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Abstract

In this paper we investigate the minimum number of colors required
for a proper edge coloring of a finite, undirected, regular graph G in
which no two adjacent vertices are incident to edges colored with the
same set of colors. In particular, we study this parameter in relation
to the direct product of G by a path or a cycle.
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1. Introduction

Let G = (V,E) be a finite, simple and undirected graph. A proper edge
coloring of G is a map f from E to a set of colors C such that f((v, w)) 6=
f((v, z)) for every pair of adjacent edges (v, w), (v, z).

The color set of a vertex v ∈ V is the set C(v) of colors of edges incident
to v. A proper edge coloring of G is adjacent vertex distinguishing (for short
avd) if C(v) 6= C(w) whenever vertices v, w are adjacent (see [1], [2]). The
same coloring is also called adjacent strong edge coloring [5]. The minimum
number of colors for any avd-coloring of G is denoted χ′

a(G) [2] and called
the avd chromatic index of G.

Let ∆ denote the maximum degree of G; from the definition it follows
that χ′

a(G) ≥ ∆ and ifG has two adjacent vertices of degree ∆, then χ′

a(G) ≥
∆+ 1.

In [1] the authors prove that χ′

a(G) ≤ 5 for graphs of the maximum
degree 3 and χ′

a(G) ≤ ∆ + 2 for bipartite graphs. In [5] the following
conjecture was made:

If G is a simple, connected graph of at least 3 vertices, of maximum

degree ∆ and different from C5, then

(1) ∆ ≤ χ′

a(G) ≤ ∆+ 2.

The direct product G × H of two graphs G = (V,E) and H = (W,F ) is
the graph with vertex-set V (G × H) = V × W and edge-set E(G × H) =
{(a, v)(b, w) | (a, b) ∈ E, (v, w) ∈ F}.

This product, also referred to as, for instance, the tensor product, the
Kronecker product, the categorical product and the conjunction, has appli-
cations in engineering, computer science and related disciplines. It is com-
mutative and associative. For terminologies not defined here we follow [4].

As usual Cn and Pn denote respectively a cycle and a path on n vertices.
In relation to the direct product of cycles and paths, recall that each of
C2n+1 × Pm and C2n+1 × Cm is a connected graph while each of Pn × Pm,
C2n ×Pm and C2n ×C2m consists of two connected components. Moreover,
the two components of C2n × Pm are isomorphic [3].

The direct product of a bipartite graph and every other graph is bipar-
tite; thus all the above mentioned products are bipartite except the products
of cycles of odd length.

We introduce a notion which will be useful in the article.
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Definition 1. A sequence S1, S2, . . . , Sm of d-subsets of a (2d + 1)-set C,
d > 0, is called an avd d-sequence of length m if the following properties
hold, for 2 ≤ i ≤ m− 1:

• A1: Every set Si is disjoint from Si−1 and Si+1;

• A2: The sets Si−1 and Si+1 are distinct.

An avd sequence of length m is called cyclic avd if the same properties hold
for 1 ≤ i ≤ m, where indices are modulo m.

Notice that in a cyclic avd d-sequence last set is disjoint from the first one
and different from the second, while the first has to be different from the
next to last.

In this article we prove that there exists an avd d-sequence of every
length m > 1 and a cyclic avd sequence of every length m ≥ 2d+1 and also
of even length 4 < m ≤ 2d. This allows us to prove that for these values of m
and a d-regular graph G, χ′

a(G×Pm) = χ′

a(G×Cm) = 2d+1 (Theorems 1,
4). Moreover, in Proposition 3 we prove that for odd 1 < m ≤ 2d+ 1 cyclic
avd d-sequences of length m do not exist. This result does not imply that
the corresponding avd chromatic index is different from 2d + 1, as proved,
for instance, in relation to C3 × C3 (Figure 1).

The article is subdivided into five sections. In Section 2 we determine
properties of avd d-sequences; in Section 3 we consider the problem of the
avd chromatic index of the direct product of a regular graph G by a path; in
Section 4 we consider a similar problem in relation to the direct product of
G by a cycle and in Section 5 in relation to the direct product of two cycles.

