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Abstract

Define a complete subgraph Q to be simplicial in a graph G when Q

is contained in exactly one maximal complete subgraph (‘maxclique’)
of G; otherwise, Q is nonsimplicial. Several graph classes—including
strong p-Helly graphs and strongly chordal graphs—are shown to have
pairs of peculiarly related new characterizations: (i) for every k ≥ 2,
a certain property holds for the complete subgraphs that are in k or
more maxcliques of G, and (ii) in every induced subgraph H of G, that
same property holds for the nonsimplicial complete subgraphs of H .

One example: G is shown to be hereditary clique-Helly if and only
if, for every k ≥ 2, every triangle whose edges are each in k or more
maxcliques is itself in k or more maxcliques; equivalently, in every
induced subgraph H of G, if each edge of a triangle is nonsimplicial in
H , then the triangle itself is nonsimplicial in H .

Keywords: simplicial clique, strongly chordal graph, trivially perfect
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A maxclique of a graph is an inclusion-maximal complete subgraph. For
each complete subgraph Q of a graph G, define strG(Q) to be the number of
maxcliques of G that contain Q. Notice that if H is an induced subgraph of
G and Q is a complete subgraph of H, then strH(Q) ≤ strG(Q). As in [5],
define Q to be strength-k in G if strG(Q) ≥ k.
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Define Q to be a simplicial clique of G if strG(Q) = 1 and to be a nonsim-

plicial clique of G if Q is strength-2 in G. A k-clique is a complete subgraph
of order k. When convenient, a complete subgraph Q will be identified with
its vertex set V (Q).

The distinguishing feature of each ‘Theorem n’ or ‘Corollary n’ below
can be loosely described as the equivalence of two statements involving a
parameterized graph property P(k) (defined in terms of the strengths of
complete subgraphs):

(n.1) G satisfies P(k) for all k ≥ 2.

(n.2) Every induced subgraph of G satisfies P(2).

Typically, there will also be equivalent statements (n.0), asserting G to be
in a known graph class, and (n.3), expressed in terms of (non)simplicial
cliques.

1. Clique Strength and Strong p-Helly Graphs

A graph is strong p-Helly if every family Q of maxcliques contains a subfam-
ily Q′ with |Q′| ≤ p such that ∩Q = ∩Q′. Reference [2] proves that these are
also precisely the graphs that are hereditary p-clique-Helly (meaning that,
for every family Q of maxcliques, if every p members of Q have a vertex in
common, then all the members of Q have a vertex in common). Theorem 1
will contain additional characterizations.

Theorem 1. The following are equivalent for every graph G and p ≥ 2:

(1.0) G is strong p-Helly.

(1.1) For every k ≥ 2 and every p-clique Q of G, if each (p− 1)-clique that

is contained in Q is strength-k in G, then Q is also strength-k in G.

(1.2) For every p-clique Q of an induced subgraph H of G, if each (p − 1)-
clique that is contained in Q is strength-2 in H, then Q is also strength-

2 in H.

(1.3) If a p-clique Q is simplicial in an induced subgraph H of G, then at

least one (p − 1)-clique that is contained in Q is simplicial in H.

Proof. (1.1) ⇒ (1.2): Suppose p ≥ 2 and G satisfies condition (1.1). Sup-
pose H is any proper induced subgraph of G and Q is a p-clique of H such
that, if Q− is a (p − 1)-clique with Q− ⊂ Q, then Q− is strength-2 in H.
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But assume Q itself is not strength-2 in H [arguing by contradiction]; so
strH(Q) = 1. (Since each Q− is also strength-2 in G, the k = 2 case of (1.1)
implies Q is strength-2 in G.)

Let g = strG(Q). Then Q will be in g − 1 more maxcliques in G than
in H. Therefore, each of the (p− 1)-cliques contained in Q will be strength-
(2 + [g− 1]) in G, and so strength-(g +1) in G. But then (1.1) implies that
Q is strength-(g + 1) in G [contradicting that strG(Q) = g].

(1.1) ⇐ (1.2): Suppose p ≥ 2 and G satisfies condition (1.2). Suppose Q
is a p-clique and Q1, . . . , Qp are the (p− 1)-cliques contained in Q. Suppose
k ≥ 2 and each Qi is strength-k in G, but Q itself is not strength-k in G

[arguing by contradiction].

