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Abstract

For a connected graph G with at least two vertices and S a subset
of vertices, the convex hull [S]G is the smallest convex set containing S.
The hull number h(G) is the minimum cardinality among the subsets S
of V (G) with [S]G = V (G). Upper bound for the hull number of strong
product G⊠H of two graphs G and H is obtainted. Improved upper
bounds are obtained for some class of strong product graphs. Exact
values for the hull number of some special classes of strong product
graphs are obtained. GraphsG andH for which h(G⊠H) = h(G)h(H)
are characterized.
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2010 Mathematics Subject Classification: 05C12.

1. Introduction

By a graph G = (V (G), E(G)) we mean a finite undirected connected graph
without loops or multiple edges. The distance dG(u, v) between two vertices
u and v in a connected graph G is the length of a shortest u− v path in G.
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An u−v path of length dG(u, v) is called an u−v geodesic. It is known that
the distance is a metric on the vertex set V (G). The set IG[u, v] consists
of all vertices lying on some u − v geodesic of G, while for S ⊆ V (G),
IG[S] =

⋃
u,v∈S

IG[u, v]. The set S is convex if IG[S] = S. The convex hull

[S]G is the smallest convex containing S. The convex hull [S]G can also be
formed from the sequence {IkG[S]}, k ≥ 0, where I0G[S] = S, I1G[S] = IG[S]
and IkG[S] = IG[I

k−1

G [S]] for k ≥ 2. From some term on, this sequence must

be constant. Let p be the smallest number such that IpG[S] = Ip+1

G [S]. Then
IpG[S] is the convex hull [S]G. A set S of vertices of G is a hull set of G if
[S]G = V (G), and a hull set of minimum cardinality is a minimum hull set
of G. The cardinality of a minimum hull set of G is the hull number h(G) of
G. A set S of vertices of G is a geodetic set if IG[S] = V (G), and a geodetic
set of minimum cardinality is a minimum geodetic set of G. The cardinality
of a minimum geodetic set of G is the geodetic number g(G). The length of
a shortest cycle in G is the girth of G. A vertex x is an extreme vertex of
G if the induced subgraph of the neighbors of x is complete or equivalently,
V (G) − {x} is convex in G. The set of all extreme vertices is denoted by
Ext(G) and e(G) = |Ext(G)|. A graph G is an extreme geodesic graph if
the set of all extreme vertices forms a geodetic set. Extreme geodesic graphs
were introduced and studied in [4].

The strong product of graphs G and H, denoted by G⊠H, has vertex set
V (G)× V (H), where two distinct vertices (x1, y1) and (x2, y2) are adjacent
with respect to the strong product if, (a) x1 = x2 and y1y2 ∈ E(H), or
(b) y1 = y2 and x1x2 ∈ E(G), or (c) x1x2 ∈ E(G) and y1y2 ∈ E(H). The
mappings πG : (x, y) 7→ x and πH : (x, y) 7→ y from V (G⊠H) onto G and H
respectively are called projections. For a set S ⊆ V (G ⊠H), we define the
G-projection on G as πG(S) = {x ∈ V (G) : (x, y) ∈ S for some y ∈ V (H)},
and the H-projection πH(S) = {y ∈ V (H) : (x, y) ∈ S for some x ∈ V (G)}.
For a walk P : (x1, y1), (x2, y2), . . . , (xn, yn) in G ⊠ H, we define the G-
projection πG(P ) of P as a sequence that is obtained from (x1, x2, . . . , xn) by
changing each constant subsequence with its unique element. For example,
if P : (x2, y3), (x2, y4), (x2, y5), (x4, y5), (x4, y2), (x3, y2), (x2, y2) is a walk,
then πG(P ) is x2, x4, x3, x2 (it is obtained from the sequence (x2, x2, x2,
x4, x4, x3, x2)). The H-projection πH(P ) is defined similarly. It is clear
from the defintion of strong product that for any walk P in G ⊠ H, both
πG(P ) and πH(P ) are walks in the factor graphs G and H respectively.

The hull number of a graph was introduced in [8] and further studied
in [3, 6]. The hull number of composition and Cartesian product of graphs
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were studied in [2, 10]. In this paper we study the hull number of strong
product of two graphs. In Section 2, we obtain upper bounds for the hull
number of strong product of two graphs. Improved upper bounds are also
obtained for a class of strong product graphs. In Section 3, the exact value of
h(G⊠H) is obtained for several classes of graphs. In particular, it is proved
that for any connected graph G, h(G⊠Kr1,r2,...,rn) = 2 and h(G⊠C2n) = 2
for all n, ri ≥ 2. It is shown that h(G⊠Km) = h(G) + e(G)(m− 1) for any
connected graph G. Graphs G and H for which h(G⊠H) = h(G)h(H) are
characterized.

