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Abstract

It is known that if G is a graph that can be drawn without edges
crossing in a surface with Euler characteristic ǫ, and k and d are pos-
itive integers such that k > 3 and d is sufficiently large in terms of
k and ǫ, then G is (k, d)∗-colorable; that is, the vertices of G can be
colored with k colors so that each vertex has at most d neighbors with
the same color as itself. In this paper, the known lower bound on d
that suffices for this is reduced, and an analogous result is proved for
list colorings (choosability). Also, the recent result of Cushing and
Kierstead, that every planar graph is (4, 1)∗-choosable, is extended to
K3,3-minor-free and K5-minor-free graphs.
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1. Introduction

Let k and d be integers with k > 1 and d > 0. The defect of a vertex v
in a (vertex-)colored graph is the number of neighbors of v that have the
same color as v, and the defect of a coloring is the maximum defect of the
colored vertices. A graph G is (k, d)∗-colorable if it has a coloring with k
colors and defect at most d. If each vertex v ∈ V (G) is assigned a list L(v)
of colors, then G is (L, d)∗-colorable if it has a coloring with defect at most
d in which each vertex is colored with a color from its own list. Finally,
G is (k, d)∗-choosable if it is (L, d)∗-colorable whenever |L(v)| > k for each
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vertex v. Clearly (k, 0)∗-colorable and (k, 0)∗-choosable mean the same as
(properly) k-colorable and k-choosable, respectively.

Table 1. Values (k, d) for which every graph in the named class is

(k, d)∗-colorable.

K2,3-minor-free Outerplanar K4-minor-free

(4, 0)
(3, 1) (3, 0) (3, 0)
(2, 2) (2, 2)
Not (3, 0): K4

Not (2, 1): see right Not (2, 1): K1 + 2K1,2 Not (2, d):
Not (1, d): see right Not (1, d): K1,d+1 K1 + (d+ 1)K1,d+1

K3,3-minor-free Planar K5-minor-free

(5, 0) ([10])
(4, 1) ([17]) (4, 0) (4CT) (4, 0) (4CT + WET)
(3, 2) ([16]) (3, 2) ([2], [16])
Not (4, 0): K5 Not (3, 1): Not (3, d): K1 + (d+ 1) ·
Not (3, 1): see right K1 + 2[K1 + 2K1,2] [K1 + (d+ 1)K1,d+1]
Not (2, d): see right Not (2, d):

K1 + (d+ 1)K1,d+1

If a graphG is (k, d)∗-colorable or (k, d)∗-choosable, then it is clearly (k′, d′)∗-
colorable or (k′, d′)∗-choosable, respectively, whenever k′ > k and d′ > d.
Hence, to specify the pairs (k, d) for which G has one of these properties,
it suffices to list the pairs that are minimal in each coordinate. With this
convention, the pairs (k, d) such that all graphs in various classes are (k, d)∗-
colorable are listed in Table 1, which is copied from [17]; here 4CT refers to
the Four-Color Theorem, and WET is Wagner’s Equivalence Theorem [15].
Examples are included to show that the results cannot be improved; here +
denotes ‘join’.

The analogous results for (k, d)∗-choosability are given in Table 2. This
must differ from Table 1, since it is known ([14], see also [7, 9]) that not every
planar graph, or, therefore, every K5-minor-free graph, is 4-choosable; in
fact, this is the only difference. The results in Table 2 have all been known for
at least ten years, except for the three results involving (4, 1)∗-choosability.
Recently, in a deep and impressive paper, Cushing and Kierstead [4] have
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proved that all planar graphs are (4, 1)∗-choosable. The first thing we do in
this paper, in Section 2, is to give the following easy extension of this result:

Theorem 1. All K3,3-minor-free and all K5-minor-free graphs are (4, 1)∗-
choosable.

Table 2. Values (k, d) for which every graph in the named class is

(k, d)∗-choosable.

K2,3-minor-free Outerplanar K4-minor-free

(4, 0)
(3, 1) (3, 0) (3, 0) (2-degenerate [5])
(2, 2) (2, 2) ([12], [6])

K3,3-minor-free Planar K5-minor-free

(5, 0) ([17]) (5, 0) ([13]) (5, 0) ([11], [8])
(4, 1) (4, 1) ([4]) (4, 1)
(3, 2) ([17]) (3, 2) ([12], [6])

We then consider graphs in other surfaces. Cowen, Cowen and Woodall
[2] proved that every graph that can be drawn without edges crossing in
a surface S with Euler characteristic ǫ 6 2 is (4, d)∗-colorable, where d =
max{14, ⌈−4ǫ/3⌉ − 1}. They conjectured that there exists a d such that
every such graph is (3, d)∗-colorable. This was proved by Archdeacon [1],
with d = max{15, ⌈−3ǫ/2⌉ − 1}. His argument can easily be extended to
prove that (with a larger value of d) every graph in S is (3, d)∗-choosable,
although he did not do this in [1]. (The concept of defective choosability
was not invented until later.) Archdeacon’s value of d was improved to
max{12, ⌈6 +

√
12− 6ǫ⌉} by Cowen, Goddard and Jesurum [3], who also

proved that every toroidal graph is (3, 2)∗-colorable and (5, 1)∗-colorable.
Here we will use some technical lemmas to improve and generalize the

results for an arbitrary surface S. We will prove the following theorem.

