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Abstract

A set S ⊆ V is a dominating set of a graph G = (V,E) if every
vertex in V −S is adjacent to at least one vertex in S. The domination

number γ(G) of G equals the minimum cardinality of a dominating
set S in G; we say that such a set S is a γ-set. In this paper we
consider the family of all γ-sets in a graph G and we define the γ-
graph G(γ) = (V (γ), E(γ)) of G to be the graph whose vertices V (γ)
correspond 1-to-1 with the γ-sets of G, and two γ-sets, say D1 and
D2, are adjacent in E(γ) if there exists a vertex v ∈ D1 and a vertex
w ∈ D2 such that v is adjacent to w and D1 = D2 − {w} ∪ {v}, or
equivalently, D2 = D1−{v}∪{w}. In this paper we initiate the study
of γ-graphs of graphs.
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1. Introduction

Let G = (V,E) = (V (G), E(G)) be a graph with vertex set V = {v1, v2, . . . ,
vn} and order n = |V |. The open neighborhood of a vertex v is the setN(v) =
{u|uv ∈ E} of vertices u that are adjacent to v; the closed neighborhood of
v is the set N [v] = N(v) ∪ {v}. Similarly we define the closed neighborhood

of a set S to be the set N [S] =
⋃

v∈S N [v]. A set S ⊆ V is a dominating

set of G if every vertex in V − S is adjacent to at least one vertex in S,
or equivalently if N [S] = V . The domination number γ(G) of G equals the
minimum cardinality of a dominating set S in G; we say that such a set S
is a γ-set.

Given a set of vertices S ⊆ V , by the subgraph of G induced by S we
mean the subgraph G[S] = (S,E ∩ (S × S)). We say that a vertex v ∈ S
has a private neighbor with respect to S if N [v] −N [S − {v}] 6= ∅, in which
case every vertex in N [v]−N [S −{v}] is called a private neighbor of v with
respect to S. A vertex w ∈ V −S is said to be an external private neighbor,
or epn, of a vertex v ∈ S if N(w)∩S = {v}. If vertex v ∈ S is not adjacent to
any vertex in S it is called its own private neighbor, or self-private neighbor,

spn.
It is well known that a graphG can have many γ-sets, even exponentially

many in some cases. We raise the general question: what can you say about
the class of all γ-sets of a graph G? Are some of them somehow better
than others, and for what reasons? What criteria would you use to prefer
one γ-set over another? Here are some possibilities; among all γ-sets S you
might want to either minimize or maximize the following (for elaboration of
the following terms, see [4, 5, 2, 6]):

1. The number of isolated vertices in G[S]; the smaller this number, the
closer S is to being a total dominating set, that is a dominating set for
which G[S] has no isolated vertices; whereas the larger this number is the
closer S is to being an independent dominating set, that is, a dominating
set in which all vertices in G[S] are isolated vertices.

2. The number of isolated vertices in G[V −S]; the smaller this number, the
closer S is to being a restrained dominating set, that is a set for which
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G[V − S] has no isolated vertices. On the other hand, the larger this
number, the closer S is to being a vertex cover, that is a set S of vertices
such that every edge in E contains a vertex in S.

3. The number of edges in G[S].

4. The number of edges in G[V − S]; again, the smaller this number, the
closer S is to being a vertex cover.

5. The number of connected components in G[S]; the smaller this number,
the closer S is to being a connected dominating set, that is, a set for
which G[S] is a connected subgraph.

6. The number of connected components in G[V − S].

7. The number of vertices in V −S that are dominated more than once by
vertices in S; if every vertex in V − S is dominated at least twice then
S is called a 2-dominating set.

8. The number of vertices in S having an external private neighbor in V −S;
the larger this number, the closer S is to being an open irredundant

dominating set, that is, a set S in which every vertex has an external
private neighbor in V − S.

9. The number of vertices in V − S that are private neighbors of vertices
in S; the larger this number, the closer S is to being an open efficient

dominating set, that is, every vertex in V − S is dominated by only one
vertex in S.