For basic graph theoretic terminology, we refer to [7]. We also refer to
[1] for results on distance in graphs and to [9] for metric structures in strong
product of graphs. Throughout the following G denotes a connected graph
with at least two vertices. For a vertex x in G and a subset S of vertices
in G, we mean by x × S, the Cartesian product {x} × S. The following
theorems will be used in the sequel.

Theorem 1.1 [9]. Let G and H be connected graphs with (u, v) and (x, y)
arbitrary vertices of the strong product G⊠H of G and H. Then dG⊠H((u, v),
(x, y)) = max{dG(u, x), dH (v, y)}.

Theorem 1.2 [3]. Each extreme vertex of a connected graph G belongs to
every hull set of G.

Theorem 1.3 [5]. Each extreme vertex of a connected graph G belongs to
every geodetic set of G.

2. Bounds for the Hull Number

In this section we determine possible bounds for the hull number of the
strong product of two connected graphs. And improved upper bounds are
obtained for some classes strong product graphs.

Proposition 2.1. Let G and H be connected graphs and P a (u, v)−(u′, v′)
geodesic in G⊠H of length n. If dG(u, u

′) ≥ dH(v, v′), then πG(P ) is a u−u′

geodesic in G of length n, and if dG(u, u
′) ≤ dH(v, v′), then πH(P ) is a v−v′

geodesic in H of length n.

Proof. Let P : (u, v) = (u0, v0), (u1, v1), . . . , (un, vn) = (u′, v′) be a (u, v)−
(u′, v′) geodesic of length n in G⊠H. If dG(u, u

′) ≥ dH(v, v′), then by The-
orem 1.1, dG(u, u

′) = max{dG(u, u
′), dH(v, v′)} = dG⊠H((u, v), (u′, v′)) = n.
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Hence it follows that πG(P ) : u = u0, u1, . . . , un = u′ must be an u − u′

geodesic in G. The other case follows similarly.

Theorem 2.2. Let G and H be connected graphs. Then Ext(G ⊠ H) =
Ext(G) × Ext(H).

Proof. Let (g, h) ∈ Ext(G ⊠H). If g is an pendant vertex of G, then g ∈
Ext(G). So, let x1, x2 ∈ NG(g) be such that x1 6= x2. Then (x1, h), (x2, h) ∈
NG⊠H((g, h)). Since the induced subgraph of NG⊠H(g, h) is complete, it
follows that x1x2 ∈ E(G) and so the induced subgraph of NG(g) is complete.
Similarly, we can prove that 〈NH(h)〉 is complete. Thus, (g, h) ∈ Ext(G) ×
Ext(H). Conversely, let (g, h) ∈ Ext(G)×Ext(H). Let (x1, y1), (x2, y2) be
distinct vertices in NG⊠H(g, h). Then (x1, y1)(g, h) ∈ E(G⊠H) and exactly
one of the following three conditions holds.

(1) x1 = g and y1 ∈ NH(h) or

(2) x1 ∈ NG(g) and y1 = h or

(3) x1 ∈ NG(g) and y1 ∈ NH(h).

Similarly, (x2, y2)(g, h) ∈ E(G ⊠H) and exactly one of the following three
conditions holds.

(a) x2 = g and y2 ∈ NH(h) or

(b) x2 ∈ NG(g) and y2 = h or

(c) x2 ∈ NG(g) and y2 ∈ NH(h).

Now, there are nine cases.

Case 1. Both (a) and (1) hold. Then y1 6= y2. Since 〈NH(h)〉 is
complete, we have y1y2 ∈ E(H) so that (x1, y1)(x2, y2) ∈ E(G ⊠H).

Case 2. Both (c) and (3) hold. Since 〈NG(g)〉 is complete, either x1 = x2
or x1x2 ∈ E(G). Similarly, we have either y1 = y2 or y1y2 ∈ E(H). Since
(x1, y1) 6= (x2, y2), it follows that (x1, y1)(x2, y2) ∈ E(G ⊠ H). The other
cases are similar.

Theorem 2.3. Let G and H be connected graphs and S and T hull sets of
G and H respectively. Then S × T is a hull set of G⊠H.