Theorem 2. Let S be a compact connected surface with Euler characteristic

ǫ 6 2, and let G be a graph drawn in S without edges crossing.

(a) G is (k, d)∗-colorable in the following cases:
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(i) k = 3, d > 9 and d2 − 4d− (9− 4ǫ) > 0.

(ii) k = 4, d > 4 and 3d2 − d− (8− 4ǫ) > 0.

(iii) k = 5, d > 2 and 6d2 + 5d− (5− 4ǫ) > 0.

(iv) k > 6 and 1
2k(k − 1)d2 + (32k(k − 1)− 4k)d+ (k2 − 5k − 6 + 6ǫ) > 0.

(b) G is (k, d)∗-choosable in the following cases:

(i) k = 3 and d > max{9, 3 − 4
3ǫ} or d = 9 and ǫ > −2.

(ii) k = 4 and d > max{4, 1 − 1
2ǫ} or d = 4 and ǫ > −4.

(iii) k = 5 and d > max{2, 13 − 4
15ǫ} or d = 2 and ǫ > −5.

(iv) k > 6 and 2k(k − 3)d+ (k2 − 5k − 6 + 6ǫ) > 0.

Table 3. Values of d for which every graph in a surface of characteristic ǫ is shown

to be (k, d)∗-colorable or (k, d)∗-choosable (excluding special results for

the plane and torus)

ǫ = 2 1 0−1−2−3−4−5−6−7−8−9−10−11−12−13−14−15−16−17−18−19−20

(k, d)∗-colorable ([1]–[3]):
k = 3 ([1]) 15 15 15 15 15 15 15 15 15 15 15 15 15 16 17 19 20 22 23 25 26 28 29
k = 3 ([3]) 12 12 12 12 12 12 12 13 13 14 14 15 15 15 16 16 16 17 17 17 17 18 18
k = 4 ([2]) 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 17 18 19 21 22 23 25 26

(k, d)∗-colorable (this paper):
k = 3 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12
k = 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6
k = 5 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4
k = 6 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3
k = 7 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

(k, d)∗-choosable (this paper):
k = 3 9 9 9 9 9 10 10 10 12 13 14 16 17 18 20 21 22 24 25 26 28 29 30
k = 4 4 4 4 4 4 4 4 5 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12
k = 5 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6
k = 6 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4
k = 7 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3

The inequalities in Theorem 2(a) can be rephrased more explicitly by using
the quadratic formula; for example, the condition in Theorem 2(a)(i) can
be rewritten as d > max{8, 2 +

√
13− 4ǫ} or, equivalently, d > max{9, 2 +√

14− 4ǫ}. For k 6 7 and ǫ > −20, the conditions of Theorem 2 are
tabulated in Table 3. The proof of Theorem 2 relies mainly on Euler’s
formula, whereas the proofs of the sharp results for planar and toroidal
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graphs do not use Euler’s formula at all. Also, the method of proof used for
Theorem 2 cannot work unless d > 9, 4 or 2 when k = 3, 4 or 5 respectively,
and so it is not surprising that the lower bound obtained for d is far from
sharp for high values of ǫ, close to ǫ = 2, especially when k = 3. In contrast,
if k > 6 then the result for d = 0, for both colorability and choosability,
is simply the Heawood bound, which is well known to be sharp (except for
the Klein bottle). It is not clear how sharp the result is for low (i.e., large
negative) values of ǫ when d > 0, for any value of k.

We will prove Theorem 1 in Section 2, the technical lemmas needed for
Theorem 2 in Section 3, and Theorem 2 itself in Section 4.

2. (4, 1)∗-colorings

If U is a set of vertices of a graph G, we say that a coloring of G is U -proper

if no vertex in U has any neighbor outside U with the same color as itself;
this does not rule out the possibility that two adjacent vertices of U may
have the same color as each other.

In order to prove that every planar graph is (4, 1)∗-choosable, Cushing
and Kierstead proved a stronger and more technical result ([4], Theorem 2).
To state this result in full would require the introduction of terminology
that is otherwise unnecessary here. However, we can state the following
easy consequence of their result.

