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Abstract

Define a complete subgraph @ to be simplicial in a graph G when @
is contained in exactly one maximal complete subgraph (‘maxclique’)
of G; otherwise, @ is nonsimplicial. Several graph classes—including
strong p-Helly graphs and strongly chordal graphs—are shown to have
pairs of peculiarly related new characterizations: (i) for every k > 2,
a certain property holds for the complete subgraphs that are in k£ or
more maxcliques of G, and (ii) in every induced subgraph H of G, that
same property holds for the nonsimplicial complete subgraphs of H.

One example: G is shown to be hereditary clique-Helly if and only
if, for every k > 2, every triangle whose edges are each in k£ or more
maxcliques is itself in & or more maxcliques; equivalently, in every
induced subgraph H of G, if each edge of a triangle is nonsimplicial in
H, then the triangle itself is nonsimplicial in H.
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A mazxclique of a graph is an inclusion-maximal complete subgraph. For
each complete subgraph @ of a graph G, define strg(Q) to be the number of
maxcliques of G that contain (). Notice that if H is an induced subgraph of
G and @ is a complete subgraph of H, then stry(Q) < strg(Q). As in [5],
define @ to be strength-k in G if strg(Q) > k.
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Define @ to be a simplicial clique of G if strg(Q) = 1 and to be a nonsim-
plicial clique of G if Q) is strength-2 in G. A k-clique is a complete subgraph
of order k. When convenient, a complete subgraph ) will be identified with
its vertex set V(Q).

The distinguishing feature of each ‘Theorem n’ or ‘Corollary n’ below
can be loosely described as the equivalence of two statements involving a
parameterized graph property P(k) (defined in terms of the strengths of
complete subgraphs):

(n.1) G satisfies P(k) for all k& > 2.
(n.2) Every induced subgraph of G satisfies P(2).

Typically, there will also be equivalent statements (n.0), asserting G to be
in a known graph class, and (n.3), expressed in terms of (non)simplicial
cliques.

1. CLIQUE STRENGTH AND STRONG p-HELLY GRAPHS

A graph is strong p-Helly if every family Q of maxcliques contains a subfam-
ily @ with |Q'| < p such that NQ = NQ’. Reference [2] proves that these are
also precisely the graphs that are hereditary p-clique-Helly (meaning that,
for every family O of maxcliques, if every p members of Q have a vertex in
common, then all the members of Q have a vertex in common). Theorem 1
will contain additional characterizations.

Theorem 1. The following are equivalent for every graph G and p > 2:

(1.0) G is strong p-Helly.

(1.1) For every k > 2 and every p-clique Q of G, if each (p — 1)-clique that
s contained in Q is strength-k in G, then Q is also strength-k in G.

(1.2) For every p-clique Q of an induced subgraph H of G, if each (p — 1)-
clique that is contained in Q) is strength-2 in H, then Q is also strength-
2in H.

(1.3) If a p-clique Q is simplicial in an induced subgraph H of G, then at
least one (p — 1)-clique that is contained in @Q is simplicial in H.

Proof. (1.1) = (1.2): Suppose p > 2 and G satisfies condition (1.1). Sup-
pose H is any proper induced subgraph of G and @) is a p-clique of H such
that, if @~ is a (p — 1)-clique with @~ C @, then Q™ is strength-2 in H.
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But assume @ itself is not strength-2 in H [arguing by contradiction]; so
strgy(Q) = 1. (Since each @~ is also strength-2 in G, the k = 2 case of (1.1)
implies @ is strength-2 in G.)

Let g = strg(Q). Then @ will be in g — 1 more maxcliques in G than
in H. Therefore, each of the (p — 1)-cliques contained in @ will be strength-
(24 [¢g —1]) in G, and so strength-(g 4+ 1) in G. But then (1.1) implies that
Q@ is strength-(¢g + 1) in G [contradicting that strg(Q) = g.

