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Abstract

For a connected graph G = (V,E), a set W ⊆ V is called a Steiner
set of G if every vertex of G is contained in a Steiner W -tree of G. The
Steiner number s(G) of G is the minimum cardinality of its Steiner sets
and any Steiner set of cardinality s(G) is a minimum Steiner set of G.
For a minimum Steiner set W of G, a subset T ⊆ W is called a forcing
subset for W if W is the unique minimum Steiner set containing T .
A forcing subset for W of minimum cardinality is a minimum forcing
subset of W . The forcing Steiner number of W , denoted by fs(W ), is
the cardinality of a minimum forcing subset of W . The forcing Steiner
number of G, denoted by fs(G), is fs(G) = min{fs(W )}, where the
minimum is taken over all minimum Steiner sets W in G. The geodetic
number g(G) and the forcing geodetic number f(G) of a graph G are
defined in [2]. It is proved in [6] that there is no relationship between
the geodetic number and the Steiner number of a graph so that there
is no relationship between the forcing geodetic number and the forcing
Steiner number of a graph. We give realization results for various
possibilities of these four parameters.



612 A.P. Santhakumaran and J. John

Keywords: geodetic number, Steiner number, forcing geodetic num-
ber, forcing Steiner number.

2010 Mathematics Subject Classification: 05C12.

1. Introduction

By a graph G = (V,E), we mean a finite undirected connected graph with-
out loops or multiple edges. The order and size of G are denoted by p and
q respectively. The distance d(u, v) between two vertices u and v in a con-
nected graph G is the length of a shortest u− v path in G. An u− v path
of length d(u, v) is called an u − v geodesic. It is known that the distance
is a metric on the vertex set of G. For basic graph theoretic terminology,
we refer to [1]. A geodetic set of G is a set S of vertices such that every
vertex of G is contained in a geodesic joining some pair of vertices of S.
The geodetic number g(G) of G is the minimum cardinality of its geodetic
sets and any geodetic set of cardinality g(G) is a minimum geodetic set or
simply a g-set of G. A vertex v is said to be a geodetic vertex if v belongs
to every g-set of G. The geodetic number of a graph was introduced in [5]
and further studied in [3]. It was shown in [5] that determining the geodetic
number of a graph is an NP-hard problem. A subset T ⊆ S is called a
forcing subset for S if S is the unique minimum geodetic set containing T .
A forcing subset for S of minimum cardinality is a minimum forcing subset
of S. The forcing geodetic number of S, denoted by f(S), is the cardinality
of a minimum forcing subset of S. The forcing geodetic number of G, de-
noted by f(G), is f(G) = min{f(S)}, where the minimum is taken over all
minimum geodetic sets S in G. The forcing geodetic number of a graph was
introduced and studied in [2]. Santhakumaran et al. studied the connected
geodetic number of a graph in [7] and also the upper connected geodetic
number and the forcing connected geodetic number of a graph in [8].

For a nonempty set W of vertices in a connected graph G, the Steiner
distance d(W ) of W is the minimum size of a connected subgraph of G
containing W . Necessarily, each such subgraph is a tree and is called a
Steiner tree with respect to W or a Steiner W-tree. It is to be noted that
d(W ) = d(u, v), when W = {u, v}. The set of all vertices of G that lie on
some Steiner W -tree is denoted by S(W ). If S(W ) = V , then W is called
a Steiner set for G. A Steiner set of minimum cardinality is a minimum



On the Forcing Geodetic and Forcing Steiner Numbers of ...613

Steiner set or simply a s-set of G and this cardinality is the Steiner number
s(G) of G. A vertex v is said to be a Steiner vertex if v belongs to every
s-set of G. The Steiner number of a graph was introduced and studied in [4].
Chartrand et al. proved in [4] that every Steiner set in a connected graph
is a geodetic set. However, this particular result was proved to be wrong by
Pelayo in [6]. The forcing Steiner number fs(G) of G is defined similar to
the forcing geodetic number f(G) of G.