10. The number of edges between vertices in S and vertices in V − S.

11. The sum of the degrees deg(v) of all vertices in S.

With this in mind, if one had a way of listing all γ-sets of a graph G, then one
could easily determine any of the above maximum or minimal values over
all γ-sets of G. One way of listing all γ-sets of a graph G is the following.

Consider the family of all γ-sets of a graph G and define the γ-graph
G(γ) = (V (γ), E(γ)) of G to be the graph whose vertices V (γ) correspond
1-to-1 with the γ-sets of G, and two γ-sets, say S1 and S2, form an edge
in E(γ) if there exists a vertex v ∈ S1 and a vertex w ∈ S2 such that (i)
v is adjacent to w and (ii) S1 = S2 − {w} ∪ {v} and S2 = S1 − {v} ∪ {w}.
With this definition, two γ-sets are said to be adjacent if they differ by one
vertex, and the two vertices defining this difference are adjacent in G. We
can consider therefore placing tokens on the vertices of any γ-set S, and
moving any one token in S to an adjacent vertex if the resulting set S′ of
vertices is another γ-set.
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In the following sections we study properties of γ-graphs, and raise quite a
number of open questions.

2. Preliminary Observations

Our first observation has to do with the possibility of removing a vertex v
in a γ-set S and replacing it with an adjacent vertex w ∈ V − S in such a
way that the resulting set S′ = S − {v} ∪ {w} is also a γ-set. This can be
done in the following ways.

If a vertex v ∈ S has two or more non-adjacent external private neigh-
bors, then it cannot be replaced with any vertex in V −S and still produce a
γ-set. However, if a vertex v ∈ S has exactly one external private neighbor
w ∈ V − S then v can be replaced by w to produce another γ-set. Finally,
if vertex v has no external private neighbors, then it must be its own pri-
vate neighbor, and therefore it can be replaced by any neighbor in V −S to
produce another γ-set. From this it follows that if every vertex v in a γ-set
S has two or more non-adjacent external private neighbors, then the vertex
corresponding to S in the γ-graph G(γ) must be an isolated vertex.

Let Kn denote the graph consisting of n isolated vertices, andKn denote
the complete graph of order n. Let K1,n denote the tree having n leaves,
each of which is joined to the same, central vertex.

Proposition 1. If a graph G = (V,E) has a unique γ-set, then G(γ) ≃ K1,

and conversely.

Corollary 2. K1,n(γ) ≃ K1.

Proposition 3. Kn(γ) ≃ K1, whereas Kn(γ) ≃ Kn.

Proposition 4. For n ≥ 2, K2,n(γ) ≃ K1,2n.

Proposition 5. For m,n ≥ 3, Km,n(γ) ≃ Kmn.

It is interesting to observe that the γ-graph of the complete graph Kn is
isomorphic to itself. Other examples of graphs having this property are the
cycles of order 3k + 2.

Proposition 6. C3k+2(γ) ≃ C3k+2.

Cycles of order 3k have three γ-sets, but no two of them are adjacent in
C3k(γ).
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Proposition 7. For k ≥ 2, C3k(γ) ≃ K3.

Since paths P3k of order 3k have a unique γ-set, we have the following.

Corollary 8. P3k(γ) ≃ K1.

The following result can be proved; we omit the details.

Proposition 9. P3k+2(γ) ≃ Pk+2.

Let G2H denote the Cartesian product of two graphs G and H, where
G2H = (V (G) × V (H), E(G)2E(H)), where two vertices (u, v), (x,w) are
adjacent in G2H if and only if either u = x and v is adjacent to w in H, or
u is adjacent to x in G and v = w.

The m× n grid graph is the Cartesian product graph Pm2Pn. One can
observe that 2× (2k+1) grid graphs have only two γ-sets and they are not
adjacent.

Proposition 10. For k ≥ 2, (P22P2k+1)(γ) ≃ K2.