(1.1) < (1.2): Suppose p > 2 and G satisfies condition (1.2). Suppose @
is a p-clique and Q1, ..., Q, are the (p — 1)-cliques contained in (). Suppose
k > 2 and each Q); is strength-k in G, but Q itself is not strength-k in G
[arguing by contradiction].

Suppose Q is contained in the pairwise-distinct maxcliques Q', . .., Q9 of
G where strg(Q) = g < k, and suppose each @); is contained in the pairwise-
distinct maxcliques Q',...,Q9,Q%L, ..., Qi?_g of GG where each Qg N = Q;.

79

Let H be the subgraph of G induced by

p k=g 9 A
Qu JU@-Uw-a)
i=1j=1 j=1

Then each Q; is strength-2 in H, but stry(Q) = 1 [contradicting (1.2)].
(1.2) < (1.3): Condition (1.3) simply restates (1.2) using that @ is
strength-2 in H if and only if @) is nonsimplicial in H.
(1.0) < (1.3): This follows from [2, Theorem 4]. ]

Notice that the proof of (1.1) < (1.2) in Theorem 1 did not use the char-
acterization of strong-p Helly graphs from [2]. This enables the p = 2 and
p = 3 cases of Theorem 1 to be presented separately as Corollaries 2 and 3.

Let Cf and Py denote, respectively, a cycle or path on k vertices. For
any graphs G, Hy, ..., Hg, say that G is {Hy,...,Hs}-free (or simply Hj-
free if s = 1) if G contains no induced subgraph isomorphic to any of the
graphs Hy, ..., Hs. A graph is trivially perfect if it is {Cy, Py }-free; see [1, 7]
for additional characterizations (and additional names).

Corollary 2. The following are equivalent for every graph G-:

(2.0) G is trivially perfect.

(2.1) For every k > 2 and every edge xy of G, if both x and y are strength-k
in G, then edge xy is strength-k in G.
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(2.2) For every edge xy of an induced subgraph H of G, if both x and y are
strength-2 in H, then edge xy is strength-2 in H.

(2.3) If an edge e is simplicial in an induced subgraph H of G, then at least
one endpoint of e is simplicial in H.

Proof. The k = 2 case of condition (2.1) implies that G is {Cy, Py}-
free—and so implies (2.0)—by letting zy be an edge of an induced Cy or
P, subgraph. Conversely, if (2.1) fails, suppose zy € E(G) where z is in
a maxclique that does not contain y and y is in a maxclique that does
not contain x. Then those maxcliques contain edges zx’ and yy' where
{2/, x,y,y'} induces either a Py or a Cy subgraph, making (2.0) fail.

The equivalence of (2.1) and (2.2) is the p = 2 case of Theorem 1.
Condition (2.3) simply restates (2.2). |

A graph is clique-Helly if, for every family F of maxcliques, if every two
members of F have a vertex in common, then all the members of F have
a vertex in common. A graph is hereditary clique-Helly if every induced
subgraph is clique Helly. See [1, 5, 8, 9] for details. Reference [9] also proves
that G is hereditary clique-Helly if and only if, for every maxclique @ of
an induced subgraph H of G, at least one edge of @) is simplicial in H.
The hereditary clique-Helly graphs are, of course, precisely the hereditary
2-clique-Helly graphs (and so are precisely the strong 2-Helly graphs).

Corollary 3. The following are equivalent for every graph G:

(3.0) G is hereditary clique-Helly.

(3.1) For every k > 2 and every triangle xyz of G, if each edge xy, xz, and
yz s strength-k in G, then triangle xyz is strength-k in G.

(3.2) For every triangle xyz of an induced subgraph H of G, if each edge xy,
xz, and yz is strength-2 in H, then triangle xyz is strength-2 in H.

(3.3) If a triangle A is simplicial in an induced subgraph H of G, then at
least one edge of A is simplicial in H.