For the graph G given in Figure 1.1(a), W1 = {v1, v4, v5, },W2 = {v2, v4,
v7} and W3 = {v3, v5, v7} are the only three s-sets of G so that s(G) = 3 and
fs(G) = 1. Also S = {v1, v2, v3, v6} is the unique g-set of G so that g(G) = 4
and f(G) = 0. For the graph G given in Figure 1.1(b), W = {v1, v2, v5, v6} is
the unique s-set of G so that s(G) = 4 and fs(G) = 0. Also S1 = {v1, v5, v6}
and S2 = {v2, v5, v6} are the only two g-sets of G so that g(G) = 3 and
f(G) = 1. For the graph G given in Figure 1.1(c), W = {v1, v5} is the
unique g-set as well as the unique s-set of G so that g(G) = s(G) = 2 and
f(G) = fs(G) = 0.

Figure 1.1. G

A vertex v is a simplicial vertex of a graph G if the subgraph induced by its
neighbors is complete. The following theorems are used in the sequel.

Theorem 1 [3]. Each simplicial vertex of a connected graph G belongs to
every geodetic set of G.

Theorem 2 [1]. Let G be a connected graph. Then

(i) no cut-vertex of G belongs to any g-set of G.

(ii) g(G) = p if and only if G = Kp.
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Theorem 3 [2]. Let G be a connected graph. Then

(a) f(G) = 0 if and only if G has a unique minimum geodetic set.

(b) f(G) ≤ g(G) − |W |, where W is the set of all geodetic vertices of G.

Theorem 4 [4]. Let G be a connected graph. Then

(i) each simplicial vertex belongs to every Steiner set of G.

(ii) s(G) = p if and only if G = Kp.

The following theorem is an easy consequence of the corresponding defini-
tions.

Theorem 5. Let G be a connected graph. Then

(a) fs(G) = 0 if and only if G has a unique minimum Steiner set.

(b) fs(G) ≤ s(G)− |W |, where W is the set of all Steiner vertices of G.

(c) For the complete graph G = Kp (p ≥ 2), fs(G) = 0.

Throughout the following G denotes a connected graph with at least two
vertices.

2. Special Graphs

In this section, we present some graphs from which various graphs arising
in theorems of different sections are generated using identification.

Figure 2.1. Ga

The graph Ga is obtained from the Fi’s by identifying the vertices ri−1 of
Fi−1 and ti of Fi (2 ≤ i ≤ a), where Fi : si, ti, ui, vi, ri, si (1 ≤ i ≤ a) is a
copy of the cycle C5.
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Figure 2.2. Hb

The graph Hb is obtained from Pi (1 ≤ i ≤ b) by adding two new vertices
l and n, and joining the edges lwi and nyi (1 ≤ i ≤ b), where Pi : wi, xi, yi
(1 ≤ i ≤ b) is a copy of the path on three vertices.

Figure 2.3. Lb

Let Ji : fi, li,mi, ni, pi, qi, xi, yi, fi (1 ≤ i ≤ b) be a copy of the cycle C8. Let
Ri be the graph obtained from Ji by adding two new vertices ki, gi and the
edges liki, kigi, gini, gipi, giqi (1 ≤ i ≤ b). The graph Lb is obtained from
Ri’s by identifying the vertices qi−1 of Ri−1 and fi of Ri (2 ≤ i ≤ b).

Figure 2.4. Tk
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Let P : b0, b1, b2 be a path on three vertices. The graph Tk is obtained from
P by adding the new vertices h1, h2, . . . , hk and joining each hi (1 ≤ i ≤ k)
with b0 and b2 in P .

Since there is no relationship between the geodetic number and the
Steiner number of a graph, there is no relationship between the correspond-
ing forcing geodetic and forcing Steiner numbers also. In the rest of the
section, we give realization results for various possibilities of these four pa-
rameters.

3. Realization with Respect to Two Integers

In this section, we give realization results for the four parameters g(G), s(G),
f(G) and fs(G) of a graph G when 0 ≤ a < b, b ≥ 2 and b− a− 1 > 0.

Theorem 6. For every pair a, b of integers with 0 ≤ a < b, b ≥ 2 and
b − a − 1 > 0, there exists a connected graph G such that fs(G) = a and
s(G) = b.