The structures of the γ-graphs of paths and cycles of order 3k + 1 are
more interesting. Assume that the vertices in each of these graphs have
been labeled 1, 2, . . . , 3k + 1. Note for G = P3k+1 or G = C3k+1 that
S = {1, 4, 7, . . . , 3k+1} is a γ-set of size k+1. In Figure 1, we show P10 and
C10 with S highlighted. In each case, vertices 1 and 3k + 1 have one exter-
nal private neighbor, while the other members of S have two non-adjacent
external private neighbors. So S − {1} ∪ {2} and S − {3k + 1} ∪ {3k} are
γ-sets. Further, if S′ is a γ-set for G = P3k+1 or G = C3k+1 and vertex
i has exactly one external private neighbor, j = i + 1 or j = i − 1, then
S′−{i}∪{j} is a γ-set. Let us refer to the process of changing from a γ-set
S′ to a γ-set S′−{i}∪{j} as a swap. Notice that each swap defines an edge
in G(γ).

1 2 3 4 5 6 7 8 9 10

1 6

2 3 4 5

78910

Figure 1. P10 and C10
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We claim that every γ-set of G = P3k+1 or G = C3k+1 is some number
of swaps from the γ-set S = {1, 4, 7, . . . , 3k + 1}, thus showing that G(γ)
is connected for these graphs. To this end, let G = P3k+1, and let X =
{x0, x1, . . . , xk}, where x0 < x1 < · · · < xk, be a γ-set for G. Consider
the vector D = [D0,D1, . . . ,Dk] = [x0 − 1, x1 − 4, . . . , xk+1 − (3k + 1)].
If G = P3k+1, then −1 ≤ D[i] ≤ 1, for 0 ≤ i ≤ k. To see that D[i] ≤ 1,
0 ≤ i ≤ k, suppose to the contrary that j is the first position whereD[j] > 1.
Note that j > 0 since otherwise x0 ≥ 3, and no vertex in X dominates vertex
1. Thus, for j > 0, xj − (3j+1) > 1 but xj−1− (3(j−1)+1) ≤ 1. However,
this implies that no vertex in X dominates vertex 3j + 1, a contradiction.
A similar argument shows D[i] ≥ −1, 0 ≤ i ≤ k. Further, if j is the first
position where D[j] < 0 then for all ℓ > j, D[ℓ] = −1. To see this, suppose
to the contrary that D[ℓ] ≥ 0 but D[ℓ − 1] = −1 for some ℓ > j. Thus
xℓ ≥ 3ℓ+1 and xℓ−1 < 3(ℓ−1)+1, and this leaves vertex 3(ℓ−1)+2 = 3ℓ−1
undominated in G, a contradiction. A similar argument shows that if j is
the last occurence such that D[j] = 1, then for all ℓ < j, D[ℓ] = 1. This
implies that the vector D consists of a run of 1’s followed by a run of 0’s
and then a run of −1’s, where each of these runs is of possibly length 0.
To find a path from the vertex corresponding to X in G(γ) to the vertex
corresponding to S, find the last occurence of a 1 in D, call this position
j. Note that j < k, since xk ≤ 3k + 1. Since D[j + 1] ≤ 0, xj has one
external private neighbor, namely xj − 1. The set X ′ = X −{xj}∪ {xj − 1}
is then a γ-set of G. Since D[j − 1] = 1, this swap decreases the number of
external private neighbors of xj−1 to one. Hence we can perform the swap
X ′ − {xj−1} ∪ {xj−1 − 1} and produce a γ-set. This process continues until
the swap of x0 for 1 occurs. Then starting with the earliest occurence of
−1 in D, say at vertex xℓ, we perform the swap of xℓ for xℓ + 1. Note that
ℓ > 0 since x0 ≥ 1. Thus this swap can occur since D[ℓ− 1] ≥ 0 leaving xℓ
with only one external private neighbor, namely xℓ + 1. We continue this
second swapping process until xk swaps with xk + 1 = 3k + 1. Thus each
dominating set X is some number of swaps away from S, and each swap
under the above process produces a γ-set.

For G = C3k+1, a similar argument, accounting for the cyclic nature of
the graph, holds. We leave the details of this argument to the reader. As a
consequence, we have the following.