Proof. Let W = S × T . We show that [W ]G⊠H = V (G ⊠H). Let (x, y) ∈
V (G ⊠H). Now, since [S]G = V (G), it follows that there exists an integer
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m ≥ 0 such that x ∈ ImG [S]. We prove that (x, y) ∈ [W ]G⊠H . The proof is
by induction on m. Let m = 0. Then x ∈ S. Now, since [T ] = V (H), it
follows that there exists an integer n ≥ 0 such that y ∈ InG[T ]. We prove that
(x, y) ∈ [W ]G⊠H . The proof is by induction on n. If n = 0 then y ∈ T and so
(x, y) ∈ S × T ⊆ [W ]G⊠H . Assume that (x, y) ∈ [W ]G⊠H for all y ∈ IkH [T ].
Let y ∈ Ik+1

H [T ] be such that y /∈ IkH [T ]. Then there exist y′, y′′ in IkH [T ] such
that y lies on a y′ − y′′ geodesic P : y′ = y0, y1, . . . , yt = y′′ with y 6= y′, y′′.
Now, by induction hypothesis, (x, y′), (x, y′′) ∈ [W ]G⊠H . Now, it follows
from Theorem 1.1 that the walk Q : (x, y′) = (x, y0), (x, y1), . . . , (x, yt) =
(x, y′′) is a geodesic in G ⊠ H which contains the vertex (x, y). Hence
(x, y) ∈ [W ]G⊠H . Thus, by induction, (x, y) ∈ [W ]G⊠H for all y ∈ V (H).

Assume that the result is true for m = l. Then (x, y) ∈ [W ]G⊠H for
all x ∈ I lG[S] and y ∈ V (H). Let x ∈ V (G) be such that x ∈ I l+1

G [S]
and x /∈ I lG[S]. Then there exist x′, x′′ ∈ I lG[S] such that x lies on a x′ − x′′

geodesic P ′ : x′ = x0, x1, . . . , xj = x, . . . , xs = x′ with 1 ≤ j ≤ s−1. Now, by
induction hypothesis, (x′, y), (x′′, y) ∈ [W ]G⊠H . By Theorem 1.1, it follows
that the walk Q′ : (x′, y) = (x0, y), (x1, y) . . . , (xj , y) = (x, y), . . . , (xs, y) =
(x′′, y) is a geodesic. Hence (x, y) ∈ [W ]G⊠H . Thus, by induction (x, y) ∈
[W ]G⊠H for all x ∈ V (G) and y ∈ V (H) so that [W ]G⊠H = V (G⊠H).

Remark 2.4. The converse of Theorem 2.3 need not be true. Let G be
the cycle C4 : u1, u2, u3, u4, u1 and let H be the complete graph K2, with
vertex set {v1, v2}. Let S = {u1, u3} and T = {v1}. Then, it is clear that
I2G⊠H [S × T ] = V (G⊠H) and so S × T is a hull set of G⊠H. However, T
is not a hull set of K2.

Corollary 2.5. Let G and H be connected graphs. Then max{2, e(G)e(H)}
≤ h(G ⊠H) ≤ h(G)h(H).

Proof. Let S and T be minimum hull sets of G and H respectively. By
Theorem 2.3, W = S × T is a hull set of G so that h(G ⊠H) ≤ h(G)h(H).
The other inequality follows from Theorems 1.2 and 2.2.

Lemma 2.6. Let G and H be connected graphs. Then, for any x ∈ V (G)
and T ⊆ V (H), x× IkH [T ] ⊆ IkG⊠H [x× T ] for all k ≥ 0.

Proof. For k = 0, it is obvious. We first show that x×IH [T ] ⊆ IG⊠H [x×T ].
Let (x, y) ∈ x× IH [T ]. If y ∈ T , then (x, y) ∈ IG⊠H [x×T ]. If y /∈ T , then y
lies on a y′−y′′ geodesic P : y′ = y0, y1, . . . , yi = y, . . . , yn = y′′ with y′, y′′ ∈
T . It follows from Theorem 1.1 that Q : (x, y′) = (x, y0), (x, y1), . . . , (x, yi) =
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(x, y), . . . , (x, yn) = (x, y′′) is a geodesic in G⊠H with (x, y′), (x, y′′) ∈ x×T
and so (x, y) ∈ IG⊠H [x× T ]. Hence x× IH [T ] ⊆ IG⊠H [x× T ].

Now, x × I2H [T ] = x × IH [IH [T ]] ⊆ IG⊠H [x × IH [T ]] ⊆ I2G⊠H [x × T ].
Proceeding like this, we see that x× IkH [T ] ⊆ IkG⊠H [x× T ] for all k ≥ 0.