Proof. If a = 0, let G = Kb. Then by Theorem 1.5(c) and Theorem
1.4(ii), fs(G) = 0 and s(G) = b. Now, assume that a ≥ 1. Let G be
the graph obtained from Ga in Figure 2.1 by adding b − a new vertices
z1, z2, . . . , zb−a−1, u and joining the b − a edges t1zi (1 ≤ i ≤ b − a − 1)
and rau. Let Z = {z1, z2, . . . , zb−a−1, u} be the set of simplicial vertices
of G. By Theorem 1.4(i), every s-set of G contains Z. Let Mi = {ui, vi}
(1 ≤ i ≤ a). First, we show that s(G) = b. Since the vertices ui, vi do not
lie on the unique Steiner Z-tree of G, it is clear that Z is not a Steiner set
of G. We observe that every s-set of G must contain exactly one vertex
from each Mi (1 ≤ i ≤ a) and so s(G) ≥ b − a + a = b. On the other
hand, since the set W = Z ∪ {v1, v2, . . . , va} is a Steiner set of G, it follows
that s(G) ≤ |W | = b. Thus, s(G) = b. Next, we show that fs(G) = a.
By Theorem 1.4(i), every Steiner set of G contains Z and so it follows from
Theorem 1.5(b) that fs(G) ≤ s(G) − |Z| = a. Now, it is easily seen that
every s-set S is of the form Z ∪ {c1, c2, . . . , ca}, where ci ∈ Mi (1 ≤ i ≤ a).
Let T be any proper subset of S with |T | < a. Then it is clear that there
exists some j such that T ∩Mj = ∅, which shows that fs(G) = a.

Theorem 7. For every pair a, b of integers with 0 ≤ a < b, b ≥ 2 and
b− a− 1 > 0, there exists a connected graph G such that fs(G) = f(G) = a
and s(G) = g(G) = b.
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Proof. If a = 0, let G = Kb. Then by Theorem 1.2(ii) and Theorem 1.3(a),
g(G) = b and f(G) = 0. For a ≥ 1, let G be the graph given in Theorem 3.1
for the case a ≥ 1. Then, as in the proof of Theorem 3.1, it can be proved
that f(G) = a and g(G) = b. The rest now follows from Theorem 3.1.

4. Realization with Respect to Three Integers

In this section, we give realization results for the above said four parameters
when 0 ≤ a ≤ b < c and c− b− 1 > 0.

Theorem 8. For integers a, b, c with 0 ≤ a ≤ b < c and c − b − 1 > 0,
there exists a connected graph G such that fs(G) = a, f(G) = b and s(G) =
g(G) = c.

Proof. We consider three cases.

Case 1. a = 0. Let G be the graph obtained from Hb in Figure 2.2
by adding the new vertices u,m, z1, z2, . . . , zc−b−1 and joining the edges
nu,ml,mn, lz1, lz2, . . . , lzc−b−1. Let Z = {z1, z2, . . . , zc−b−1, u} be the set
of simplicial vertices of G. The vertices wi, xi, yi (1 ≤ i ≤ b) do not lie on
any Steiner Z-tree of G. It easily follows from Theorem 1.4(i) that W =
Z∪{x1, x2, . . . , xb} is the unique minimum Steiner set of G so that s(G) = c.
Hence, by Theorem 1.5(a), fs(G) = 0 = a. Now, we show that g(G) = c. Let
Mi = {wi, xi, yi}, (1 ≤ i ≤ b). We observe that every geodetic set of G must
contain at least one vertex from each Mi (1 ≤ i ≤ b) and so by Theorem
1.1, g(G) ≥ c− b+ b = c. On the other hand, since W = Z ∪{x1, x2, . . . , xb}
is a geodetic set of G, it follows that g(G) ≤ |W | = c. Thus g(G) = c.
Next, we show that f(G) = b. Since every g-set contains Z, it follows from
Theorem 1.3(b) that f(G) ≤ g(G) − |Z| = c − (c − b) = b. Also, it is
easily seen that every g-set S of G is of the form Z ∪ {c1, c2, . . . , cb}, where
ci ∈ Mi (1 ≤ i ≤ b). Let T be any proper subset of S with |T | < b. Then
it is clear that there exists some j such that T ∩ Mj = ∅, which shows
that f(G) = b.