2. avd d-sequences

In this section we establish the existence and some properties of avd d-
sequences. We start with an example of an avd d-sequence of length m > 1;
in particular, we consider the sequence Σm of d-subsets of C = {1, 2, . . . ,
2d+ 1}

(2) Q1, Q2, . . . , Qm,

where every set Qi is obtained by taking d cyclically consecutive elements of
C; thusQ1 = {1, 2, . . . , d}, Q2 = {d+1, . . . , 2d}, Q3 = {2d+1, 1, 2, . . . , d−1},
and so on. It is easy to see that Σm satisfies A1 and A2.
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Moreover it is immediate to prove the following Lemma.

Lemma 1. In relation to the sequence Σm, the minimum integer m such

that Qm+1 = Q1 is m = 2d+ 1.

From (2) and Lemma 1, it follows

Proposition 1. There exists an avd d-sequence of every length m > 1.

Notice that for m = 2d+ 1 the avd d-sequence (2) is also cyclic.

Lemma 2. Let S1, S2, . . . , Sm be an avd d-sequence of length m; then, for

every 1 ≤ i ≤ m− 2, | Si ∩ Si+2 |= d− 1.

Proof. Si+2 is disjoint from Si+1 and distinct from Si, then Si+2 = R∪H,
where R = C \ (Si∪Si+1) has cardinality 1 and H ⊆ Si. Then | Si∩Si+2 |=
| H |= d− 1.

The concatenation of two d-sequences R = (R1, R2, . . . , Rr) and T = (T1, T2,

. . . , Tq) is the d-sequence RT = (R1, R2, . . . , Rr, T1, T2, . . . , Tq). If R = T ,
we write R2. In an obvious way the definition may be extended to a greater
number of d-sequences.

Assume that R and T are avd. In this case, if T1 is disjoint from Rr

and distinct from Rr−1 and T2 is distinct from Rr, then also RT is avd. In
addition if Tq is disjoint from R1, distinct from R2 and Tq−1 is distinct from
R1, then RT is cyclic avd.

Lemma 3. If there exists a cyclic avd sequence of length r, then, for every

integer t > 1, there exists a cyclic avd sequence of length tr.

Proof. Let W : T1, T2, . . . , Tr be a cyclic avd sequence of length r; then
the sequence W t obtained by concatenating t times W is clearly cyclic
avd.

Lemma 4. For every d ≥ 2, there is no cyclic avd d-sequence of length 4.

Proof. By way of contradiction let us assume that there is a cyclic avd

sequence of length 4: S1, S2, S3, S4. Let S1 = {1, 2, . . . , d} and S2 = {d +
1, . . . , 2d}. Now S3 has to be disjoint from S2 and different from S1. Thus
S3 = {2d+1}∪H, where H ⊆ S1. Thus we obtain the impossible condition
that S4, which is disjoint from S1 and S3, has to coincide with S2.
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3. Direct Product of a Regular Graph by a Path

Let G be a simple, regular graph of degree d, having n > 1 vertices.

First consider the following result, where, in relation to a graph H and
an integer d > 1, dH denotes the multigraph obtained from H by replacing
every edge e by d edges having the same vertices of e.

Proposition 2. For a d-regular graph G and an arbitrary graph H, we have

χ′

a(G×H) ≤ χ′

a(dH).

Proof. Let α be a χ′

a-coloring of dH. We prove that we are able to
construct an avd coloring of G×H, using the colors of α. Let (u, v) be an
edge of H; it is easy to see that G× (u, v) is an induced subgraph of G×H,
which turns out to be d-regular and bipartite. It follows that its chromatic
index equals d. We determine a proper coloring of such a subgraph by using
the d colors assigned by α to the d edges (u, v) of dH. By proceeding in the
same way in relation to every edge of H, we obtain a proper coloring β of
G×H. Let (z1, u1) be a vertex ofG×H andD1 the set of colors assigned by β

to the edges incident such a vertex. It follows that D1 coincides with the set
of colors assigned to the edges incident to u1 in dH. Now let (z2, u2) a vertex
of G×H adjacent to (z1, u1) and D2 the similar set of colors. Because α is
an avd-coloring it follows that D1 6= D2. Then also the coloring β assigned
to the edges of G×H is avd and the result follows.