SupposeQ is contained in the pairwise-distinct maxcliques Q1, . . . , Qg of
G where strG(Q) = g < k, and suppose each Qi is contained in the pairwise-

distinct maxcliques Q1, . . . , Qg, Q1

i , . . . , Q
k−g
i of G where each Q

j
i ∩Q = Qi.

Let H be the subgraph of G induced by

Q ∪

p
⋃

i=1

k−g
⋃

j=1

Q
j
i −

g
⋃

j=1

(Qj −Q).

Then each Qi is strength-2 in H, but strH(Q) = 1 [contradicting (1.2)].

(1.2) ⇔ (1.3): Condition (1.3) simply restates (1.2) using that Q is
strength-2 in H if and only if Q is nonsimplicial in H.

(1.0) ⇔ (1.3): This follows from [2, Theorem 4].

Notice that the proof of (1.1) ⇔ (1.2) in Theorem 1 did not use the char-
acterization of strong-p Helly graphs from [2]. This enables the p = 2 and
p = 3 cases of Theorem 1 to be presented separately as Corollaries 2 and 3.

Let Ck and Pk denote, respectively, a cycle or path on k vertices. For
any graphs G,H1, . . . ,Hs, say that G is {H1, . . . ,Hs}-free (or simply H1-

free if s = 1) if G contains no induced subgraph isomorphic to any of the
graphs H1, . . . ,Hs. A graph is trivially perfect if it is {C4, P4}-free; see [1, 7]
for additional characterizations (and additional names).

Corollary 2. The following are equivalent for every graph G:

(2.0) G is trivially perfect.

(2.1) For every k ≥ 2 and every edge xy of G, if both x and y are strength-k

in G, then edge xy is strength-k in G.
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(2.2) For every edge xy of an induced subgraph H of G, if both x and y are

strength-2 in H, then edge xy is strength-2 in H.

(2.3) If an edge e is simplicial in an induced subgraph H of G, then at least

one endpoint of e is simplicial in H.

Proof. The k = 2 case of condition (2.1) implies that G is {C4, P4}-
free—and so implies (2.0)—by letting xy be an edge of an induced C4 or
P4 subgraph. Conversely, if (2.1) fails, suppose xy ∈ E(G) where x is in
a maxclique that does not contain y and y is in a maxclique that does
not contain x. Then those maxcliques contain edges xx′ and yy′ where
{x′, x, y, y′} induces either a P4 or a C4 subgraph, making (2.0) fail.

The equivalence of (2.1) and (2.2) is the p = 2 case of Theorem 1.
Condition (2.3) simply restates (2.2).

A graph is clique-Helly if, for every family F of maxcliques, if every two
members of F have a vertex in common, then all the members of F have
a vertex in common. A graph is hereditary clique-Helly if every induced
subgraph is clique Helly. See [1, 5, 8, 9] for details. Reference [9] also proves
that G is hereditary clique-Helly if and only if, for every maxclique Q of
an induced subgraph H of G, at least one edge of Q is simplicial in H.
The hereditary clique-Helly graphs are, of course, precisely the hereditary
2-clique-Helly graphs (and so are precisely the strong 2-Helly graphs).

Corollary 3. The following are equivalent for every graph G:

(3.0) G is hereditary clique-Helly.

(3.1) For every k ≥ 2 and every triangle xyz of G, if each edge xy, xz, and

yz is strength-k in G, then triangle xyz is strength-k in G.

(3.2) For every triangle xyz of an induced subgraph H of G, if each edge xy,

xz, and yz is strength-2 in H, then triangle xyz is strength-2 in H.

(3.3) If a triangle ∆ is simplicial in an induced subgraph H of G, then at

least one edge of ∆ is simplicial in H.

Proof. The equivalence of (3.0) and (3.1) restates [5, Theorem 2]. The
equivalence of (3.1) and (3.2) is the p = 3 case of Theorem 1. Condition
(3.3) simply restates (3.2).