Theorem 11. G(γ), where G = P3k+1 or G = C3k+1, is a connected graph.

We define a stepgrid SG(k) to be the induced subgraph of the k × k grid
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graph Pk2Pk defined as follows: SG(k) = (V (k), E(k)), where

V (k) = {(i, j) : 1 ≤ i, j ≤ k, i + j ≤ k + 2}, and

E(k) = {((i, j), (i′ , j′)) : i = i′, j′ = j + 1; i′ = i+ 1, j = j′}.

Each γ-set X of P3k+1 is some number of swaps of say type-1 (X − {i}∪
{i+1}) and type-2 (X−{i}∪{i−1}) from S. Alternatively, we can perform
swaps from S to X. Thus each vertex in P3k+1(γ) can be associated with
an ordered pair (i, j) where i is the number of swaps of type-1 and j is the
number of swaps of type-2 needed to convert S to X. Note that vertices 1
and 3k+1 in P3k+1 can swap with an external private neighbor at most once
freeing other vertices to swap with newly created external private neighbors.
However, each vertex can be freed to swap at most once in either direction.
Thus, the conditions on the ordered pairs (i, j) are 1 ≤ i ≤ k, 1 ≤ j ≤ k,
i + j ≤ k + 2. If q = i + 1 and r = j + 1, we then have 1 ≤ q ≤ k + 1,
1 ≤ r ≤ k + 1, and q + r ≤ (k + 1) + 2. We have shown the following.

Theorem 12. P3k+1(γ) ≃ SG(k + 1).

The γ-graphs of cycles of orders 3k+1 are much more complex; the γ-graph
C3k+1(γ) is connected and has some of the same structural properties as
P3k+1(γ) as can be seen in Figures 2 and 3 comparing the graphs of P10(γ)
and C10(γ).

[1,4,7,10]

[1,4,7,9]

[1,4,6,9]

[1,3,6,9]

[2,4,7,10]

[2,5,7,10]

[2,4,6,9]

[2,5,7,9]

[2,5,6,9][2,4,7,9]

[2,5,8,10]

[2,3,6,9]

[2,5,8,9]

Figure 2. P10(γ) ≃ SG(4)
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[1,4,5,8]

[1,2,5,8]

[2,5,8,9]

[2,5,6,9]

[2,3,6,9]

[1,3,5,8]

[1,4,6,8]

[2,5,8,10]

[2,5,7,9]

[2,4,6,9]

[1,3,6,9]

[1,3,6,8]

[3,5,8,10]

[2,5,7,10]

[2,4,7,9]

[1,4,6,9]

[3,6,8,10]

[3,5,7,10]

[2,4,7,10]

[1,4,7,9]

[3,6,9,10]

[3,6,7,10]

[3,4,7,10]

[1,4,7,10]

[1,4,7,8]

Figure 3. C10(γ)

3. General Properties of γ-Graphs

It is clear from the definition of the γ-graph G(γ) that the number of vertices
in G(γ) is at most the number of ways of choosing γ(G) vertices from n. It
is also clear that the order of G(γ) can be exponential in the order n of G.
Consider, for example, the corona G ◦K1 of a graph G, which is the graph
obtained from G by attaching a leaf to each vertex in G. If G has order
n, then the γ-graph of the corona G ◦ K1 has order 2n. In fact, we have
the following result, where Qn denotes the n-cube, which is the Cartesian
product graph Qn = Qn−12K2, whose vertex set corresponds to the 2n n-
tuples of 0’s and 1’s, where two n-tuples are adjacent if and only if they
differ in exactly one position.

Proposition 13. For any graph G of order n, (G ◦K1)(γ) ≃ Qn.

We can bound the maximum degree ∆(G(γ)) of a vertex in G(γ) as follows:

Proposition 14. For any graph G of order n and having maximum de-

gree ∆(G), the maximum degree of a vertex in G(γ) satisfies ∆(G(γ)) ≤
min{γ(G)(n − γ(G)), γ(G)∆(G)}.
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It is easy to see that this bound is sharp for complete graphs Kn and for
complete bipartite graphs of the form K2,n.