Theorem 2.7. Let G and H be connected graphs. Then h(G ⊠ H) ≤
min{h(H) + e(H)(h(G) − 1), h(G) + e(G)(h(H) − 1)}.

Proof. Let S and T be minimum hull sets of G and H respectively. Let
W = (Ext(G)×Ext(H))∪ ((S −Ext(G))×Ext(H))∪ (u× (T −Ext(H))),
where u ∈ S. Then |W | ≤ e(G)e(H)+(h(G)−e(G))e(H)+(h(H)−e(H)) =
h(H) + e(H)(h(G) − 1). We prove that W is a hull set of G⊠H.

Step 1. u× V (H) ⊆ [W ]G⊠H .

Let y ∈ V (H). Since T is a hull set of H, it follows that y ∈ IkH [T ]
for some k ≥ 0 and so (u, y) ∈ u × IkH [T ]. Hence by Lemma 2.6, (u, y) ∈
IkG⊠H [u×T ]. Since u ∈ S, it is clear from the definition of W that u×T ⊆ W
and so IkG⊠H [u × T ] ⊆ IkG⊠H [W ] ⊆ [W ]G⊠H . Thus (u, y) ∈ [W ]G⊠H and so
u× V (H) ⊆ [W ]G⊠H .

Step 2. If x ∈ V (G) and x× V (H) ⊆ [W ]G⊠H , then x′ × V (H) ⊆ [W ]G⊠H

for x′ ∈ NG(x).

Let y ∈ V (H). If y /∈ Ext(H), then there exist vertices y′, y′′ ∈ NH(y)
such that y′ and y′′ are non-adjacent. It is clear that Q : (x, y′), (x′, y), (x, y′′)
is a geodesic in G⊠H with (x, y′), (x, y′′) ∈ [W ]G⊠H and so (x′, y) ∈ [W ]G⊠H .
Now, assume that y ∈ Ext(H). Since S is a hull set of G, it follows that
x′ ∈ I lG[S] for some l ≥ 0. Thus (x′, y) ∈ I lG[S] × y. By Lemma 2.6,
(x′, y) ∈ I lG⊠H [S×y]. Since y ∈ Ext(H), it is clear from the definition of W
that S×y ⊆ [W ]G⊠H and so (x′, y) ∈ [W ]G⊠H . Hence x′×V (H) ⊆ [W ]G⊠H .

Now, since G and H are connected, it follows from Step 1 and Step 2
that V (G) × V (H) ⊆ [W ]G⊠H and so W is a hull set of G ⊠ H. Hence
h(G⊠H) ≤ |W | ≤ h(H) + e(H) + (h(G)− 1). Similarly, we can prove that
h(G ⊠H) ≤ h(G) + e(G)(h(H) − 1). Thus the result follows.

Corollary 2.8. Let G and H be connected graphs such that H has no ex-
treme vertices. Then h(G⊠H) ≤ h(H).

Corollary 2.9. Let G and H be connected graphs having no extreme ver-
tices. Then 2 ≤ h(G⊠H) ≤ min{h(G), h(H)}.
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Corollary 2.10. For any connected graph G, h(G⊠Kr1,r2,...,rn) = 2, where
n ≥ 2 and ri ≥ 2 for i = 1, 2, . . . n.

Proof. Let n ≥ 2 and ri ≥ 2 for i = 1, 2, . . . , n. Any two vertices of a partite
set of Kr1,r2,...,rn form a hull set and so h(Kr1,r2,...,rn) = 2. Also Kr1,r2,...,rn

has no extreme vertices. Hence the result follows from Corollary 2.8.

Corollary 2.11. For any connected graph G, h(G⊠C2n) = 2 for all n ≥ 2.

Proof. This follows from Corollary 2.8.

In the following we introduce a class of graphs for which the upper bound
of hull number is further improved.

Let ℑ denote the class of connected graphs G such that every non-
extreme vertex of G has two non-adjacent neighbors which are not extreme.
The graph G in Figure 2.1 belongs to the class ℑ. Obviously, complete
graphs and graphs having no extreme vertices belong to ℑ.

b

b

b

bb b

bb

u4

u4
u1

u2

u3

Figure 2.1.

Theorem 2.12. If G and H are connected graphs having extreme vertices
and belong to ℑ, then h(G⊠H) ≤ e(G)e(H) + h(G) + h(H)− e(G)− e(H).

Proof. Let S and T be minimum hull sets of G and H respectively. Let
u ∈ Ext(G) and v ∈ Ext(H). We show that W = (Ext(G) × Ext(H)) ∪
((S −Ext(G)) × v) ∪ (u× (T − Ext(H))) is a hull set of G⊠H. It is clear
that S × v, u× T ⊆ W ⊆ [W ]G⊠H .