Sections 2 and 3 go in a different direction, generalizing Corollary 3 by
replacing triangles with arbitrary cycles.
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2. Edge Strength and Chordal Graphs

A chord of a cycle is an edge that joins two nonconsecutive vertices of the
cycle (only cycles of length four or more can have chords). A graph is chordal
if and only if every cycle of length four or more has a chord; see [1, 7] for
thorough discussions. Define a graph to be strength-k chordal if every cycle
of strength-k edges either has a strength-k chord or is a strength-k triangle.
Being strength-1 chordal is equivalent to being chordal, and Corollary 6 will
characterize being strength-k chordal for all k ≥ 1.

The graph G1 in Figure 1 is the smallest chordal graph that is not
strength-2 chordal—the three edges between the vertices 2, 3, and 5 are
each strength-2, but the triangle they form is simplicial in G. The graph
G2 is strength-2 chordal—the nine edges incident to vertices 3 or 4 are
each strength-2 (indeed, the edge 34 is strength-4), as are the four triangles
that contain edge 34—yet G2 is not chordal because of the chordless cycle
1, 2, 6, 5, 1. (The graph G2 is vacuously strength-k chordal for all k > 2.)
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Figure 1. Graph G1 is chordal, but not strength-2 chordal;

G2 is strength-k chordal for all k ≥ 2, but not chordal.

As is common when working with cycle spaces, a sum of cycles will mean
the symmetric difference of the edge sets of those cycles—in other words,
an edge e is in the sum (denoted) C1 ⊕ · · · ⊕Ck if and only if e is in an odd
number of the cycles C1, . . . , Ck. The notation |C| will be used to denote the
length of a cycle C, and C is a k-cycle if |C| = k. Lemma 4 will generalize
the following simple fact from [4, Lemma 3.2] (also see [6, Corollary 1]): A

graph is chordal if and only if every cycle C is the sum of |C| − 2 triangles.

Lemma 4. A graph is strength-k chordal if and only if every cycle C of

strength-k edges is the sum of |C| − 2 strength-k triangles.

Proof. First suppose G is a chordal graph in which every cycle C of
strength-k edges with |C| = l ≥ 3 is the sum of l − 2 strength-k triangles
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∆1, . . . ,∆l−2. If l = 3, then C itself is a strength-k triangle ∆1. Suppose
l ≥ 4 [toward showing that C has a strength-k chord]. Because G is chordal,
each edge of C must be in some triangle ∆i. The pigeon-hole principle im-
plies that some ∆i must contain two (necessarily consecutive) edges of C.
Then the third side of ∆i is a chord of C. Since ∆i is strength-k, that third
side is a strength-k chord of C.

Conversely, suppose G is a strength-k chordal graph and C is a cycle of
strength-k edges. Argue by induction on |C| = l ≥ 3. If l = 3, then C is
a strength-k triangle and so C is trivially the sum of l − 2 = 1 strength-k
triangles. Now suppose l ≥ 4. Since G is strength-k chordal, cycle C has
a strength-k chord e. Then C = Ca ⊕ Cb where Ca and Cb are cycles of
strength-k edges from E(Ca) ∪ E(Cb) ∪ {e}, with {e} = Ca ∩ Cb, |Ca| = a,
|Cb| = b, and a + b = l + 2. The induction hypothesis implies that Ca

[respectively, Cb] is the sum of a − 2 [or b − 2] strength-k triangles. This
makes C the sum of (a− 2) + (b− 2) = l − 2 strength-k triangles.

Theorem 5. The following are equivalent for every graph G:

(5.1) G is strength-k chordal for all k ≥ 2.

(5.2) Every induced subgraph of G is strength-2 chordal.

(5.3) Every cycle of nonsimplicial edges in an induced subgraph H of G

either has a chord that is nonsimplicial in H or is a nonsimplicial

triangle of H.

(5.4) Every cycle C of nonsimplicial edges in an induced subgraph H of G

is the sum of |C| − 2 nonsimplicial triangles of H.