Now consider the direct product G× Pm, where m > 1.

Denote V (Pm) = {z1, z2, . . . , zm}. We see that G × Pm is the union of
m−1 edge disjoint subgraphs Hi = G× (zi, zi+1), 1 ≤ i ≤ m−1. The edges
of Hi are the pairs ((vt, zi), (vj , zi+1)) and ((vt, zi+1), (vj , zi)), where vt, vj
are adjacent vertices of G. Note that Hi is bipartite; moreover, it is not
connected and consists of two components isomorphic to G if and only if G
is bipartite. In the case of the direct product of G by a cycle of m vertices
Cm, the same previous partition holds, with the addition of the subgraph
Hm = G× (zm, z1).

In any case, the maximum degree of Hi coincides with the maximum
degree of G; thus, as G is regular of degree d, Hi is regular of degree d and
G× Pm has maximum degree 2d. For m > 3, there are adjacent vertices of
degree 2d and χ′

a(G× Pm) ≥ 2d+ 1.
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Lemma 5. For d > 0 and m > 3 χ′

a(dPm) = 2d + 1, while for m = 3
χ′

a(dP3) = 2d.

Proof. Let us assume that m > 3. From Proposition 1 it follows that there
exists an avd d-sequence of every length m > 1, denoted Q1, Q2, . . . Qm. Let
V (Pm) = (z1, z2, . . . , zm). If we assign to the d-edges (zi, zi+1) of dPm,
1 ≤ i ≤ m − 1, the d elements of Qi as colors, it is easy to see that we
obtain an avd (2d+ 1)-coloring of dPm. In the case of m = 3 it is sufficient
to consider as sets of colors two disjoint d-sets Q1, Q2 and obtain an avd

2d-coloring of P3.

Theorem 1. Let G be a d-regular graph and m > 2 a positive integer. Then

(3) χ′

a(G× Pm) = χ′

a(dPm) =

{

2d for m = 3,
2d+ 1 for m > 3.

Proof. By Proposition 2 and Lemma 5 we obtain that

(4) χ′

a(G× Pm) ≤ χ′

a(dPm) =

{

2d for m = 3,
2d+ 1 for m > 3.

Letm = 3. As the maximum degree ofG×P3 holds 2d, then χ′

a(G×Pm) ≥ 2d
and by (4) we obtain the result.

Now let us assume that m > 3. Because G × Pm contains adjacent
vertices of maximum degree 2d, then χ′

a(G × Pm) ≥ 2d + 1 and by (4) the
result still follows.

4. Direct Product of a Regular Graph by a Cycle

In this section we investigate the problem of the existence of cyclic avd d-
sequences of even and odd length; the results allow us to determine the avd

chromatic index of the direct product of a d-regular graph G by a cycle.

Theorem 2. For d ≥ 3, there exists a cyclic avd d-sequence of every even

length m > 4.

Proof. For d ≥ 3, consider the d-subsets A = {1, 2, . . . , d − 1} and B =
{d+ 1, d+ 2, . . . , 2d− 1} of the set S = {1, 2, . . . , 2d+ 1} and the following
d-sequence of length 6, 8, 10 respectively:
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D6 : A ∪ {d}, B ∪ {2d}, A ∪ {2d+ 1}, B ∪ {d}, A ∪ {2d}, B ∪ {2d+ 1},

D8 : A ∪ {d}, B ∪ {2d}, A ∪ {2d + 1}, B ∪ {d}, (A ∪ {2d, 2d + 1}) \ {1},
B ∪ {1}, (A ∪ {d, 2d}) \ {1}, B ∪ {2d+ 1},

D10 : A ∪ {d}, B ∪ {2d}, A ∪ {2d + 1}, B ∪ {d}, A ∪ {2d, 2d + 1} \ {1},
B ∪ {1}, A ∪ {d, 2d, 2d+ 1} \ {1, 2}, B ∪ {2}, A ∪ {d, 2d} \ {2}, B ∪ {2d+ 1}.