Step 1. V (G)× v ⊆ [W ]G⊠H .

Let x ∈ V (G). Since S is a hull set of G, we have x ∈ IkG[S] for some
k ≥ 0 and so (x, v) ∈ IkG[S] × v. By Lemma 2.6, (x, v) ∈ IkG⊠H [S × v] ⊆
[W ]G⊠H . Hence V (G) × v ⊆ [W ]G⊠H .
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Step 2. If y ∈ V (H) and (V (G) − Ext(G)) × y ⊆ [W ]G⊠H , then (V (G) −
Ext(G)) × y′ ⊆ [W ]G⊠H for y′ ∈ NH(y).

Let x ∈ V (G) − Ext(G). Since G ∈ ℑ, there exist x′, x′′ ∈ NG(x)
such that x′, x′′ are non-extreme and non-adjacent. Now, it is clear that
Q : (x′, y), (x, y′), (x′′, y) is a geodesic in G⊠H with (x′, y), (x′′, y) ∈ (V (G)−
Ext(G))× y ⊆ [W ]G⊠H and so (x, y′) ∈ [W ]G⊠H . Thus (V (G)−Ext(G))×
y′ ⊆ [W ]G⊠H .

Now, since G and H are connected, it follows from Step 1 and Step 2
that (V (G) − Ext(G)) × V (H) ⊆ [W ]G⊠H . Similarly, we can prove that
V (G)× (V (H)−Ext(H)) ⊆ [W ]G⊠H . Also, by the definition of W , we have
Ext(G) × Ext(H) ⊆ W ⊆ [W ]G⊠H . Hence [W ]G⊠H = V (G ⊠ H) and so
h(G ⊠H) ≤ |W | ≤ e(G)e(H) + h(G) + h(H)− e(G) − e(H).

3. Exact Hull Numbers

In this section we determine the exact values of the hull numbers of the
strong product for several classes of graphs. We also give several classes of
graphs G and H with h(G⊠H) = 2. It is to be noted that the graphs given
in Corollaries 2.10 and 2.11 belong to this class. We also characterize graphs
G and H for which h(G ⊠H) = h(G)h(H).

Theorem 3.1. Let G and H be connected graphs such that G has no extreme
vertices. Then

(i) h(G ⊠H) = 2 if the girth of H is even,

(ii) h(G ⊠H) ≤ 3 if the girth of H is odd and at least 5.

Proof. (i) Let the girth of H be 2n(n ≥ 2) and let C : y0, y1, . . . , y2n−1, y0
be a cycle of length 2n. For any x ∈ V (G), we show that the set W =
{(x, y0), (x, yn)} is a hull set of G ⊠ H. We first prove the following two
steps.

Step 1. V (G) × {y0, yn} ⊆ [W ]G⊠H . Let u ∈ V (G). We use induc-
tion on dG(x, u) to prove that (u, y0), (u, yn) ∈ [W ]G⊠H . Let dG(x, u) =
0 or 1. Since C is a shortest cycle in H, it follows that the path P :
y0, y1, . . . , yn and P1 : yn, yn+1, . . . , y2n−1, y0 are geodesics in H. Then
it follows from Theorem 1.1 that Q : (x, y0), (x, y1), . . . , (x, yn−1), (x, yn)
and Q1 : (x, yn), (x, yn+1), . . . , (x, y2n−1), (x, y0) are geodesics in G⊠H and
so (x, y1), (x, y2n−1), (x, yn−1), (x, yn+1) ∈ [W ]G⊠H . It is clear that Q2 :
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(x, y1), (u, y0), (x, y2n−1) and Q3 : (x, yn−1), (u, yn), (x, yn+1) are geodesics
in G⊠H. Hence (u, y0), (u, yn) ∈ [W ]G⊠H .

Assume that the result is true for dG(x, u) = k. Let u be a vertex such
that dG(x, u) = k + 1. Let x = x0, x1, . . . , xk, xk+1 = u be a x− u geodesic
in G. By induction hypothesis, (xk, y0), (xk, yn) ∈ [W ]G⊠H . As above, we
see that Q3 : (xk, y0), (xk, y1), . . . , (xk, yn) and Q4 : (xk, yn), (xk, yn+1), . . . ,
(xk, y2n−1), (xk, y0) are geodesics in G ⊠ H so that (xk, y1), (xk, y2n−1),
(xk, yn−1), (xk, yn+1) ∈ [W ]G⊠H . It is clear that Q5 : (xk, y1), (u, y0),
(xk, y2n−1) and Q6 : (xk, yn−1), (u, yn), (xk, yn+1) are geodesics in G ⊠ H.
Hence (u, y0), (u, yn) ∈ [W ]G⊠H and so V (G)× {y0, yn} ⊆ [W ]G⊠H .