Proof. (5.1) ⇒ (5.2): Suppose G satisfies condition (5.1). Suppose H is
any induced subgraph of G and C is a cycle of edges that are strength-2 inH,
but C is not the sum of |C|−2 triangles that are strength-2 in H [arguing by
contradiction, using Lemma 4]; further suppose |C| is minimum with respect
to all that. By the minimality of |C|, every chord of C is simplicial in H.
This implies that every triangle ∆ with V (∆) ⊆ V (C) is simplicial in H.
Thus, for every edge e and triangle ∆, if e ∈ E(C)∩E(∆) and V (∆) ⊆ V (C),
then strH(e) > strH(∆). But since every maxclique of G that contains such
a ∆ also contains such edges e, the same inequality holds with H replaced
by G [contradicting (5.1), using Lemma 4 with k = min{strG(e) : e ∈ E(C)].

(5.1) ⇐ (5.2): Suppose G satisfies condition (5.2), toward proving G is
strength-k chordal by induction on k ≥ 2. The k = 2 basis step is immediate.
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For the inductive step, suppose G is strength-k chordal and C is a cycle of
edges that are strength-(k+1) in G, but C is not the sum of |C|−2 triangles
that are strength-(k + 1) in G [arguing by contradiction, using Lemma 4];
further suppose |C| = l ≥ 3 is minimal with respect to all that. By the
minimality of l, cycle C has no chords that are strength-(k+1) in G. Since
G is strength-k chordal, C is the sum of triangles ∆1, . . . ,∆l−2 of G that are
strength-k in G, where each ∆i is made from edges of C that are strength-
(k + 1) in G together with chords e of C with strG(e) = k. Therefore if ∆i

and ∆j share a chord of C, then V (∆i) ∪ V (∆j) must induce a complete
subgraph Q1 that is strength-k in G. Performing similar consolidations of
complete subgraphs n ≤ l− 3 times partitions {∆1, . . . ,∆l−2} into l− 2−n

parts that are sets of contiguous triangles that are strength-k in G and whose
vertices induce l − 2 − n complete subgraphs that are strength-k in G and
that cover V (C). Performing this consolidation n = l − 3 times shows that
V (C) induces a complete subgraph Qn that is strength-k in G. Since C

has no chords that are strength-(k + 1) in G, it follows that strG(Qn) = k.

Yet each e ∈ E(C) is strength-(k + 1) in G and so is in a maxclique Qe of
G that has E(Qe) ∩ E(Qn) = {e} (again using that C has no chords that
are strength-(k + 1) in G). But then V (Qn) together with one vertex from
V (Qe) − V (Qn) for each e ∈ E(C) would induce a subgraph H of G such
that each edge of C is strength-2 in H while strH(Qn) = 1 and each chord
e of C has strH(e) = 1 [contradicting (5.2)].

(5.2) ⇔ (5.3) ⇔ (5.4) follows since (5.3) and (5.4) simply restate (5.2)
(using Lemma 4).

For k ≥ 3, a k-sun—sometimes called a complete k-sun or trampoline, see
[1, 3, 5, 7]—is a graph that consists of an even-length cycle v1, . . . , v2k, v1,
together with all of the

(

k
2

)

chords between even-subscripted vertices. (The
graph G1 in Figure 1 is a 3-sun, and the subgraph H constructed in the
(5.1) ⇐ (5.2) proof of Theorem 5 is an l-sun.) A graph is strongly chordal

if it is chordal and no induced subgraph is isomorphic to any k-sun; see
[1, 3, 5, 7] for other characterizations of this widely-studied concept.

Corollary 6. The following are equivalent for every graph G:

(6.0) G is strongly chordal.

(6.1) G is strength-k chordal for all k ≥ 1.

(6.2) G is chordal and every induced subgraph of G is strength-2 chordal.
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(6.3) G is chordal and every cycle of nonsimplicial edges in an induced

subgraph H of G either has a chord that is nonsimplicial in H or

is a nonsimplicial triangle of H.

(6.4) G is chordal and every cycle C of nonsimplicial edges in an induced

subgraph H of G is the sum of |C| − 2 nonsimplicial triangles of H.

Proof. The equivalence of (6.0) and (6.1) restates [5, Theorem 1]. The
equivalence of conditions (6.i) and (6.j) when 1 ≤ i < j ≤ 4 follows imme-
diately from the equivalence of conditions (5.i) and (5.j).