Theorem 2.1. Let G be a 2-connected plane triangulation, let each vertex

v of G be assigned a list L(v) of at least four colors, let U be a set of

three vertices bounding a face of G, and suppose that the vertices of U are

all precolored from their lists but not all with the same color. Then this

coloring

Proof. There is no loss of generality in taking the face bounded by U to
be the outside face. Label the vertices of U as b1, b2, b3 in such a way that
b3 does not have the same color as either b1 or b2, which is possible since
the colors of these three vertices are not all equal. Then the result is exactly
Theorem 2(A) of [4].

We will need also the following two theorems, which both follow immediately
from characterizations proved by Wagner [15]. Here V8, a Möbius ladder,
is the graph obtained from a circuit of length eight by joining each pair of
diagonally opposite vertices by a new edge.
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Theorem 2.2. If G is an edge-maximal K3,3-minor-free graph, then either

G is planar, or G ∼= K5, or G has a cutset consisting of two adjacent vertices.

Theorem 2.3. If G is an edge-maximal K5-minor-free graph, then either

G is planar, or G ∼= V8, or G has a cutset consisting of two or three mutually

adjacent vertices.

Now let G be the largest hereditary class of graphs (i.e., every subgraph of
a graph in G is in G) such that every edge-maximal graph in G either is
planar, or has maximum degree at most four, or has a cutset consisting of
two or three mutually adjacent vertices. It follows from Theorems 2.2 and
2.3 that G contains all K3,3-minor-free and K5-minor-free graphs. Thus the
following theorem implies Theorem 1.

Theorem 2.4. Let G be a graph in G, let each vertex v of G be assigned

a list L(v) of at least four colors, let U be a set of at most three mutually

adjacent vertices of G, and suppose that the vertices of U are all precolored

from their lists with at most two of them having the same color. Then this

coloring of U can be extended to a U -proper (L, 1)∗-coloring of G.

Proof. There is no loss of generality in assuming thatG is an edge-maximal
member of G. Thus G either is a maximal planar graph, or has maximum
degree at most four, or has a cutset of at most three mutually adjacent
vertices.

Suppose first that G is a maximal planar graph (a 2-connected triangu-
lation). There is no loss of generality in assuming that |U | = 3. Let C be the
circuit whose vertex-set is U . If C is a face boundary then the result is just
Theorem 2.1, otherwise it follows by applying Theorem 2.1 twice, extending
the given coloring of U first to all vertices inside C, and then to all vertices
outside C.

Suppose next that G has maximum degree at most four. In each com-
ponent of G − U , color the vertices sequentially in such an order that the
graph of the uncolored vertices remains connected throughout; let the last
vertex to be colored be w. Then each vertex except w has at most three
colored neighbors at the time of its coloring, and so can be colored properly
from its list. The vertex w can also be colored properly unless it has four
neighbors, one with each of the four different colors in L(w); in this case it
can be given the same color as a neighbor that is not in U . The result is the
required (L, 1)∗-coloring of G.
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Suppose finally that G has a cutset X consisting of at most three mutually
adjacent vertices. Let G1 and G2 be subgraphs of G, each with at least
|X|+1 vertices, such that G = G1∪G2 and G1∩G2 is the subgraph induced
by X. Since all vertices in U are mutually adjacent, we may assume that
U ⊆ V (G1). We may assume inductively that the given coloring of U can
be extended to a U -proper (L, 1)∗-coloring of G1, and that the resulting
coloring of X can be extended to an X-proper (L, 1)∗-coloring of G2, and
the union of these two colorings is the required U -proper (L, 1)∗-coloring
of G.

3. Technical Lemmas

The proof of Theorem 2(a) uses only Lemmas 3.1 and 3.2. The remaining
lemmas build up to Lemma 3.7, which is needed for the proof of Theorem
2(b). Throughout this section, k and d will denote integers with k > 1 and
d > 0.

Lemma 3.1. Let G be a graph with maximum degree ∆(G) < k(d + 1).
Then G is (k, d)∗-choosable, and hence (k, d)∗-colorable.

Proof. Suppose every vertex v ∈ V (G) is assigned a list L(v) of k colors.
Let f be an L-coloring of G with as few bad edges as possible, where an
edge is bad if it joins two vertices of the same color. For each vertex v, since
deg(v) < k(d + 1), there is at least one color c(v) ∈ L(v) that is used on at
most d neighbors of v. If v has defect greater than d in f , then changing
the color of v from f(v) to c(v) will reduce the number of bad edges, which
contradicts the choice of f . Thus f is an (L, d)∗-coloring, as required.

Lemma 3.2. Let G be a graph that is not (k, d)∗-colorable.