Step 2. If y ∈ V (H) and V (G) × y ∈ [W ]G⊠H , then V (G) × y′ ⊆ [W ]G⊠H

for y′ ∈ NH(y).
Let u ∈ V (G). Since G has no extreme vertices, there exist vertices

u′, u′′ ∈ NG(u) such that u′ and u′′ are non-adjacent. Now, it is clear
that Q5 : (u′, y), (u, y′), (u′′, y) is a geodesic in G⊠H with (u′, y), (u′′, y) ∈
[W ]G⊠H and so (u, y′) ∈ [W ]G⊠H . Hence V (G)×y′ ⊆ [W ]G⊠H . Now, since G
and H are connected, it follows from Step 1 and Step 2 that V (G)×V (H) ⊆
[W ]G⊠H and so W is a hull set of G⊠H. Hence h(G ⊠H) = 2.

(ii) Let the girth of H be 2n+1(n ≥ 2) and let C : y0, y1, . . . , y2n, y0 be a
cycle of length 2n+1. For any x ∈ V (G), let W = {(x, y0), (x, yn), (x, yn+1}.
Then, as in (i), we can prove that W is a hull set of G⊠H and so h(G⊠H) ≤
|W | = 3.

In the following we give a class of strong product graphs for which the bound
in Theorem 2.7 is attained.

Theorem 3.2. Let G and H be connected graphs and S ⊆ V (G⊠H). Then
IkG[πG(S)] ⊆ πG(I

k
G⊠H [S]).

Proof. For k = 0, it is obvious. We first show that IG[πG(S)]⊆πG(IG⊠H [S]).
Let x ∈ IG[πG(S)]. If x ∈ πG(S), then there exists y ∈ V (H) such that
(x, y) ∈ S ⊆ IG⊠H [S] and so x ∈ πG(IG⊠H [S]). If x /∈ πG(S), then there ex-
ist g, g′ ∈ πG(S) such that x lies on a g− g′ geodesic P : g = g0, g1, . . . , gi =
x, gi+1, . . . , gn = g′ with 1 ≤ i ≤ n − 1 so that dG(g, g

′) = n. Since
g, g′ ∈ πG(S), there exist h, h′ ∈ V (H) such that (g, h), (g′, h′) ∈ S. Let
dH(h, h′) = m. and let Q : h = h0, h1, . . . , hm = h′ be a h − h′ geodesic in
H. We consider the following two cases.

Case 1. m ≥ n. Then it follows from Theorem 1.1 that Q′ : (g, h) =
(g0, h0), (g1, h1), . . . , (gi, hi) = (x, hi), (gi+1, hi+1), . . . , (gn, hn), (gn, hn+1),
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. . . , (gn, hm) = (g′, h′) is a (g, h) − (g′, h′) geodesic in G ⊠ H containing
the vertex (x, hi). Hence (x, hi) ∈ IG⊠H [S] and so x ∈ πG(IG⊠H [S]).

Case 2. m < n. Then it follows from Theorem 1.1 that the walk Q′′ :
(g, h) = (g0, h0), (g1, h1), . . . , (gm, hm), (gm+1, hm), . . . , (gn, hm) = (g′, h′) is
a (g, h) − (g′, h′) geodesic in G⊠H containing the vertex (x, hi) for some i
with 1 ≤ i ≤ m. Hence (x, hi) ∈ IG⊠H [S] and so x ∈ πG(IG⊠H [S]). Thus
IG[πG(S)] ⊆ πG(IG⊠H [S]).

Now, I2G[πG(S)] = IG[IG[πG(S)]] ⊆ IG[πG(IG⊠H [S])] ⊆ πG(I
2
G⊠H [S]).

Proceeding like this, we get IkG[πG(S)] ( πG(I
k
G⊠H [S]).

Remark 3.3. Strict inclusion can hold in Theorem 3.2. Let G and H
be the paths P4 : u1, u2, u3, u4 and P5 : v1, v2, v3, v4, v5 respectively. Let
S = {(u1, v1), (u2, v2), (u2, v4)}. Then it is easily checked that IG⊠H [S] =
{(u1, v1), (u1, v3), (u1, v2), (u3, v3), (u2, v3), (u2, v4), (u2, v2)} and so
πG(IG⊠H [S]) = {u1, u2, u3}. But IG[πG(S)] = IG[{u1, u2}] = {u1, u2} (

πG(IG⊠H [S]).