It is easy to see that D6, D8, D10 are cyclic avd. Notice that the first two
sets of D6, D8, D10 coincide. This allows to concatenate D6 by D6, D8,
D10 and obtain cyclic avd sequences of length 12, 14, 16. By repeating the
procedure of concatenation we are able to obtain sequences of every possible
even length.

For example, we may find for d = 3 the sequences:

D6 : 123, 456, 127, 345, 126, 457,

D8 : 123, 456, 127, 345, 267, 145, 236, 457,

D10 : 123, 456, 127, 345, 267, 145, 367, 245, 136, 457.

Theorem 3. For d > 2, there exists a cyclic avd d-sequence of every odd

length m ≥ 2d+ 1.

Proof. Notice that the d-sequence from (2), of length m = 2d + 1, turns
out to be cyclic. Denote such a sequence C2d+1 : Q1, Q2, . . . , Q2d+1. Now
consider the d-sequence C2d+3 of length 2d+3 obtained from C2d+1 with the
replacement of Q2d by Q2d ∪ {d+2} \ {3} and Q2d+1 by Q2d+1 ∪ {3} \ d+2
and the addition of the two sets Q2d+2 = {1, 2, 4, . . . , d + 1} and Q2d+3 =
{d+ 2, . . . 2d+ 1}.

Moreover consider the d-sequence C2d+5 obtained from C2d+1 by replac-
ing Q2d+1 by the set (Q2d+1 \ {2d}) ∪ {1} and the the addition of the four
d-sets Q2d−2, Q2d−1, Q2d, Q2d+1.

It is not difficult to prove that C2d+3 and C2d+5 are cyclic avd. Notice
that the first two sets in the sequences C2d+1, C2d+5, C2d+7 coincide and
also coincide with the same sets of the cyclic avd sequences of length even,
as proved in Theorem 2. This allows to concatenate C2d+1 by the avd

sequences of even length h ≥ 6, thus obtaining, together with the sequences
C2d+1, C2d+3 and C2d+5, avd sequences of every odd length m ≥ 2d+ 1.
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For d = 3, an example of avd 3-sequences of length 7, 9, 11 is the following:

C7 : 123, 456, 127, 345, 167, 234, 567,

C9 : 123, 456, 127, 345, 167, 245, 367, 124, 567,

C11 : 123, 456, 127, 345, 167, 234, 156, 237, 145, 236, 457.

Lemma 6. For d > 2 and a positive integer m > 4, when even, or m ≥
2d+ 1, when odd, χ′

a(dCm) = 2d+ 1.

Proof. By Theorem 2 in the case of m even and Theorem 3 in the case of
m odd, there exists a cyclic avd d-sequence, denoted (Q1, Q2, . . . , Qm). Let
V (Cm) = {v1, v2, . . . , vm}; if we assign to the d edges (vi, vi+1), 1 ≤ i ≤ m,
the d colors of Qi we obtain an avd coloring of dCm.

Theorem 4. Let G be a d-regular graph, where d > 2, and a positive integer

m > 4, when even, or m ≥ 2d+ 1, when odd. Then

(5) χ′

a(G× Cm) = 2d+ 1.

Proof. By Proposition 2 and Lemma 6 we have χ′

a(G × Cm) ≤ 2d + 1.
By the condition that G×Cm contains adjacent vertices of degree 2d, then
χ′

a(G× Cm) ≥ 2d+ 1 and the result follows.

For odd values of 7 ≤ m ≤ 2d− 1 we could have χ′

a(G× Cm) = 2d+ 1; but
the coloring is not be represented by a cyclic avd d-sequence.

Proposition 3. Let 1 < m < 2d + 1 be an odd integer and d > 2; there is

not a cyclic avd d-sequence of length m.