(a) Let the vertices of G be v0, v1, . . . , listed in nonincreasing order of de-

gree. Then deg(vi(d+1)) > (k − i)d + k for each i ∈ {0, 1, . . . , k}.
(b) There is a set V of (k − 1)(d + 1) + 1 vertices of G, all with degree at

least d+ k, such that
∑

v∈V deg(v) > (12k(k − 1)d + k2)(d+ 1).

Proof. Note first that deg(v0) > k(d+1) by Lemma 3.1, and so (a) holds
if i = 0, and all the vertices referred to in (a) do exist in G. Suppose that
(a) fails for some i ∈ {1, . . . , k}. We will construct a (k, d)∗-coloring of G in
four steps.
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Step 1. Color vertices v0, . . . , vi(d+1)−1 with colors 1, . . . , i, with d+ 1 ver-
tices receiving each color. (Since (a) fails, each vertex that is still uncolored
now has degree less than (k − i)d + k in G.)

Step 2. While there remains an uncolored vertex v and a color c ∈ {1, . . . , i}
such that v has no neighbor with color c, color v with c. (Now every uncol-
ored vertex has at least one neighbor with each of colors 1, . . . , i. Thus there
are no uncolored vertices left if i = k, when every vertex that is uncolored
at the end of Step 1 has degree less than k in G.) If there are no uncolored
vertices left, then stop; otherwise, proceed to Step 3.

Step 3. Delete all the colored vertices from G to leave a graph G′ in which
each vertex has degree less than ((k − i)d + k)− i = (k − i)(d + 1).

Step 4. Construct a (k− i, d)∗-coloring of G′ using colors i+1, . . . , k, which
is possible by Lemma 3.1.

The result is a (k, d)∗-coloring of G, and this contradiction proves (a).

We now prove (b), using (a). For i ∈ {1, . . . , k − 1} let

Vi := {vj : (i− 1)(d+ 1) + 1 6 j 6 i(d+ 1)},

so that Vi contains d+1 vertices which all have degree at least (k− i)d+ k,
by (a). Let V := V1 ∪ . . . ∪ Vk−1 ∪ {v0}, so that |V | = (k − 1)(d + 1) + 1.
The sum of the degrees of all vertices in V is at least

1

2
k(k − 1)d(d + 1) + k(k − 1)(d+ 1) + k(d+ 1)

=
(1

2
k(k − 1)d+ k2

)

(d+ 1),

as required.

We now seek an analogue of Lemma 3.2 for choosability. For the rest of
this section, let G be a minimal graph that is not (k, d)∗-choosable, so that
every proper subgraph of G is (k, d)∗-choosable; let L be a list-assignment
to G such that |L(v)| > k for each vertex v and such that G is not (L, d)∗-
colorable; and let C :=

⋃

v∈V (G) L(v). If X ⊆ C then an X-set is a set TX

of |X|(d+1) vertices that has an X-coloring, defined to be an L-coloring of
TX such that each color in X is used to color exactly d+ 1 vertices of TX .
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Lemma 3.3. (a) For every subset X ⊆ C there exists an X-set.

(b) If X ⊂ Y ⊆ C and TX , fX are an X-set and an associated X-coloring of

TX , then there exists a Y -set TY and an associated Y -coloring fY of TY such

that (i) TX ⊂ TY and (ii) for any vertex v ∈ TX such that fX(v) 6= fY (v),
there is no vertex w ∈ V (G) \ TY such that fY (v) ∈ L(w).

Proof. For each color c ∈ C, let Vc := {v ∈ V (G) : c ∈ L(v)}, and if
X ⊆ C let VX :=

⋃

c∈X Vc. Suppose the result of (a) is not true. Then,
by the ‘harem’ version of Hall’s marriage theorem, there is a subset X ⊆ C
such that |VX | < (d + 1)|X|. Choose X minimal with this property, say
X = {c1, . . . , cr}. Define pi := d + 1 if i ∈ {1, . . . , r − 1} and pr := |VX \
VX\{cr}| < d + 1. Then, for each subset S ⊆ X, |VS | >

∑

ci∈S
pi. It follows

from the harem theorem that there is an L-coloring f of VX in which each
color ci is used to color pi vertices. Evidently each vertex has defect at
most d. Let G′ := G − VX . By the choice of G, G has no (L, d)∗-coloring,
but every proper subgraph of G is (k, d)∗-choosable. It follows that G′ is
nonempty and has an (L, d)∗-coloring f ′. But no color in X is in the list of
any vertex in V (G′), and so f and f ′ together give an (L, d)∗-coloring of G.
This contradiction proves (a).