The following theorem shows that equality holds for the graph H = Km in
the inclusion in Theorem 3.2.

Theorem 3.4. Let G be a connected graph and S ⊆ V (G ⊠ Km), where
m ≥ 2. Then IkG[πG(S)] = πG(I

k
G⊠H [S]) for all k ≥ 0.

Proof. For k = 0, it is obvious. By Theorem 3.2, it is enough to show that
πG(I

k
G⊠H [S]) ⊆ IkG[πG(S)]. We first show that πG(IG⊠H [S]) ⊆ IG[πG(S)].

Let x ∈ πG(IG⊠H [S]). Then (x, y) ∈ IG⊠H [S] for some y ∈ V (Km).
If (x, y) ∈ S, then the result is trivial. If (x, y) /∈ S, then there ex-
ist (g, h), (g′ , h′) ∈ S such that (x, y) lies on a (g, h) − (g′, h′) geodesic
P : (g, h) = (g0, h0), (g1, h1), . . . , (gi, hi) = (x, y), . . . , (gn, hn) = (g′, h′) of
length n ≥ 2 with 1 ≤ i ≤ n − 1. Since dH(h, h′) = 1, it follows that
dG(g, g

′) > dH(h, h′). By Proposition 2.1, πG(P ) is a g − g′ geodesic in
G containing the vertex x, where g, g′ ∈ πG(S). Hence x ∈ IG[πG(S)].
Thus πG(IG⊠H [S]) ⊆ IG[πG(S)]. Now, πG(I

2
G⊠H [S]) ⊆ IG[πG(IG⊠H [S])] ⊆

I2G[πG(S)].
Proceeding like this, we get πG(I

k
G⊠H [S]) = IkG[πG(S)] for all k ≥ 0.

Theorem 3.5. For a connected graph G, h(G⊠Km) = h(G)+e(G)(m−1).
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Proof. Let S be a minimum hull set of G and let W = Ext(G) × V (Km)
∪((S − Ext(G)) × v), where v ∈ V (Km). Then, as in the proof of Theo-
rem 2.7, we can prove that W is a hull set of G⊠Km. Hence h(G⊠Km) ≤
|W | = h(G) + e(G)(m− 1). On the other hand, if there exists a hull set W ′

of G⊠Km such that |W ′| < |W |, then it follows from Theorems 1.2 and 2.2
that W ′ = Ext(G) × V (Km) ∪ T , where T ∩ (Ext(G) × V (Km)) = φ. This
implies that |T | < |(S −Ext(G))× v| = |S −Ext(G)| = h(G)− e(G). Now,
since W ′ is a hull set of G ⊠ Km, there exists an integer k ≥ 0 such that
[W ′]G⊠Km = IkG⊠Km

[W ′] = V (G ⊠ Km). By Theorem 3.4, IkG[πG(W
′)] =

πG(I
k
G⊠Km

[W ′]) = V (G) and so πG(W
′) is a hull set of G. It is easily seen

that πG(W
′) = Ext(G) ∪ πG(T ) and so |πG(W

′)| ≤ |Ext(G)| + |πG(T )| ≤
|Ext(G)| + |T | < e(G) + h(G) − e(G) = h(G). Thus πG(W

′) is a hull set
of G such that |πG(W

′)| < h(G), which is a contradiction. Hence W is a
minimum hull set of G⊠H so that h(G⊠Km) = |W | = h(G)+e(G)(m−1).

Let G ◦ H denote the composition of two graphs G and H. By proving
complicated lemmas and theorems, it is proved in [2] that h(G ◦ Km) =
h(G)+e(G)(m−1). We observe that G◦Km = G⊠Km and so the following
corollary gives a very simple and alternate proof of the above result proved
in [2].

Corollary 3.6. For a connected graph G, h(G◦Km) = h(G)+e(G)(m−1).

4. Extreme Hull Graphs

In this section we characterize the class of graphs for which the upper bound
in Corollary 2.5 is attained.

Definition. A graph G is an extreme hull graph if the set of extreme vertices
of G is a hull set of G.

Example 4.1. For the graph G in Figure 4.1, the set S = {u1, u5} of
extreme vertices is a hull set of G so that G is an extreme hull graph.

Remark 4.2. Every extreme geodesic graph is an extreme hull graph. The
graph G given in Figure 4.1 is an extreme hull graph, which it is not an
extreme geodesic graph.