Proposition 15. If G ∪H denotes the disjoint union of two graphs G and

H, then (G ∪H)(γ) ≃ G(γ)2H(γ).

4. γ-Graphs of Trees

Let T be a tree, and let x ∈ V (T ) be a vertex that does not appear in any
γ-set of T . Let T1, T2, . . . , Tk be the disjoint subtrees created by deleting x
from T , and let xi ∈ Ti be the vertex in subtree Ti adjacent to vertex x. Let
Di be the set of γ-sets of subtree Ti, 1 ≤ i ≤ k.

Lemma 16. Let S1 ∈ D1, S2 ∈ D2, . . . , Sk ∈ Dk such that xi ∈ Si for

at least one value of 1 ≤ i ≤ k. Then D is a γ-set of T if and only if

D = S1 ∪ S2 ∪ · · · ∪ Sk.

Proof. Let S1 ∈ D1, S2 ∈ D2, . . . , Sk ∈ Dk. Consider D = S1∪S2∪· · ·∪Sk.
If x1 /∈ S1, x2 /∈ S2, . . . , and xk /∈ Sk, then the set D is not a dominating
set of T since x is not in D and thus x is not dominated. So suppose, that
xi ∈ Si for some i, 1 ≤ i ≤ k. We wish to show that D is a γ-set of T . Since
Si dominates Ti, 1 ≤ i ≤ k, and x is dominated, D is a dominating set.
Suppose there exists a dominating set D′ such that |D′| < |D|. Note that
x /∈ D′ since x appears in no γ-set of T . Partition D′ into sets S′

1, S
′

2, . . . , S
′

k,

where S′

i ⊆ V (Ti). Since
∑k

i=1 |S
′

k| = |D′| < |D| =
∑k

i=1 |Sk|, there exists
S′

i such that |S′

i| < |Si|, which is a contradiction since Si is a γ-set of Ti.
Thus, D is a γ-set of T .

Now, let D be a γ-set of T . Since by assumption x /∈ D, there must
be a vertex, call it y ∈ D that dominates x. Partition D into sets Si =
D ∩ V (Ti), 1 ≤ i ≤ k. Note that y ∈ Sj for some 1 ≤ j ≤ k. We
need to show that Si is a γ-set of Ti. If Si does not dominate Ti, then
since x /∈ D and T is a tree, then D is not a dominating set, which is a
contradiction. So Si dominates Ti for 1 ≤ i ≤ k. Suppose that there exists
a set S∗ which dominates Ti such that if y ∈ Si then y ∈ S∗ and |S∗| < |Si|.
Consider the set D∗ = S1 ∪ S2 ∪ · · · ∪ Si−1 ∪ S∗ ∪ Si+1 ∪ · · · ∪ Sk. Then
|D| = |Si| + · · · + |Si| + · · · + |Sk| > |S1| + · · · + |S∗| + · · · + |Sk| = |D∗|,
which contradicts the minimality of D. So D can be written as D = S1∪S2

∪ · · · ∪ Sk, where S1 ∈ D1, S2 ∈ D2, . . ., and Sk ∈ Dk.
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Now, let Ti(γ) be the γ-graph for the γ-sets of subtree Ti. Let T
xi

i (γ) be the
γ-graph for the subtree Ti using only those dominating sets of Di that do not
contain xi. Under these conditions, the preceding lemma can be used to show
that T (γ) = T1(γ)2T2(γ)2 · · ·2Tk(γ)− (T x1

1 (γ)2T x2

2 (γ)2 · · ·2T xk

k (γ)).

Theorem 17. Let T be a tree, and let x ∈ V (T ) be a vertex that does not

appear in any γ-set of T . Let T1, T2, . . . , Tk be the disjoint subtrees created

by deleting x from T , and let xi ∈ Ti be the vertex in subtree Ti adjacent

to vertex x. Let Di be the set of minimum dominating sets of subtree Ti,

1 ≤ i ≤ k, and let Ti(γ) be the γ-graph of subtree Ti. Let T xi

i (γ) be the

γ-graph of subtree Ti using only those γ-sets of Di that do not contain xi.
Then T (γ) = T1(γ)2T2(γ)2 · · ·2Tk(γ)− (T x1

1 (γ)2T x2

2 (γ)2 · · ·2T xk

k (γ)).