We now use (a) to prove (b). Let V := V (G). Starting with the X-
coloring fX of TX , as long as there is an uncolored vertex v ∈ V that has
in its list a color c ∈ Y that has not yet been used on d+1 vertices, color v
with c. When there is no such uncolored vertex v, if not every color in Y has
been used on d + 1 vertices, we carry out the following procedure to color
one more vertex at a time. Let D be the digraph with vertex set V (D) = V
in which there is an arc from u to v whenever u is currently colored with a
color that is in L(v). (The digraph D is reconstructed afresh after each new
vertex is colored.) Let c0 be a color in Y that is currently used on fewer
than d+1 vertices, let W be the set of all vertices of D that can be reached
by directed paths from Vc0 , let C

′ comprise c0 together with all colors that
are used to color vertices in W , and let U be the set of uncolored vertices.
By the definitions of W and C ′, W = VC′ , and so |W | > (d+ 1)|C ′| by (a).
But there are fewer than (d+1)|C ′| colored vertices in W , since c0 is used on
fewer than d+1 vertices and every other color in C ′ is used on at most d+1
vertices. Thus U ∩W 6= ∅. Let P = v1v2 . . . vs be a shortest directed path
in D from Vc0 to U , where vi is colored with ci ∈ L(vi+1) (i = 1, . . . , s− 1).
Give color ci−1 to vi (i = 1, . . . , s). The set of colored vertices of V thereby
increases by the addition of vs, which is colored with cs−1, and each vertex
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vi (i = 1, . . . , s − 1) changes color from ci to ci−1. However, there is no
uncolored vertex of V that has any of c0, . . . , cs−2 in its list, because if there
were, then there would be a shorter path than P from Vc0 to U . So if the
current coloring is f , and v is a vertex of TX such that f(v) 6= fX(v), then
f(v) /∈ L(w) for each uncolored vertex w. Continue in this way until every
color in Y is used on d+ 1 vertices, let fY be the final coloring, and let TY

be the set of vertices of V that are now colored. Then fY and TY have the
required properties.

Lemma 3.4. Let G, L and C be as defined before Lemma 3.3. Suppose there

is an oracle that, given sets Vj−1 $ V (G) and Cj−1 ⊂ C with |Cj−1| < k,
will deliver a vertex uj ∈ V (G) \ Vj−1 and a color cj ∈ L(uj) \ Cj−1. Then

we can construct sets C0 ⊂ C1 ⊂ · · · ⊂ Ck, U0 ⊂ U1 ⊂ · · · ⊂ Uk and

V0 ⊂ V1 ⊂ · · · ⊂ Vk such that C0 = U0 = V0 = ∅ and, for each i ∈ {1, . . . , k},
the following hold : Ci = {c1, . . . , ci} and Ui = {u1, . . . , ui}, where each

vertex uj and color cj are chosen by the oracle as described above, after the

sets Cj−1, Uj−1 and Vj−1 have been defined; Ui ∪ Vi−1 ⊂ Vi, Vi is a Ci-set

(so that |Vi| = i(d+1)), and there is a Ci-coloring fi of Vi such that, for any
vertex v ∈ Vi−1 such that fi−1(v) 6= fi(v), there is no vertex w ∈ V (G) \ Vi

such that fi(v) ∈ L(w).

Proof. This follows by k applications of Lemma 3.3. At each stage,
given the Ci−1-set Vi−1 and the Ci−1-coloring fi−1 of Vi−1, set X := Ci−1,
TX := Vi−1, fX := fi−1 and Y := Ci = Ci−1 ∪ {ci}. The first step in the
construction of Vi and fi from Vi−1 and fi−1 is to add the vertex ui with
color ci. Thereafter, the construction of Vi and fi proceeds as described in
the proof of Lemma 3.3.

Lemma 3.5. In the situation described in Lemma 3.4, we can choose the

sets V1, . . . , Vk so that, for each i ∈ {1, . . . , k} and each vertex w ∈ V (G)\Vi,
there are at least d|L(w) ∩Ci| vertices in Vi \Ui that have degree at least as

large as deg(w).

Proof. We follow the algorithm as described in Lemmas 3.3 and 3.4, with
the additional specification that at each stage we color a vertex whose degree
is as large as possible; in particular, whenever we have a choice of shortest
directed paths in the proof of Lemma 3.3(b), we always choose one of them
that ends in an uncolored vertex whose degree is as large as possible. Note
that if w ∈ V (G) \ Vi and cj ∈ L(w) ∩ Ci then no vertex in Vi can have
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been recolored with cj, since by (ii) in the statement of Lemma 3.3, we
never recolor a vertex with a color that is in the list of an uncolored vertex
w; in particular, the only vertex in Ui that can have color cj is uj. (Each
vertex uq ∈ Ui was originally colored with cq. It may subsequently have
been recolored, but not with color cj .) Thus for each color cj ∈ L(w) ∩ Ci,
at least d of the d+1 vertices v ∈ Vi such that fi(v) = cj are in Vi \Ui; and
they all have degree at least deg(w), since each such vertex v was uncolored
at the point when we colored it with cj , and if deg(v) < deg(w) then we
would have chosen to color w instead of v. This proves the result.

