterogeneous cycle S is not μ_1 -consistent.

Acknowledgement

The authors express their gratitude to Dr. B.D. Acharya for encouraging them to obtain more results on any given idea or theme as also for his constant readiness for discussions, which almost invariably yielded deeper insights. His rigorous efforts in going through the paper have helped the authors to bring the paper in the present form.

References

- [1] B.D. Acharya, A characterization of consistent marked graphs, National Academy, Science Letters, India 6 (1983) 431–440.
- [2] B.D. Acharya, A spectral criterion for cycle balance in networks, J. Graph Theory 4 (1981) 1–11.
- [3] B.D. Acharya, Some further properties of consistent marked graphs, Indian J. Pure Appl. Math. 15 (1984) 837–842.
- [4] B.D. Acharya and M. Acharya, New algebraic models of a social system, Indian J. Pure Appl. Math. 17 (1986) 150–168.
- [5] B.D. Acharya, M. Acharya and D. Sinha, *Characterization of a signed graph whose signed line graph is s-consistent*, Bull. Malays. Math. Sci. Soc. **32** (2009) 335–341.

- [6] M. Acharya, ×-line sigraph of a sigraph, J. Combin. Math. Combin. Comp. **69** (2009) 103–111.
- [7] M. Behzad and G.T. Chartrand, Line coloring of signed graphs, Element der Mathematik, 24 (1969) 49–52.
- [8] L.W. Beineke and F. Harary, Consistency in marked graphs, J. Math. Psychol. 18 (1978) 260–269.
- [9] L.W. Beineke and F. Harary, Consistent graphs with signed points, Riv. Math. per. Sci. Econom. Sociol. 1 (1978) 81–88.
- [10] D. Cartwright and F. Harary, Structural Balance: A generalization of Heiders Theory, Psych. Rev. 63 (1956) 277–293.
- [11] G.T. Chartrand, Graphs as Mathematical Models (Prindle, Weber and Schmid, Inc., Boston, Massachusetts, 1977).
- [12] M.K. Gill, Contribution to some topics in graph theory and its applications, Ph.D. Thesis, (Indian Institute of Technology, Bombay, 1983).
- [13] F. Harary, On the notion of balanc signed graphs, Mich. Math. J. $\mathbf{2}$ (1953) 143–146.
- [14] F. Harary, Graph Theory (Addison-Wesley Publ. Comp., Reading, Massachusetts, 1969).
- [15] F. Harary and J.A. Kabell, A simple algorithm to detect balance in signed graphs, Math. Soc. Sci. 1 (1980/81) 131–136.
- [16] F. Harary and J.A. Kabell, Counting balanced signed graphs using marked graphs, Proc. Edinburgh Math. Soc. 24 (1981) 99–104.
- [17] C. Hoede, A characterization of consistent marked graphs, J. Graph Theory 16 (1992) 17–23.
- [18] E. Sampathkumar, Point-signed and line-signed graphs, Karnatak Univ. Graph Theory Res. Rep. 1 (1973), also see Abstract No. 1 in Graph Theory Newsletter 2 (1972), Nat. Acad. Sci.-Letters 7 (1984) 91–93.
- [19] E. Sampathkumar and S.B. Chikkodimath, Semitotal graphs of a graph-I, J. Karnatak Univ. Sci. XVIII (1973) 274–280.
- [20] D. Sinha, New frontiers in the theory of signed graph, Ph.D. Thesis (University of Delhi, Faculty of Technology, 2005).
- [21] D.B. West, Introduction to Graph Theory (Prentice-Hall, India Pvt. Ltd., 1996).
- [22] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas, Electronic J. Combinatorics #DS8 (vi+151pp)(1999)

- [23] T. Zaslavsky, Glossary of signed and gain graphs and allied areas, II Edition, Electronic J. Combinatorics, #DS9(1998).
- [24] T. Zaslavsky, $Signed\ analogs\ of\ bipartite\ graphs,$ Discrete Math. $\bf 179\ (1998)\ 205-216.$

Received 11 October 2009 Revised 30 September 2010 Accepted 1 October 2010