Consider the tree in Figure 4.

1 2 3 4 5 6

7

8

9

10

11

Figure 4. Tree T

Vertex 3 appears in no γ-set of T . It is adjacent to vertices 2 and 4, at least
one of which must be included in any γ-set S of T . Let T1 and T2 be the two
subtrees which result from removing vertex 3 from T . Consider the γ-sets
of T1 and T2. Note that

D1 = {(2, 8), (2, 7), (1, 7), (1, 8)} and

D2 = {(4, 6, 11), (4, 6, 10), (4, 5, 11), (4, 5, 10), (9, 6, 11),

(9, 6, 10), (9, 5, 11), (9, 5, 10)}.

Now consider the γ-sets of T1 and T2 that do not contain either vertex 2 or
vertex 4. Note that

D2
1 = {(1, 8), (1, 7)} and

D4
2 = {(9, 6, 11), (9, 6, 10), (9, 5, 11), (9, 5, 10)}.
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In Figure 5 we show the graph of T (γ). Note that T (γ) = T1(γ)2T2(γ)
−(T 2

1 (γ)2T
4
2 (γ)).

(2,4,6,8,11)

(2,4,6,7,11)

(2,4,5,8,11)

(2,4,5,7,11)

(2,4,6,8,10)

(2,4,6,7,10)

(2,4,5,8,10)

(2,4,5,7,10)

(1,4,5,8,11)

(1,4,5,7,11)

(1,4,6,7,11)

(1,4,6,8,11) (1,4,6,8,10)

(1,4,5,7,10)

(1,4,5,8,10)

(1,4,6,7,10)

(2,9,5,7,11)

(2,9,5,8,11)

(2,9,6,7,11)

(2,9,6,8,11) (2,9,6,8,10)

(2,9,6,7,10)

(2,9,5,8,10)

(2,9,5,7,10)

Figure 5. T [γ]

Theorem 18. The γ-graph T (γ) of every tree T is a connected graph.

Proof. It is easy to see that the γ-graphs of the trees T = K1 and T = K2

are connected, since K1(γ) ≃ K1 and K2(γ) ≃ K2. Therefore, let T be any
tree of order n ≥ 3, and let us assume that we root T at a non-leaf vertex r
that has an adjacent leaf s. To this rooted tree Tr we can apply the linear
algorithm of Cockayne, Goodman, and Hedetniemi [1] for computing the
value of γ(T ) and finding a particular γ-set S.

The set S found by this algorithm has the property that every vertex
u ∈ S has an external private neighbor v ∈ V − S, that is, a child of u in
Tr. In particular, this set S contains the root vertex r, and r has the leaf
vertex s as a private neighbor.

To each vertex w ∈ Tr we can associate a level number l(w) = d(w, r)
that equals the distance from w to the root vertex r. For each γ-set S′ =
{v1, v2, . . . , vk} of T , where k = γ(T ), we can associate a corresponding
vector L(S′) = {l(v1), l(v2), . . . , l(vk)}, where the vertices in S′ are ordered
so that the corresponding level numbers are sorted in ascending order. Given
this, the level vectors of all γ-sets can be sorted lexicographically.

It can be seen that the vector L(S), corresponding to the γ-set S found
by the algorithm, is the lexicographically smallest of all of the level vectors
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corresponding to all γ-sets in T . It can also be seen that for every γ-set
S′ 6= S, there exists a γ-set S′′ where S′ is adjacent to S′′ and L(S′′) < L(S′)
in lexicographic order. This γ-set S′′ can be found as follows. Compare the
level vector L(S′) with the level vector L(S) for S. Proceeding from the
vertices in S′ and in S with the highest level numbers to the lowest, find the
first vertex, say x, in S′ that is not the same as a vertex in S. It must be the
case that the parent, call it y, of x is in S, and that the set S′′ = S′−{x}∪{y}
is a γ-set of T that is closer lexicographically to L(S) than is L(S′).