Case 2. a = b. This follows from Theorem 3.2 by taking b as c.

Case 3. 1 ≤ a < b. Let G be the graph obtained from Ga and
Hb−a by identifying the vertex ra of Ga with the vertex l of Hb−a and
then adding the new vertices m,u, z1, z2, . . . , zc−b−1 and adding the edges
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nu, lm,mn, t1z1, t1z2, . . . , t1zc−b−1. Let Z = {z1, z2, . . . , zc−b−1, u} be the
set of simplicial vertices of G. Let Mi = {ui, vi} (1 ≤ i ≤ a) and Qi =
{wi, xi, yi} (1 ≤ i ≤ b− a).

First, we show that g(G) = c. We observe that every geodetic set
of G must contain at least one vertex from each Mi (1 ≤ i ≤ a) and at
least one vertex from each Qi (1 ≤ i ≤ b − a). Hence, by Theorem 1.1,
g(G) ≥ c − b + a + b − a = c. On the other hand, since the set S1 =
Z ∪{u1, u2, . . . , ua}∪{x1, x2, . . . , xb−a} is a geodetic set of G, it follows that
g(G) ≤ |S1| = c. Thus g(G) = c.

Next, we show that f(G) = b. As in Case 1, f(G) ≤ b and it is easily seen
that every g-set S of G is of the form Z∪{c1, c2, . . . , ca}∪{d1, d2, . . . , db−a},
where ci ∈ Mi (1 ≤ i ≤ a) and dj ∈ Qj(1 ≤ j ≤ b− a). Let T be any proper
subset of S with |T | < b. Then it is clear that there exists some i such that
T ∩Mi = ∅ or there exists some j such that T ∩Qj = ∅, which shows that
f(G) = b.

Now, we show that s(G) = c. It is clear that Z is not a Steiner set of
G. We observe that every minimum Steiner set of G must contain exactly
one vertex from each Mi (1 ≤ i ≤ a) and only the vertex xi (1 ≤ i ≤ b− a)
from each Qi (1 ≤ i ≤ b− a). Hence, by Theorem 1.4(i), s(G) ≥ c. On the
other hand, S = Z ∪ {u1, u2, . . . , ua} ∪ {x1, x2, . . . , xb−a} is a Steiner set of
G and so s(G) ≤ c. Hence s(G) = c.

Next, we show that fs(G) = a. Since every s-set of G contains W =
Z ∪ {x1, x2, . . . , xb−a},it follows from Theorem 1.5(b) that fs(G) ≤ s(G) −
|W | = c − (c − b + b − a) = a. Now, it is easily seen that every s-set S of
G is of the form W ∪ {c1, c2, . . . , ca}, where ci ∈ Mi (1 ≤ i ≤ a). Let T be
any proper subset of S with |T | < a. Then it is clear that there exists some
j such that T ∩Mj = ∅, which shows that fs(G) = a.

Theorem 9. For integers a, b, c with 0 ≤ a ≤ b < c and c − b − 1 > 0,
there exists a connected graph G such that f(G) = a, fs(G) = b and s(G) =
g(G) = c.

Proof. We consider three cases.

Case 1. a = 0. Let G be the graph obtained from Lb in Figure 2.3
by adding the new vertices u, z1, z2, . . . , zc−b−1 and adding the c − b edges
f1zi (1 ≤ i ≤ c − b − 1) and qbu. First, we show that s(G) = c. Let
Z = {z1, z2, . . . , zc−b−1, u} be the set of simplicial vertices of G. It is clear
that there is only one Steiner Z-tree of G and it is given in Figure 4.1. Hence
Z is not a Steiner set of G. For 1 ≤ i ≤ b, let Mi = {mi, ni}. We observe
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that every s-set of G must contain exactly one vertex from each Mi so that
by Theorem 1.4(i), s(G) ≥ c − b + b = c. Now, W = Z ∪ {m1,m2, . . . ,mb}
is a Steiner set of G so that s(G) ≤ c− b+ b = c. Thus s(G) = c.