Lemma 3.6. Let G be a minimal graph that is not (k, d)∗-choosable. Then

there is a list a0 > a1 > · · · > ak−1 of integers such that a0 = k and

ai > k − i for each i, and a list of indices l0 6 l1 6 · · · 6 lk−1 such that

l0 = 0 and li − li−1 = (ai−1 − ai)d+ 1, and a list of vertices v0, v1, . . . , vlk−1

of G, such that deg(v0) > k(d + 1) and deg(vj) > aid + k if li−1 < j 6 li
(i = 1, . . . , k − 1).

Proof. We follow the procedure in Lemmas 3.3–3.5, starting with the
sets C0 = U0 = V0 = ∅. We must describe the behavior of the oracle.
Let v0 be any vertex with degree at least k(d + 1), which exists by Lemma
3.1. Initially, the oracle delivers the vertex u1 = v0 and an arbitrary color
c1 ∈ L(u1). Then we define C1 := {c1} and U1 := {u1}, and, as indicated in
Lemma 3.5, we define the C1-set V1 to consist of u1 together with d other
vertices with the largest degree possible that have color c1 in their lists; and
we define the C1-coloring f1 of V1 such that f1(v) = c1 for each v ∈ V1.
This completes Step 1; the lists currently consist of the numbers a0 = k and
l0 = 0, and the single vertex v0 = u1.

At the end of Step i we will have constructed the Ci-set Vi and the
Ci-coloring fi of Vi, and the numbers ai−1 and li−1, and the current list
of vertices v0, . . . , vli−1

will include the vertices u1, . . . , ui in Ui and exactly
(k − ai−1)d vertices of Vi \ Ui. (We cannot just add all vertices of Vi to
the list, because we do not know that their degrees are large enough.) The
oracle then chooses ui+1 and ci+1 as follows. For each uncolored vertex w,
let L′(w) be formed from L(w) by removing every color that has been used
by fi on a neighbor of w in Vi. Among all L′-colorings of G − Vi, let f

′ be
one that minimizes the number of bad edges, as in the proof of Lemma 3.1.
If there is no vertex with defect greater than d then f ′ and fi together give
an (L, d)∗-coloring of G, which is impossible. Thus the oracle can choose
a vertex w with defect greater than d. If there is a color c ∈ L′(w) such
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that w has at most d neighbors with color c, then changing the color of
w from f(w) to c will reduce the number of bad edges, a contradiction.
Thus for each color c ∈ L(w), either c ∈ L′(w) and w has at least d + 1
neighbors with color c in G − Vi, or c /∈ L′(w) and w has a neighbor of
color c in Vi. So if t := |L(w) ∩ Ci| 6 |Ci| = i, then |L′(w)| > k − t and
deg(w) > (k − t)(d + 1) + t = (k − t)d + k. The oracle returns the vertex
ui+1 = w and an arbitrary color ci+1 ∈ L(w) \ Ci.

If k− t > ai−1 then let ai := ai−1, li := li−1 +1 and vli := w; this works
since deg(w) > (k− t)d+ k > aid+ k. Otherwise, let ai := k− t < ai−1 and
li := li−1 + (ai−1 − ai)d + 1. Then ai > k − i since t 6 i. By Lemma 3.5
there are at least td = (k − ai)d vertices of Vi \ Ui that have degree at least
as large as that of w, and so far we have added at most (k− ai−1)d of these
to the list. So we add a further (ai−1−ai)d of them, and w itself, as vertices
vj with li−1 < j 6 li, which all have degree at least aid+ k.

If i = k − 1 then we stop at this point; the proof is complete. Other-
wise we define Ci+1 := Ci ∪ {ci+1} and Ui+1 := Ui ∪ {ui+1}, and we carry
out the next stage in the algorithm described in Lemmas 3.3–3.5 to con-
struct the Ci+1-set Vi+1 and the Ci+1-coloring fi+1 of Vi+1. This completes
Step i+ 1.

Lemma 3.7. Let G be a minimal graph that is not (k, d)∗-choosable, and
let d′ be a real number such that d′ 6 d + k if d > 2 and d′ 6 d + k − 1 if

d = 1. Let ni denote the number of vertices of degree i in G, and let

g(k, d, d′) :=

:=

{

k(k(d + 1)− d′) if d′ 6 d+ k − 1,

(k − 1)(k(d + 1)− d′) + ((k − 1)d+ 1)p if d′ = d+ k − p, 0 6 p 6 1.