By Theorem 1.2, 0 ≤ e(G) ≤ h(G) for every graph G. The following theorem
is a realization of this result.
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Figure 4.1.

Theorem 4.3. For every pair a, b of integers with 0 ≤ a ≤ b and b ≥ 2,
there exists a connected graph G such that e(G) = a and h(G) = b.

Proof. If a = b, then a ≥ 2 and G = Ka has the desired properties. Thus
we assume that a < b. Let Gi (1 ≤ i ≤ b− a) be the graphs given in Figure
4.2. Let H be the graph obtained from

⋃b−a
i=1

Gi by adding a new vertex w
and joining w to xi and zi (1 ≤ i ≤ b−a). Now, let G be the graph obtained
from H by adding the new vertices s1, s2, . . . , sa and joining these to w. The
graph G is shown in Figure 4.3.
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Figure 4.2.

Then S = {s1, s2, . . . , sa} is the set of extreme vertices of G and so e(G) =
a. We prove that h(G) = b. By Theorem 1.2, the vertices s1, s2, . . . , sa
belong to every hull set of G. Since V (G) − V (Gi) is a convex set for each
i = 1, 2, . . . , b − a, it follows that every hull set of G contains at least one
vertex from each Gi. Hence h(G) ≥ a + b − a = b. Now, since the set
S′ = S ∪ {v1, v2, . . . , vb−a} is a hull set of G, we have h(G) = b.

Theorem 4.4. For every pair a, b of integers with 2 ≤ a ≤ b, there exists
an extreme hull graph G with h(G) = a and g(G) = b.

Proof. If a = b, then G = Ka has the desired properties. Thus we assume
that a < b. We construct a graph G with the required geodetic number a
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and hull number b. Let Gi (1 ≤ i ≤ b−a) be the graphs given in Figure 4.2.
Let G be the graph obtained from

⋃b−a
i=1

Gi by adding the new vertices wi

(1 ≤ i ≤ a) and the edges (1) wiu1 (1 ≤ i ≤ a − 1), wayb−a and (2) yiui+1

(1 ≤ i ≤ b− a− 1). The graph G is shown in Figure 4.4.
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Let S = {w1, w2, . . . , wa} be the set of extreme vertices of G. Then it is
clear that I[S] = V (G) − {v1, v2, . . . , vb−a} and I2[S] = V (G). Hence by
Theorem 1.2, S is the unique minimum hull set of G and so h(G) = a.
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Next, we show that g(G) = b. It is clear that I[S] = V (G)−{v1, v2, . . . , vb−a}
and each vi must belong to every minimum geodetic set of G. Since W =
S∪{v1, v2, . . . , vb−a} is a geodetic set of G, it follows from Theorem 1.3 that
g(G) = b.

Theorem 4.5. Let G and H be connected graphs. Then h(G ⊠ H) =
h(G)h(H) if and only if both G and H are extreme hull graphs.

Proof. Let G and H be extreme hull graphs. Then Ext(G) and Ext(H)
are minimum hull sets of G and H respectively. Therefore, h(G) = e(G) and
h(H) = e(H). Now, it follows from Theorems 2.2 and 2.3 that Ext(G⊠H) =
Ext(G) × Ext(H) is a hull set of G ⊠H. Hence by Theorem 1.2, we have
h(G ⊠H) = e(G)e(H) = h(G)h(H).

Conversely, assume that h(G ⊠ H) = h(G)h(H). Let S and T be
minimum hull sets of G and H respectively. If Ext(G) = ∅, then, by
Corollary 2.8, h(G ⊠ H) ≤ h(G) < h(G)h(H), which is a contradiction.
Hence Ext(G) 6= ∅. Similarly, we can prove that Ext(H) 6= ∅. Now, by
Theorem 2.7, h(G ⊠ H) ≤ h(H) + e(H)(h(G) − 1). Hence h(G)h(H) ≤
h(H)+e(H)(h(G)−1). This implies that h(H)(h(G)−1) ≤ e(H)(h(G)−1).
Since h(G) ≥ 2, we have h(H) ≤ e(H). Hence it follows from Theorem 1.2
that h(H) = e(H) and so H is an extreme hull graph. Similarly, G is also
an extreme hull graph.

Corollary 4.6. Let G and H be connected graphs. If G and H are extreme
hull graphs, then G⊠H is an extreme hull graph.

Proof. This follows from Theorems 2.2 and 4.5.

The converse of the above corollary seems to be a diffcult problem and we
leave it open.

Problem 4.7. Let G and H be graphs such that G⊠H is an extreme hull
graph. Is it true that G and H are extreme hull graphs ?
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