Figure 4.1. The unique Steiner Z-tree of G in Case 1 of Theorem 4.2

Next, we show that fs(G) = b. Since every s-set contains Z, it follows from
Theorem 1.5(b) that fs(G) ≤ s(G)− |Z| = c− (c− b) = b. Now, it is easily
seen that every s-set S is of the form Z ∪ {c1, c2, . . . , cb}, where ci ∈ Mi

(1 ≤ i ≤ b). Let T be any proper subset of S with |T | < b. Then it is clear
that there exists some j such that T ∩Mj = ∅, which shows that fs(G) = b.

Now, we show that g(G) = c. It is clear that Z is not a geodetic set of
G. It is easily seen that every geodetic set must contain only the vertices pi
(1 ≤ i ≤ b) and W = Z ∪ {p1, p2, . . . , pb} is the unique g-set of G so that
g(G) = c and by Theorem 1.3(a), f(G) = 0.

Case 2. a = b. This follows from Theorem 3.2 by taking b as c.

Case 3. 1 ≤ a < b. Let G be the graph obtained from Ga and Lb−a by
identifying the vertex ra of Ga and the vertex f1 of Lb−a and then adding the
new vertices u, z1, z2, . . . , zc−b−1 and joining the edges uqb−a, t1z1, t1z2, . . . ,
t1zc−b−1. Let Z = {z1, z2, . . . , zc−b−1, u} be the set of simplicial vertices of
G. Let Mi = {ui, vi} (1 ≤ i ≤ a) and Qi = {mi, ni} (1 ≤ i ≤ b− a).

First, we show that g(G) = c. It is clear that Z is not a geodetic set of G.
We observe that every g-set of G must contain exactly one vertex from each
Mi (1 ≤ i ≤ a) and only the vertex pi (1 ≤ i ≤ b−a) so that by Theorem 1.1,
g(G) ≥ c. On the other hand, S1 = Z ∪ {v1, v2, . . . , va} ∪ {p1, p2, . . . , pb−a}
is a geodetic set of G and so g(G) ≤ |S1| = c. Thus g(G) = c.

Now, we show that f(G) = a. Since every g-set of G contains W =
Z ∪ {p1, p2, . . . , pb−a}, it follows from Theorem 1.3(b) that f(G) ≤ g(G) −
|W | = c − (c − a) = a. Now, it is easily seen that every g-set S is of the
form W ∪ {c1, c2, . . . , ca}, where ci ∈ Mi (1 ≤ i ≤ a). Then it is easily seen
that f(G) = a.
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Next, we show that s(G) = c. It is clear that Z is not a Steiner set of
G. We observe that every s-set of G must contain exactly one vertex from
each Mi (1 ≤ i ≤ a) and exactly one vertex from each Qi (1 ≤ i ≤ b − a).
Thus, by Theorem 1.4(i), s(G) ≥ c − b + a + b − a = c. Since the set
S′ = Z ∪ {v1, v2, . . . , va} ∪ {n1, n2, . . . , nb−a} is a Steiner set of G, we have
s(G) ≤ |S′| = c. Hence s(G) = c.

Now, we show that fs(G) = b. Since every s-set of G contains Z, it
follows from Theorem 1.5(b) that fs(G) ≤ s(G) − |Z| = c − (c − b) = b.
Now, it is easily seen that every s-set S is of the form Z ∪ {c1, c2, . . . , ca} ∪
{d1, d2, . . . , db−a}, where ci ∈ Mi (1 ≤ i ≤ a) and dj ∈ Qj (1 ≤ j ≤ b− a).
Then it is easily seen that fs(G) = b. Thus the proof is complete.

5. Realization with Respect to Four Integers

In this section, we give realization results for the above said four parameters
when 0 ≤ a ≤ b < c ≤ d and c− b− 2 > 0.

Theorem 10. For integers a, b, c and d with 0 ≤ a ≤ b < c ≤ d and
c−b−2 > 0, there exists a connected graph G such that f(G) = a, fs(G) = b,
g(G) = c and s(G) = d.

Proof. We consider two cases.

Case 1. c = d.

Subcase 1a. a = b. Then the graph G constructed in Theorem 3.2
satisfies the requirements of this theorem.

Subcase 1b. 0 ≤ a < b. Then the graph G constructed in Theorem 4.2
satisfies the requirements of this theorem.

Case 2. c < d.