Then
∑

i>d+k(i− d′)ni > g(k, d, d′).

Proof. Note that if d′ = d+ k − p then the second definition of g(k, d, d′)
rearranges to

k(k(d + 1)− d′)− (k − 1)d(1 − p),

which is equal to the first definition if p = 1, and otherwise is smaller. We
will prove that

lk−1
∑

i=0

(deg(vi)− d′) > g(k, d, d′),(3.1)
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where v0, . . . , vlk−1
is the list of vertices whose existence was proved in

Lemma 3.6; note that these vertices all have degree at least d+ k. There is
no loss of generality in assuming that their degrees are all equal to the lower
bounds given in Lemma 3.6, so that the sum in (3.1) is determined by the
numbers a0, . . . , ak−1.

The result holds, with equality if d′ 6 d + k − 1, if the numbers
a0, . . . , ak−1 are all equal, since then they are all equal to a0 = k, and the
list consists of exactly k vertices, each with degree exactly k(d + 1). So we
may suppose that there are at least two different values among the numbers
ai. Let the two smallest values be s and t, where k > s > t = ak−1 > 1,
and let the number of i’s such that ai = t be r. Since ai > k − i for each
i, it follows that ak−1−t > t + 1, and so at most t of the numbers, namely
ak−t, . . . , ak−1, can equal t; that is, r 6 t.

Suppose that we raise the r smallest numbers ai so that they equal s.
Then the degrees of the r vertices ui of smallest degree each increase by
(s − t)d, but also (s − t)d vertices disappear from the list altogether, each
with degree td+ k. The result is that the sum in (3.1) decreases by

(s− t)d(td+ k − d′ − r) > (s− t)d(td+ k − d′ − t).(3.2)

Suppose first that d′ 6 d+ k − 1. Then the last bracket in (3.2) is at least
td − d + 1 − t = (t − 1)(d − 1) > 0. Thus if we raise all the numbers ai
with the smallest value so that they equal the second-smallest value, then
the sum in (3.1) does not increase. We can do this until all the numbers ai
are equal to k, at which point, as we have seen, (3.1) holds. It follows that
(3.1) always holds, as required.

Suppose now that d′ = d+ k− p, where 0 6 p < 1 and d > 2. Then the
last bracket in (3.2) is (t−1)(d−1)−1+p, which can be negative, but only
if t = 1, which implies r = 1 since 1 6 r 6 t. Thus if ak−1 > 2 then the sum
in (3.1) is smallest when all the numbers ai are equal to k, and this is also
the situation in which lowering ak−1 to 1 causes the sum to reduce by the
largest amount, since then s = k and by (3.2) the reduction is

(s− t)d(1 − p) = (k − 1)d(1 − p).

So the sum is minimized by taking a0 = · · · = ak−2 = k and ak−1 = 1, when
the list of vertices consists of k − 1 vertices with degree k(d + 1), followed
by (k− 1)d+1 vertices with degree d+ k = d′ + p, which each contribute p
to the sum. Thus (3.1) holds with equality in this case.
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4. Graphs in Surfaces

We now prove Theorem 2. The start of the proof is the same for both parts
of the theorem. By way of contradiction, let S be a surface for which either
part fails, whose characteristic is as high (i.e., as close to 2) as possible, and
let G be a minimal counterexample drawn in G. Let each vertex v ∈ V (G)
be assigned a list L(v) of k colors, in such a way that G has no (L, d)∗-
coloring, where in proving Theorem 2(a) we assume that the lists are all
identical. Let

V1 := {v ∈ V (G) : k 6 deg(v) 6 d+ k − 1},
V2 := {v ∈ V (G) : deg(v) > d+ k}.

(The sets V1 and V2 are used only when k 6 5.)

We now list some simple properties of G and S.

P1. G is connected, since if each component of G is (L, d)∗-colorable, then
so is G.

P2. Each region into which G divides S is an open 2-cell, since otherwise
G embeds in a surface of higher characteristic, which contradicts the choice
of S.

P3. Every face boundary contains at least three edges, since G is simple.

P4. G has no vertex with degree less than k, since if deg(v) < k then an
(L, d)∗-coloring of G is easily obtained from one of G − v; hence V (G) =
V1 ∪ V2.