Proof. Let us assume that there exists a cyclic avd d-sequence S of odd
length m, where 1 < m < 2d + 1, whose elements belong to a (2d + 1)-
set C. Notice that, because S is cyclic, every element a ∈ C belongs to
at most m−1

2
sets of S. Then the number of elements involved in S is at

most m−1

2
· (2d + 1); by the condition on S we also have that the number

of elements involved in S is m · d. Thus we obtain the impossible inequality
md ≤ m−1

2
· (2d+ 1).
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5. Direct Product of Two Cycles

In this section we investigate the case of the direct product of two cycles,
which turns out the case of d = 2 excluded in previous section.

Lemma 7. There is not a cyclic avd 2-sequence of length 7.

Proof. Assume to the contrary that D1, . . . , D7 is a cyclic avd sequence
of length 7, where Di ⊆ {1, 2, . . . , 5}, for 1 ≤ i ≤ 7. Notice that every
element has to appear at most 3 times in the subsets which form W , because
otherwise there exist two non-disjoint consecutive sets. Without loss of
generality we may assume that D1 = {1, 2}, D2 = {3, 4} and 1, 2, 3, 4 appear
3 times; then 1, 2 have to appear in Di, 3 ≤ i ≤ 6, two times. Let 1 ∈ D3.
If 1 ∈ D6 it is not possible to arrange 2 in two non consecutive sets. Thus
1 ∈ D5 and 2 ∈ D4, D6. Now we see that 3, 4 have to belong two times
to Dj , 4 ≤ j ≤ 7. One of them belongs to D4. Assume that 3 ∈ D4;
then it follows that 3 ∈ D7. Now we have the impossible condition that
4 ∈ D5, D6.

Notice that previous Lemma does not imply that χ′

a(Cn × C7) > 5. The
claim only states that for m = 7 there is not a cyclic avd 2-sequence.

Proposition 4. There exist cyclic avd 2-sequences of length m ≥ 5, except
for m = 7.

Proof. For m = 5, 6, 8, 9 we may consider the following sequences, where
Wi denote a cyclic avd sequence of length i:

W5 : 12, 34, 51, 23, 45,

W6 : 12, 34, 25, 13, 24, 35,

W8 : 12, 34, 15, 23, 45, 13, 24, 35,

W9 : 12, 34, 15, 23, 45, 13, 25, 14, 35.

The case of m = 7 follows from the previous Lemma. Notice that all the se-
quences have the same first two sets. Then by concatenating these sequences
we obtain the result.

If we augment the number of colors we are able to determine suitable avd

cyclic sequences. Indeed, form = 7 we have the following cyclic avd sequence
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of 2-subsets of a 6-set:

12, 34, 56, 12, 34, 25, 63.

Therefore

(6) 5 ≤ χ′

a(Cn × C7) ≤ 6

which is consistent with Conjecture 1.
By previous results we have that when n or m are even and greater than

4 or both odd and greater than 5, but different from 7, then χ′

a(Cn×Cm) = 5.
In Figure 1 we show that the equality holds also for n = m = 3. For
n = m = 4, first we prove the following Lemma.
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Figure 1. AVD coloring of C3 × C3.

Lemma 8. The graph C4×C4 consists of two subgraphs isomorphic to K4,4.

Proof. Let G1 and G2 two copies of C4 and {v1, v2, v3, v4} and {w1, w2,

w3, w4} their sets of vertices respectively. Consider the sets of vertices A1 =
{(v1, w1), (v1, w3), (v3, w1), (v3, w3)} and B1 = {(v2, w2), (v2, w4), (v4, w2),
(v4, w4)}. Notice that the vertices of these sets are independent. Moreover,
all the vertices of A1 are adjacent to all the vertices of B1. Thus H1 is
isomorphic to K4,4. In a similar way the sets A2 = {(v1, w2), (v1, w4),
(v3, w2), (v3, w4)} and B2 = {(v2, w1), (v2, w3), (v4, w1), (v4, w3)} turn out
to be the partite sets of a subgraph H2 isomorphic to K4,4.
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In [5] it was proved that χ′

a(Kn,n) = n + 2; this implies that χ′

a(K4,4) = 6
and therefore that χ′

a(C4×C4) = 6, thus obtaining a case of a direct product
by a cycle satisfying the upper bound of Conjecture 1.
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