From this it follows that the γ-graph T (γ) of T is connected.

Theorem 19. For any triangle-free graph G, G(γ) is triangle-free.

Proof. Suppose G(γ) contains a triangle of 3 vertices corresponding to γ-
sets S1, S2, and S3. Since (S1, S2) corresponds to an edge in G(γ), S2 =
S1 − {x} ∪ {y} for some x, y ∈ V (G) such that (x, y) ∈ E(G). Further,
since (S2, S3) corresponds to an edge in G(γ), S3 = S2 −{c} ∪ {d} for some
c, d ∈ V (G) such that (c, d) ∈ E(G). However, S3 = S2 − {c} ∪ {d} =
S1 − {x, c} ∪ {y, d}. But since (S1, S3) corresponds to an edge in G(γ),
S3 = S1 − {a} ∪ {b} for some a, b ∈ V (G) such that (a, b) ∈ E(G). Since
S3 is not two swaps away from S1, it must be the case that x = a, c = y,
and b = d. But this implies that (x, y), (x, b), and (y, b) are edges in E(G),
a contradiction since G is triangle-free. Thus for any triangle-free graph G,
there is no K3 induced subgraph in G(γ).

Corollary 20. For any tree T , T (γ) is triangle-free.

Theorem 21. For any tree T , T (γ) is Cn-free, for any odd n ≥ 3.

Proof. Suppose T (γ) contains a cycle, C, of k ≥ 3, k odd, vertices. Let x
be a vertex in C, and let S be the γ-set corresponding to vertex x. Let y
and z be the two vertices on C of distance m = k−1

2 swaps away from x with
corresponding γ-sets S1 and S2. That is, there is a path P1 corresponding to
a series of vertex swaps, say x1 for y1, x2 for y2, . . . , xm for ym, so that S1 =
S−X ∪Y , where X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , ym}. Likewise,
there is a path P2 corresponding to a series of vertex swaps, say w1 for z1, w2

for z2, . . . , wm for zm, so that S2 = S−W ∪Z, where W = {w1, w2, . . . , wm}
and Z = {z1, z2, . . . , zm}. However, since (y, z) ∈ E(T (γ)), S2 = S1−a∪b for
some a, b ∈ V (T ). Thus, it must be the case that the setX = W−wj∪xi and
Y = Z−zj ∪yi. This implies that S2 = S1−{yj}∪{xi} and (xi, yj) ∈ E(T ).
Since xi was swapped for yi and xj was swapped for yj in P1, we also know
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that (xi, yi) ∈ E(T ) and (xj , yj) ∈ E(T ). Now both xi and yi are in S2, so
there exists a swap xl for yi in P2 which implies (xl, yi) ∈ E(T ). However,
in path P1, xl was swapped for yl, and thus (xl, yl) ∈ E(T ). Similiarly,
yl ∈ S2, so there exists some xs so that in path P2, xs was swapped for yl.
We can continue to find the these alternating P1 and P2 swaps, but, since
m is finite, we must reach a vertex yq which swapped with xj in P2, thus
creating a cycle in T and contradicting the fact that T is cycle-free. Hence,
T (γ) is free of odd cycles.

Theorem 22. Every tree T is the γ-graph of some graph.

Proof. We proceed by induction on the order n of a tree T . It is easy to
see that the trees T = K1 and T = K2 are the γ-graphs of K1 and K2,
respectively.

Assume that the theorem is true for all trees T of order at most n, and
let T ′ be any tree of order n + 1. Assume that T ′ is obtained by attaching
a leaf v to a vertex u in a tree T of order n. By induction we know that
the tree T is the γ-graph of some graph, say G. Let γ(G) = k and let
Su = {u1, u2, . . . , uk} be the γ-set of G corresponding to the vertex u in T .