Proof. The equivalence of (3.0) and (3.1) restates [5, Theorem 2]. The
equivalence of (3.1) and (3.2) is the p = 3 case of Theorem 1. Condition
(3.3) simply restates (3.2). ]

Sections 2 and 3 go in a different direction, generalizing Corollary 3 by
replacing triangles with arbitrary cycles.
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2. EDGE STRENGTH AND CHORDAL GRAPHS

A chord of a cycle is an edge that joins two nonconsecutive vertices of the
cycle (only cycles of length four or more can have chords). A graph is chordal
if and only if every cycle of length four or more has a chord; see [1, 7] for
thorough discussions. Define a graph to be strength-k chordal if every cycle
of strength-k edges either has a strength-k chord or is a strength-k triangle.
Being strength-1 chordal is equivalent to being chordal, and Corollary 6 will
characterize being strength-k chordal for all k£ > 1.

The graph Gy in Figure 1 is the smallest chordal graph that is not
strength-2 chordal—the three edges between the vertices 2, 3, and 5 are
each strength-2, but the triangle they form is simplicial in G. The graph
G is strength-2 chordal—the nine edges incident to vertices 3 or 4 are
each strength-2 (indeed, the edge 34 is strength-4), as are the four triangles
that contain edge 34—yet G2 is not chordal because of the chordless cycle
1,2,6,5,1. (The graph G is vacuously strength-k chordal for all k& > 2.)

/\ \//
/\/\ A

Figure 1. Graph G is chordal, but not strength-2 chordal,
G5 is strength-k chordal for all £ > 2, but not chordal.

As is common when working with cycle spaces, a sum of cycles will mean
the symmetric difference of the edge sets of those cycles—in other words,
an edge e is in the sum (denoted) C; & - - - & Cy, if and only if e is in an odd
number of the cycles Cy, ..., Ck. The notation |C| will be used to denote the
length of a cycle C, and C is a k-cycle if |C| = k. Lemma 4 will generalize
the following simple fact from [4, Lemma 3.2] (also see [6, Corollary 1]): A
graph is chordal if and only if every cycle C is the sum of |C| — 2 triangles.

Lemma 4. A graph is strength-k chordal if and only if every cycle C' of
strength-k edges is the sum of |C| — 2 strength-k triangles.

Proof. First suppose G is a chordal graph in which every cycle C of
strength-k edges with |C| = | > 3 is the sum of [ — 2 strength-k triangles
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Aq,..., ;5. If I = 3, then C itself is a strength-k triangle A;. Suppose
[ > 4 [toward showing that C has a strength-k chord]. Because G is chordal,
each edge of C' must be in some triangle A;. The pigeon-hole principle im-
plies that some A; must contain two (necessarily consecutive) edges of C.
Then the third side of A; is a chord of C. Since A; is strength-k, that third
side is a strength-k chord of C.

Conversely, suppose G is a strength-k chordal graph and C is a cycle of
strength-k edges. Argue by induction on |C| =1 > 3. If | = 3, then C is
a strength-k triangle and so C' is trivially the sum of [ — 2 = 1 strength-k
triangles. Now suppose [ > 4. Since G is strength-k chordal, cycle C has
a strength-k£ chord e. Then C = C, & C} where C, and Cj are cycles of
strength-k edges from E(C,) U E(Cy) U {e}, with {e} = C, N Ch, |Cy| = a,
|Cy| = b, and a + b = [ + 2. The induction hypothesis implies that C,
[respectively, Cp] is the sum of a — 2 [or b — 2] strength-k triangles. This
makes C' the sum of (a —2) + (b — 2) = [ — 2 strength-k triangles. ]

Theorem 5. The following are equivalent for every graph G:

(5.1) G is strength-k chordal for all k > 2.
(5.2) Ewvery induced subgraph of G is strength-2 chordal.

(5.3) Ewvery cycle of nonsimplicial edges in an induced subgraph H of G
either has a chord that is nonsimplicial in H or is a nonsimplicial
triangle of H.

(5.4) Every cycle C' of nonsimplicial edges in an induced subgraph H of G
is the sum of |C| — 2 nonsimplicial triangles of H.