3. Vertex Strength and Chordal Graphs

Recognizing that cycles are determined by their vertices just as well as by
their edges, define a graph to be vertex strength-k chordal if every cycle of
strength-k vertices either has a strength-k chord or is a strength-k triangle.
(Strength-k chordal graphs could have been called ‘edge strength-k chordal’
graphs.) Being vertex strength-1 chordal is equivalent to being chordal.
Clearly, every cycle of strength-k edges is a cycle of strength-k vertices, and
so every vertex strength-k chordal graph is strength-k chordal. The three
graphs in Figure 2 are strength-2 chordal but not vertex strength-2 chordal
(because each vertex shown as ‘hollow’ is a strength-2 vertex).
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Figure 2. From left to right, the kite, gem, and net graphs.

Lemma 7. A graph is vertex strength-k chordal if and only if every cycle

C of strength-k vertices is the sum of |C| − 2 strength-k triangles.

Proof. This is proved by a straightforward modification of the proof of
Lemma 4 (observing that every strength-k edge has strength-k endpoints).

Theorem 8. The following are equivalent for every graph G:

(8.0) G is {kite, gem, net}-free strongly chordal.
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(8.1) G is vertex strength-k chordal for all k ≥ 2.

(8.2) Every induced subgraph of G is vertex strength-2 chordal.

(8.3) Every cycle of nonsimplicial vertices in an induced subgraph H of G

either has a chord that is nonsimplicial in H or is a nonsimplicial

triangle of H.

(8.4) Every cycle C of nonsimplicial vertices in an induced subgraph H of

G is the sum of |C| − 2 nonsimplicial triangles of H.

Proof. (8.0) ⇒ (8.1): Suppose k ≥ 2 and G satisfies condition (8.0), and
C is a cycle of strength-k vertices. Since G is chordal, C is the sum of
|C| − 2 triangles. Suppose any of those triangles—say triangle v1v2v3—has
strG(v1v2v3) < k [arguing by contradiction, using Lemma 7, showing that
G would contain an induced kite, gem, net, or 3-sun]. Then for each i ∈
{1, 2, 3}, there exists a vertex wi with each wi ∼ vi and wi 6∈ {v1, v2, v3} and
wi not adjacent to some vj . Thus |{w1, w2, w3}| > 1. Let H be the subgraph
of G that is induced by {v1, v2, v3, w1, w2, w3}. If |{w1, w2, w3}| = 2, then
H is an induced kite or gem [a contradiction]. If |{w1, w2, w3}| = 3, then
either H is an induced net or 3-sun or H contains an induced kite or gem
[a contradiction].

(8.1) ⇒ (8.2): Suppose G satisfies condition (8.1). Suppose H is any
induced subgraph of G and C is a cycle of vertices that are strength-2 in H,
but C is not the sum of |C| − 2 triangles that are strength-2 in H [arguing
by contradiction, using Lemma 7]; further suppose |C| is minimum with
respect to all that. By the minimality of |C|, the cycle C is chordless and
so (since vertex strength-k chordal implies chordal) C is a triangle ∆ where
strH(∆) = 1. Thus strH(v) > strH(∆) for every v ∈ V (∆). But since every
maxclique of G that contains ∆ also contains every v ∈ V (∆), it follows that
strG(v) > strG(∆) [contradicting (8.1) with k = min{strG(v) : v ∈ V (∆)}].

(8.0) ⇐ (8.2): Suppose G satisfies condition (8.2). Then no induced
subgraph H of G can be isomorphic to Ck with k ≥ 4 (a chordless cycle
of vertices that are strength-2 in G), or to a k-sun, kite, gem, or net graph
(each containing a triangle ∆ of vertices that are strength-2 in G while
strG(∆) = 1). Thus (8.0) holds.

(8.2) ⇔ (8.3) ⇔ (8.4) follows since (8.3) and (8.4) simply restate (8.2).

If a graph G is vertex strength-k chordal for all k ≥ 2, then G is strongly
chordal and so is certainly vertex strength-1 chordal. Therefore, the k ≥ 2
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restriction in condition (8.1) could just as well be replaced with k ≥ 1, and
no ‘Corollary 9’ is needed to parallel Corollary 6.
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