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1. Introduction

For any finite graph G, the chromatic polynomial of G is a polynomial in
Z[λ] which for any λ ∈ N evaluates to the number of vertex colorings of G
with at most λ colors such that adjacent vertices receive different colors.

This polynomial was introduced by Birkhoff [1] in 1912, who showed
that it is a monic polynomial whose degree coincides with the number of
vertices of G, provided G is loop-free, and whose coefficients alternate in
sign. We use

(1) PG(λ) =

n(G)
∑

k=0

(−1)kak(G)λn(G)−k

to denote the chromatic polynomial of G and its coefficients, respectively,
where n(G) denotes the number of vertices of G. If G contains loops, then
PG(λ) = 0.
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Whitney’s broken circuit theorem [6] gives a combinatorial interpretation of
the coefficients in terms of so-called broken circuits. A broken circuit of a
graph G arises from the edge-set of a cycle of G by removing its maximum
edge with respect to some fixed linear ordering relation on the edges.

Theorem (Whitney, 1932). Let G be a finite graph with a linear ordering

relation on its edges. Then, for k = 0, . . . , n(G) the coefficient ak(G) equals
the number of k-subsets of the edge-set of G not including any broken circuit

of G as a subset.

Whitney’s original proof [6] uses the inclusion-exclusion principle, followed
by some combinatorial arguments; for a detailed account, we refer to the
textbook of Biggs [2, Ch. 10]. There are two more recent alternative ways
to prove Whitney’s result:

• using an explicit bijection due to Blass and Sagan [3], or

• using recent variants of the inclusion-exclusion principle [4].

Although many famous results on the chromatic polynomial are proved by
induction, so far no such simple proof has been given for Whitney’s broken
circuit theorem.

In this paper, we provide a proof using induction on the number of edges
and the deletion-contraction formula [5], which states that for any graph G
and any edge e of G,

PG(λ) = PG−e(λ)− PG|e(λ),(2)

where G−e resp. G|e are obtained from G by removing resp. contracting e.
The main idea is to show that if the statement of Whitney’s broken circuit
theorem holds for both G− e and G|e, then it also holds for G.

Due to the presence of a linear ordering relation on the edges, we need a
precise definition of the edge contraction operation such that G|e inherits the
linear ordering relation fromG in such a way that the induction step becomes
feasible. This definition is given in Section 2. The proof of Whitney’s
theorem follows in Section 3.

2. Preliminaries

Throughout the paper, a graph is a triple G = (V,E, ϕ), where V and
E are sets and ϕ is a mapping from E to the set of one- or two-element
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subsets of V . The elements of V and E are called vertices and edges, re-
spectively; ϕ is called an incidence mapping.

A graph is finite if both its vertex-set and edge-set are finite. We use
V (G) and E(G) to denote the vertex-set and edge-set of G = (V,E, ϕ),
respectively, and n(G) resp. m(G) to denote their cardinalities.

If v ∈ ϕ(e) for some v ∈ V (G) and e ∈ E(G), we say that v is incident
with e in G. Two vertices v,w ∈ V (G) are adjacent in G if ϕ(e) = {v,w}
for some edge e ∈ E(G).

A loop is an edge e such that |ϕ(e)| = 1. Edges e and e′ are called
parallel if e 6= e′ and ϕ(e) = ϕ(e′). A graph without loops and parallel
edges is called simple.

Any edge e ∈ E(G) induces an equivalence relation ∼e on V (G) via

v ∼e w :⇐⇒ v = w or ϕ(e) = {v,w},

and an equivalence relation ∼e on E \ {e} (using the same symbol) via

x ∼e y :⇐⇒ x = y or ϕ(e) = ϕ(x)△ ϕ(y)

where △ denotes symmetric difference of sets. We use [x]e to denote the
equivalence class of x with respect to ∼e, regardless of whether x is a vertex
or an edge.

Deletion and contraction of an edge e from G = (V,E, ϕ) are defined
by

G− e :=
(

V (G), E(G) \ {e}, ϕ|E(G)\{e}

)

,

G|e := (V (G)/∼e, (E(G) \ {e})/∼e, ϕe) ,

where for any x ∈ E(G) \ {e},

ϕe ([x]e) := {[v]e | v ∈ ϕ(x)} .

For any such x, we identify [x]e with the maximum edge y ∈ [x]e, for some
given linear ordering relation on the edges of G. In this way, E(G|e) becomes
a subset of E(G) and inherits the linear ordering relation.

With the above definitions, the class of simple graphs is closed under
deletion and contraction.
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3. Proof of Whitney’s Broken Circuit Theorem

Throughout, G is a graph whose edge-set is endowed with a linear ordering
relation. Apart from Lemma 1, G is required to be loop-free.

Lemma 1. Let e, f be parallel edges where e < f , and X ⊆ E(G). Then, X
includes no broken circuit of G if and only if X ⊆ E(G− e) and X includes

no broken circuit of G− e.

Proof. The statement holds since, by the assumptions, {e} is a broken
circuit of G.

Lemma 2. Let e be the minimum edge of G, and Y ⊆ E(G − e). Then, Y
includes a broken circuit of G− e if and only if Y includes a broken circuit

of G.