Proof. (5.1) = (5.2): Suppose G satisfies condition (5.1). Suppose H is
any induced subgraph of G and C'is a cycle of edges that are strength-2 in H,
but C is not the sum of |C|—2 triangles that are strength-2 in H [arguing by
contradiction, using Lemma 4]; further suppose |C| is minimum with respect
to all that. By the minimality of |C|, every chord of C' is simplicial in H.
This implies that every triangle A with V(A) C V(C) is simplicial in H.
Thus, for every edge e and triangle A, ife € E(C)NE(A) and V(A) C V(C),
then strg(e) > stry(A). But since every maxclique of G that contains such
a A also contains such edges e, the same inequality holds with H replaced
by G [contradicting (5.1), using Lemma 4 with £ = min{strg(e) : e € E(C)].

(5.1) <= (5.2): Suppose G satisfies condition (5.2), toward proving G is
strength-k chordal by induction on £ > 2. The k = 2 basis step is immediate.
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For the inductive step, suppose G is strength-k chordal and C' is a cycle of
edges that are strength-(k+1) in G, but C is not the sum of |C'| —2 triangles
that are strength-(k + 1) in G [arguing by contradiction, using Lemma 4];
further suppose |C| = I > 3 is minimal with respect to all that. By the
minimality of I, cycle C has no chords that are strength-(k+ 1) in G. Since
G is strength-k chordal, C is the sum of triangles Aq,...,A;_o of G that are
strength-k in G, where each A; is made from edges of C' that are strength-
(k4 1) in G together with chords e of C' with strg(e) = k. Therefore if A;
and A; share a chord of C, then V(A;) UV(A;) must induce a complete
subgraph ()1 that is strength-k in GG. Performing similar consolidations of
complete subgraphs n <1 — 3 times partitions {Aq,...,A; o} intol —2—n
parts that are sets of contiguous triangles that are strength-%£ in G and whose
vertices induce [ — 2 — n complete subgraphs that are strength-k in G and
that cover V(C). Performing this consolidation n = [ — 3 times shows that
V(C) induces a complete subgraph @, that is strength-k in G. Since C
has no chords that are strength-(k + 1) in G, it follows that strg(Qn) = k.
Yet each e € E(C) is strength-(k + 1) in G and so is in a maxclique @, of
G that has E(Q.) N E(Q,) = {e} (again using that C has no chords that
are strength-(k + 1) in G). But then V(Q,,) together with one vertex from
V(Qe) — V(Qy) for each e € E(C) would induce a subgraph H of G such
that each edge of C' is strength-2 in H while stry(Q,) = 1 and each chord
e of C has stry(e) = 1 [contradicting (5.2)].

(5.2) & (5.3) & (5.4) follows since (5.3) and (5.4) simply restate (5.2)
(using Lemma 4). ]

For k > 3, a k-sun—sometimes called a complete k-sun or trampoline, see
[1, 3, 5, 7]—is a graph that consists of an even-length cycle vy, ..., v, v1,
together with all of the (g) chords between even-subscripted vertices. (The
graph G in Figure 1 is a 3-sun, and the subgraph H constructed in the
(5.1) <= (5.2) proof of Theorem 5 is an [-sun.) A graph is strongly chordal
if it is chordal and no induced subgraph is isomorphic to any k-sun; see
[1, 3, 5, 7] for other characterizations of this widely-studied concept.

Corollary 6. The following are equivalent for every graph G:

(6.0) G is strongly chordal.
(6.1) G is strength-k chordal for all k > 1.
(6.2) G is chordal and every induced subgraph of G is strength-2 chordal.
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(6.3) G is chordal and every cycle of monsimplicial edges in an induced
subgraph H of G either has a chord that is monsimplicial in H or
s a nonsimplicial triangle of H.

(6.4) G is chordal and every cycle C of nonsimplicial edges in an induced
subgraph H of G is the sum of |C| — 2 nonsimplicial triangles of H.