Construct a new graph G′ by attaching k leaves to the vertices in Su,
say S′

u = {u′1, u
′

2, . . . , u
′

k}. Now add a new vertex x and join it to each of
the k vertices in S′

u. Finally, attach a leaf y adjacent to x. Note that every
γ-set of the new graph G′ must either be of the form S ∪ {x}, for any γ-set
S in G, or the one new γ-set Su ∪ {y}.

Note that Su ∪ {x} is adjacent to Su ∪ {y} in the γ-graph of G′. Note
also that the vertex corresponding to the γ-set Su ∪ {y} is only adjacent
to the vertex corresponding to the γ-set Su ∪ {x}, and the γ-set Su ∪ {y}
corresponds to the vertex v in T ′. Thus, the γ-graph of the graph G′ is
isomorphic to the tree T ′.

5. γ-Graph Sequences

It is interesting to consider applying the γ-graph construction repeatedly,
starting from a given graph, that is, G

γ
−→ G(γ)

γ
−→ G(γ)(γ), etc. Although

we do not know much about the nature of these sequences, we have noticed
that often the sequence ends with K1. We can list several examples of this
phenomenon.

1. K1,n
γ

−→ K1.
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2. C3k
γ

−→ K3
γ

−→ K1.

3. Kn
γ

−→ Kn.

4. C3k+2
γ

−→ C3k+2.

5. P4
γ

−→ C4 ≃ P22P2
γ

−→ K2,4
γ

−→ K1,8
γ

−→ K1.

6. P22P3
γ

−→ K3
γ

−→ K1.

7. P32P3
γ

−→ C8 ∪ 2K1
γ

−→ C8
γ

−→ C8.

8. Let C8(1, 1, 0, 0, 1, 1, 0, 0) denote the graph obtained from a cycle C8

of order 8 by attaching to each vertex, in order, the number of leaves
indicated in the parenthesis. Thus, this graph has two adjacent vertices
on the cycle with one attached leaf each, the next two vertices have no
attached leaf, the next two vertices each have an attached leaf, and the
final two vertices have no attached leaf.
P22P4

γ
−→ C8(1, 1, 0, 0, 1, 1, 0, 0)

γ
−→ K1.

9. P22P2k+1
γ

−→ K2
γ

−→ K1.

10. P22P6
γ

−→ 4P3 ∪ 5K1
γ

−→ K1.

11. P3k+2
γ

−→ P3k
γ

−→ K1.

Although all of the γ-graph sequences so far have terminated after a small
number of steps, for some graphs this sequence can be infinite. Here is an
example.

Proposition 23. C32P2
γ

−→ C32C3
γ

−→ C32C32C3
γ

−→ . . ..

6. Open Questions

We conclude with a series of questions that we have not been able to answer.

1. Is ∆(T (γ)) = O(n) for any tree T ?

2. Is diam(T (γ)) = O(n) for any tree T ?

3. Is |V (T (γ))| ≤ 2γ(T )?

4. Which graphs are γ-graphs of trees?

5. Which graphs are γ-graphs? Can you construct a graph H that is not a
γ-graph of any graph G? We believe that for any graph H, there exists
a graph G such that G(γ) ≃ H. Recently, in [3], it has been shown that
for any graph H, there is a simple construction of a graph G, using H,
that gives G(γ) ≃ H.
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6. For which graphs G is G(γ) ≃ G? This is true for complete graphs Kn

and cycles of order 3k + 2.

7. Under what conditions is G(γ) a disconnected graph?

7. Added In Proof

The authors have recently become aware of the existence of the 2008 paper
“γ-graph of a graph” by K. Subramanaian and N. Sridharan appearing in
Bull. Kerala Math. Assoc. 5(1), pp. 17–34. Two other papers on this topic
also exist: N. Sridharan and K. Subramanian, Trees and unicyclic graphs are
γ-graphs, J. Combin. Math. Combin. Comput., 69 (2009), 231–236, and
S. A. Lakshmanan and A. Vijayakumar, The Gamma Graph of a Graph,
AKCE J. Graphs. Combin., 7(1), 2010, pp. 53–59. It is important to note
that in these papers the definition of γ-graphs is different from ours, and
thus these are two different classes of graphs.
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