Proof. The first direction is obvious. For the opposite direction, assume
C ⊆ Y for some broken circuit C of G. By definition of a broken circuit,
there is some f ∈ E(G) such that f > maxC and C ∪ {f} is the edge-set
of a cycle of G. From C ⊆ Y and Y ⊆ E(G − e) we conclude that e /∈ C.
Since e is the minimum edge of G, f 6= e (otherwise e > maxC). Therefore,
C ∪ {f} is the edge-set of a cycle of G− e and hence, C is a broken circuit
of G− e. Consequently, Y includes a broken circuit of G− e.

Lemma 3. Let e be the minimum edge of G, and X ⊆ E(G) satisfying

e ∈ X. If X includes no broken circuit of G, then

(a) X \ {e} ⊆ E(G|e);

(b) X \ {e} includes no broken circuit of G|e.

Proof. (a) On the contrary, assume X \ {e} 6⊆ E(G|e). Then, f 6∈ E(G|e)
for some f ∈ X \ {e}. By definition of G|e, [f ]e ∈ E(G|e). Since [f ]e is
identified with the maximum edge h ∈ [f ]e, it follows that h ∈ E(G|e) for
some h ∈ E(G) \ {e} where h ∼e f and h > f . Therefore, {e, f, h} is the
edge-set of a triangle in G, and h = max{e, f, h}. Hence, {e, f} is a broken
circuit of G, and this broken circuit is a subset of X.

(b) On the contrary, assume C ⊆ X \ {e} for some broken circuit C of
G|e. Then, there exists f ∈ E(G|e) such that f > maxC and C ∪ {f} is
the edge-set of a cycle of G|e. Hence, C ∪ {f} or C ∪ {e, f} is the edge-
set of a cycle of G. Since f > maxC and f > e, this implies that C or C∪{e}
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is a broken circuit of G. Since C ∪ {e} ⊆ X (because C ⊆ X \ {e} and
e ∈ X), it follows that X includes a broken circuit of G.

Lemma 4. Let e be the minimum edge of G, and Y ⊆ E(G|e). If Y includes

no broken circuit of G|e, then Y ∪ {e} includes no broken circuit of G.

Proof. On the contrary, assume that C ⊆ Y ∪ {e} for some broken circuit
C of G. Then, there exists f ∈ E(G) such that f > maxC and C ∪ {f} is
the edge-set of a cycle of G. We distinguish two cases:

Case 1. e /∈ C.

Then, C ⊆ Y and hence, C ⊆ E(G|e). By this, and since C ∪ {f} is the
edge-set of a cycle of G, C ∪ {h} is the edge-set of a cycle of G|e for some
h ∈ [f ]e satisfying h ≥ f . By transitivity, h > maxC. Hence, C is a broken
circuit of G|e.

Case 2. e ∈ C.

Then, C \ {e} ⊆ Y . We observe that C ∪ {f} cannot be the edge-set of
a triangle in G. Otherwise, C ∪ {f} = {e, f, h} for some h ∼e f . On the
one hand, f > maxC = h; since h ∼e f , h /∈ E(G|e). On the other hand,
h ∈ C \ {e} ⊆ Y ⊆ E(G|e)—a contradiction. Therefore, C ∪ {f} is the
edge-set of a cycle of G of length at least four. Contracting e gives a cycle
in G|e with edge-set (C \ {e}) ∪ {f}. Since f > maxC and f > e it follows
that C \ {e} is a broken circuit of G|e, which is included by Y .

In both cases, it is shown that Y includes a broken circuit of G|e.

Lemma 5. Let e be the minimum edge of G, and k ∈ N.

(a) There are as many k-subsets of E(G−e) including no broken circuit of

G−e as there are k-subsets of E(G) not containing e and not including

any broken circuit of G.

(b) There are as many (k−1)-subsets of E(G|e) including no broken circuit

of G|e as there are k-subsets of E(G) containing e and not including

any broken circuit of G.

Proof. (a) This is an immediate consequence of Lemma 2.

(b) Let Ak−1(G|e) resp. A
′
k
(G) denote the set of subsets of the first resp.

second type. Consider the mapping β : A
′
k
(G) → Ak−1(G|e), X 7→ X \ {e}.

In fact, Lemma 3 guarantees that β(A ′
k
(G)) ⊆ Ak−1(G|e). Since β is one-
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to-one (trivially) and onto by Lemma 4, it is a one-to-one correspondence
between A

′
k
(G) and Ak−1(G|e).

Using the preceding results, we now prove Whitney’s broken circuit theorem.

Proof. By Lemma 1 we may assume that G has no parallel edges. If G
contains loops, then ∅ is a broken circuit of G, and PG(λ) = 0. It is easy to
verify that the statement of the theorem holds in this particular case.

In the remainder of the proof, we may assume that G is a simple graph. We
proceed by induction on the number of edges.

If m(G) = 0, the statement is obvious. The same applies if m(G) > 0
and k = 0.

For the induction step, let e be the minimum edge of G. By (1) and (2)
we have

ak(G) = ak(G− e) + ak−1(G|e) (k = 1, . . . , n(G)).(3)

Since the graphs G− e and G|e are both simple and have fewer edges than
G, we may apply the induction hypothesis for both G − e and G|e. Thus,
we find that

ak(G− e) = number of k-subsets of E(G− e) including no broken circuit of
G− e,

ak−1(G|e) = number of (k−1)-subsets of E(G|e) including no broken circuit
of G|e.

Therefore, by Lemma 5 the theorem is proved.
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