Proof. The equivalence of (6.0) and (6.1) restates [5, Theorem 1]. The
equivalence of conditions (6.7) and (6.7) when 1 < i < j < 4 follows imme-
diately from the equivalence of conditions (5.7) and (5.j). ]

3. VERTEX STRENGTH AND CHORDAL GRAPHS

Recognizing that cycles are determined by their vertices just as well as by
their edges, define a graph to be vertex strength-k chordal if every cycle of
strength-k vertices either has a strength-k chord or is a strength-k triangle.
(Strength-k chordal graphs could have been called ‘edge strength-k chordal’
graphs.) Being vertex strength-1 chordal is equivalent to being chordal.
Clearly, every cycle of strength-k edges is a cycle of strength-k vertices, and
so every vertex strength-k chordal graph is strength-£ chordal. The three
graphs in Figure 2 are strength-2 chordal but not vertex strength-2 chordal
(because each vertex shown as ‘hollow’ is a strength-2 vertex).

Figure 2. From left to right, the kite, gem, and net graphs.

Lemma 7. A graph is vertex strength-k chordal if and only if every cycle
C' of strength-k vertices is the sum of |C| — 2 strength-k triangles.

Proof. This is proved by a straightforward modification of the proof of
Lemma 4 (observing that every strength-k edge has strength-k endpoints).

|
Theorem 8. The following are equivalent for every graph G:

(8.0) G is {kite, gem, net}-free strongly chordal.
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(8.1) G is vertex strength-k chordal for all k > 2.
(8.2) Ewvery induced subgraph of G is vertex strength-2 chordal.

(8.3) Ewvery cycle of nonsimplicial vertices in an induced subgraph H of G
either has a chord that is nonsimplicial in H or is a nonsimplicial
triangle of H.

(8.4) Every cycle C of nonsimplicial vertices in an induced subgraph H of
G is the sum of |C| — 2 nonsimplicial triangles of H.

Proof. (8.0) = (8.1): Suppose k > 2 and G satisfies condition (8.0), and
C is a cycle of strength-k vertices. Since G is chordal, C' is the sum of
|C| — 2 triangles. Suppose any of those triangles—say triangle vjvouz—has
strg(vivous) < k [arguing by contradiction, using Lemma 7, showing that
G would contain an induced kite, gem, net, or 3-sun]. Then for each i €
{1,2,3}, there exists a vertex w; with each w; ~ v; and w; & {v1,v9,v3} and
w; not adjacent to some v;. Thus [{w1,ws, w3}| > 1. Let H be the subgraph
of G that is induced by {v1,ve,v3, wy, wo,ws}. If |{wy,ws,ws}| = 2, then
H is an induced kite or gem [a contradiction]. If [{w;,ws,ws}| = 3, then
either H is an induced net or 3-sun or H contains an induced kite or gem
[a contradiction].

(8.1) = (8.2): Suppose G satisfies condition (8.1). Suppose H is any
induced subgraph of G and C'is a cycle of vertices that are strength-2 in H,
but C' is not the sum of |C| — 2 triangles that are strength-2 in H [arguing
by contradiction, using Lemma 7|; further suppose |C| is minimum with
respect to all that. By the minimality of |C|, the cycle C is chordless and
so (since vertex strength-k chordal implies chordal) C is a triangle A where
strgy(A) = 1. Thus strg(v) > strg(A) for every v € V(A). But since every
maxclique of G that contains A also contains every v € V(A), it follows that
strg(v) > strg(A) [contradicting (8.1) with & = min{strg(v) : v € V(A)}].

(8.0) < (8.2): Suppose G satisfies condition (8.2). Then no induced
subgraph H of G can be isomorphic to Cy with & > 4 (a chordless cycle
of vertices that are strength-2 in G), or to a k-sun, kite, gem, or net graph
(each containing a triangle A of vertices that are strength-2 in G while
strg(A) =1). Thus (8.0) holds.

(8.2) & (8.3) & (8.4) follows since (8.3) and (8.4) simply restate (8.2).

|
If a graph G is vertex strength-k chordal for all £ > 2, then G is strongly
chordal and so is certainly vertex strength-1 chordal. Therefore, the k > 2
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restriction in condition (8.1) could just as well be replaced with k& > 1, and
no ‘Corollary 9’ is needed to parallel Corollary 6.
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