Subcase 2a. a = b = 0. Let G be the graph obtained from Tk in
Figure 2.4 with k = d − c + 2 by adding the new vertices z1, z2, . . . , zc−2

and joining each zi (1 ≤ i ≤ c − 2) with b1. We show that g(G) = c. Let
Z = {z1, z2, . . . , zc−2}. It is clear that Z is not a geodetic set of G. Also it
is easily verified that Z ∪ {v}, where v ∈ V (G) − Z is not a geodetic set of
G. It is clear that S = Z ∪{b0, b2} is a geodetic set of G and so by Theorem
1.1, g(G) = c. Now, we show that S is the only g-set of G. Suppose that
there exists a g-set S1 6= S. By Theorem 1.2(i), b1 /∈ S1. Hence there exists
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at least one vertex of type hi (1 ≤ i ≤ d−c+2) such that hi ∈ S1 and either
b0 /∈ S1 or b2 /∈ S1. Then it is clear that S1 is not a geodetic set of G, which
is a contradiction. Hence S is the unique g-set of G and so it follows from
Theorem 1.3(a) that f(G) = 0. Next, we show that s(G) = d. By Theorem
1.4(i), every Steiner set contains Z and it is easily seen that every Steiner set
also contains each hi (1 ≤ i ≤ d− c+2) and so s(G) ≥ c− 2+ d− c+2 = d.
Since W = Z ∪ {h1, h2, . . . , hd−c+2} is a Steiner set of G, we have s(G) = d.
Since every Steiner set contains W , W is the unique s-set of G and so it
follows from Theorem 1.5(a) that fs(G) = 0 = a.

Subcase 2b. a = 0 and b ≥ 1. Let G be the graph obtained from Lb

and Td−c by identifying the vertex qb of Lb and the vertex b0 of Td−c and
then adding the new vertices x, y, z1, z2, . . . , zc−b−2 and joining the edges
xf1, yb2, z1b1, z2b1, . . . , zc−b−2b1. Let Z = {x, y, z1, z2, . . . , zc−b−2}. It is
clear that S = Z ∪{p1, p2, . . . , pb} is the unique g-set of G. Then as in Case
1 of Theorem 4.2 and Subcase 2a of this theorem, g(G) = c and f(G) = 0.
Also it is clear that any s-set is of the form W = Z ∪ {c1, c2, . . . , cb} ∪
{h1, h2, . . . , hd−c}, where ci ∈ {mi, ni} (1 ≤ i ≤ b). Hence s(G) = d and as
in earlier theorems, it can be seen that fs(G) = b.

Subcase 2c. 0 < a = b. Let G be the graph obtained from Ga and
Td−c by identifying the vertex ra of Ga and the vertex b0 of Td−c and
then adding the new vertices x, y, z1, z2, . . . , zc−a−2 and joining the edges
xt1, yb2, z1b1, z2b1, . . . , zc−a−2b1. Let Z = {x, y, z1, z2, . . . , zc−a−2} be the
set of simplicial vertices of G. It is clear that any g-set is of the form
S = Z ∪ {c1, c2, . . . , ca}, where ci ∈ {ui, vi} (1 ≤ i ≤ a). Then as in earlier
theorems, it can be verified that g(G) = c and f(G) = a. Also it is clear
that any s-set is of the form W = Z ∪ {c1, c2, . . . , ca} ∪ {h1, h2, . . . , hd−c},
where ci ∈ {ui, vi} (1 ≤ i ≤ a). Hence s(G) = d and as in earlier theorems
it can be verified that fs(G) = a.

Subcase 2d. 0 < a < b. Let G1 be the graph obtained from Ga and
Lb−a by identifying the vertex ra of Ga and the vertex f1 of Lb−a. Now,
let G be the graph obtained from G1 and Td−c by identifying the vertex
qb−a of G1 and the vertex b0 of Td−c and then adding the new vertices
x, y, z1, z2, . . . , zc−b−2 and joining the edges xt1, yb2, b1z1, b1z2, . . . , b1zc−b−2.
Let Z = {x, y, z1, z2, . . . , zc−b−2} be the set of simplicial vertices of G. It is
clear that any g-set is of the form S = Z∪{c1, c2, . . . , ca}∪{p1, p2, . . . , pb−a},
where ci ∈ {ui, vi} (1 ≤ i ≤ a). Then as in earlier theorems it can be seen
that g(G) = c and f(G) = a. Also it is clear that any s-set is of the
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form W = Z ∪{c1, c2, . . . , ca}∪{d1, d2, . . . , db−a}∪{h1, h2, . . . , hd−c}, where
ci ∈ {ui, vi} (1 ≤ i ≤ a) and di ∈ {mi, ni} (1 ≤ i ≤ b− a). Hence s(G) = d
and as in earlier theorems, it can be seen that fs(G) = b.

Theorem 11. For integers a, b, c and d with 0 ≤ a ≤ b < c ≤ d and
c−b−2 > 0, there exists a connected graph G such that fs(G) = a, f(G) = b,
g(G) = c and s(G) = d.

Proof. We consider two cases.

Case 1. c = d.

Subcase 1a. a = b. Then the graph G constructed in Theorem 3.2
satisfies the requirements of this theorem.

Subcase 1b. 0 ≤ a < b. Then the graph G constructed in Theorem 4.1
satisfies the requirements of this theorem.

Case 2. c < d.

Subcase 2a. a = b = 0. Then the graph G constructed in Subcase 2a of
Theorem 5.1 satisfies the requirements of this theorem.

Subcase 2b. a = 0, b ≥ 1. Let G be the graph obtained from Hb

and Td−c by identifying the vertex n of Hb and the vertex b0 of Td−c and
then adding the new vertices x, y,m, z1, z2, . . . , zc−b−2 and joining the edges
xl, yb2,ml,mn, z1b1, z2b1, . . . , zc−b−2b1. Let Z = {x, y, z1, z2, . . . , zc−b−2} be
the set of simplicial vertices of G. Then as in Theorems 4.1 and 5.1, W =
Z ∪ {x1, x2, . . . , xb} ∪ {h1, h2, . . . , hd−c} is the unique s-set of G so that
s(G) = d and fs(G) = 0. Also it is clear that any g-set is of the form
W = Z ∪{c1, c2, . . . , cb}, where ci ∈ {wi, xi, yi} (1 ≤ i ≤ b). Hence g(G) = c
and f(G) = b.

Subcase 2c. 0 < a = b. Then the graph G constructed in Subcase 2c of
Theorem 5.1 satisfies the requirements of this theorem.

Subcase 2d. 0 < a < b. Let G′ be the graph obtained from Ga and Hb−a

by identifying the vertex ra of Ga and the vertex l ofHb−a. Now, let G be the
graph obtained from G′ and Td−c by identifying the vertex n of G′ and the
vertex b0 of Td−c and then adding the new vertices x, y,m, z1, z2, . . . , zc−b−2

and joining the edges xt1, yb2,ml,mn, z1b1, z2b1, . . . , zc−b−2b1. Let Z =
{x, y, z1, z2, . . . , zc−b−2} be the set of simplicial vertices of G. Then, as in
Theorems 4.1 and 5.1, any s-set is of the form W = Z ∪ {c1, c2, . . . , ca} ∪
{x1, x2, . . . , xb−a}∪{h1, h2, . . . , hd−c}, where ci ∈ {ui, vi} (1 ≤ i ≤ a). Hence
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s(G) = d and fs(G) = a. Also it is clear that any g-set is of the form
S = Z ∪ {c1, c2, . . . , ca} ∪ {d1, d2, . . . , db−a},where ci ∈ {ui, vi} (1 ≤ i ≤ a)
and di ∈ {wi, xi, yi} (1 ≤ i ≤ b − a). Hence g(G) = c and f(G) = b (as in
earlier theorems).

We leave the following problems open.

Problem 12. For integers a, b, c and d with 0 ≤ a ≤ b < c ≤ d and
c− b− 2 > 0, there exists a connected graph G such that

(i) f(G) = a, fs(G) = b, s(G) = c and g(G) = d.

(ii) fs(G) = a, f(G) = b, s(G) = c and g(G) = d.

6. Conclusion

We also leave open the possible realization results for the case when b = c
in Sections 4 and 5.
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