P5. V1 is an independent set in G. For, suppose e is an edge joining two
vertices u, v ∈ V1. By the minimality of G, there is an (L, d)∗-coloring f
of G − e. Now, u and v have degree at most d + k − 2 in G − e, and so if
either of them has d neighbors with the same color as itself, then there is a
color in its list that is not used on any of its neighbors, and we can recolor
it with that color. So we may assume that u and v both have defect at most
d− 1 in G− e, so that f is also an (L, d)∗-coloring of G. This contradiction
proves P5.

Archdeacon [1] describes how to construct a pseudograph G′ (allowing
loops and multiple edges) that contains G, triangulates S, has the same
vertex-set as G, and such that no edge in E(G′) \E(G) has an endvertex in
V1. Then V1 is still an independent set in G′, and degG′(v) 6 d + k − 1 if
v ∈ V1 and degG′(v) > d+ k if v ∈ V2.
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Let E1 be the set of edges of G′ incident with a vertex in V1 and let E2

be the set of edges that join vertices in V2. Since G′ is a triangulation,
3|F (G′)| = 2|E(G′)| = 2(|E1| + |E2|), where F (G′) is the set of faces. But
each face is incident with an edge in E2, because there is no triangle whose
edges are all in E1; thus |F (G′)| 6 2|E2|, which with the previous equation
gives |E1| 6 2|E2|.

Let ni denote the number of vertices of G′ with degree i, and define

Σ1 :=

d+k−1
∑

i=k

ini =
∑

v∈V1

deg(v) = |E1|

and
Σ2 :=

∑

i>d+k

ini =
∑

v∈V2

deg(v) = |E1|+ 2|E2|.

It follows that 2Σ1 6 Σ2, i.e.,

2

d+k−1
∑

i=k

ini −
∑

i>d+k

ini 6 0.(4.3)

Also, Euler’s formula applied to 2-cell triangulations implies that

∑

i>k

(i− 6)ni = −6ǫ.(4.4)

We now consider several different cases. Since each vertex has degree at
least as large in G′ as in G, the results of Lemmas 3.2 and 3.7 hold for G′

as well as for G.

Case (i). k = 3 and d > 9.
If G is not (3, d)∗-colorable then Lemma 3.2(b) gives

[(3d+ 9)(d + 1)]− 12[2(d + 1) + 1] 6
∑

i>d+k

(i− 12)ni

6

d+k−1
∑

i=3

(4i − 12)ni +
∑

i>d+k

(i−12)ni 6−12ǫ,

where the last inequality is obtained by adding twice (4.4) to (4.3). Dividing
by 3 and rearranging gives d2 − 4d − (9 − 4ǫ) 6 0; but this contradicts the
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hypothesis of Theorem 2(a)(i), and this contradiction shows that G is (3, d)∗-
colorable whenever the hypothesis of Theorem 2(a)(i) holds.

If G is not (3, d)∗-choosable and d > 10 (so that 12 6 d + k − 1) then
Lemma 3.7 with d′ = 12 gives

3(3(d + 1)− 12) 6
∑

i>d+k

(i− 12)ni 6 −12ǫ,

i.e., d 6 3 − 4
3ǫ, while if d = 9 then Lemma 3.7 with p = 0 gives 2(3 · 10 −

12) 6 −12ǫ, i.e., ǫ 6 −3, and both of these contradict the hypothesis of
Theorem 2(b)(i).

Case (ii). k = 4 and d > 4.
If G is not (4, d)∗-colorable then Lemma 3.2(b) gives

[(6d + 16)(d + 1)]− 8[3(d + 1) + 1] 6
∑

i>d+k

(i− 8)ni

6

d+k−1
∑

i=4

(2i−8)ni +
∑

i>d+k

(i− 8)ni 6−8ǫ,

where the last inequality is obtained by adding four times (4.4) to (4.3) and
dividing by 3. Halving and rearranging gives 3d2 − d − (8 − 4ǫ) 6 0, and
this contradicts the hypothesis of Theorem 2(a)(ii).

If G is not (4, d)∗-choosable and d > 5 (so that 8 6 d + k − 1) then
Lemma 3.7 with d′ = 8 gives

16(d + 1)− 32 6
∑

i>d+k

(i− 8)ni 6 −8ǫ,

i.e., d 6 1 − 1
2ǫ, while if d = 4 then Lemma 3.7 with p = 0 gives 12 · 5 −

24 6 −8ǫ, i.e., 2ǫ 6 −9, and both of these contradict the hypothesis of
Theorem 2(b)(ii).

Case (iii). k = 5 and d > 2.
If G is not (5, d)∗-colorable then Lemma 3.2(b) gives

3[(10d + 25)(d + 1)] − 20[4(d + 1) + 1] 6
∑

i>d+k

(3i− 20)ni

6

d+k−1
∑

i=5

(4i− 20)ni +
∑

i>d+k

(3i− 20)ni 6−20ǫ,



Defective Choosability of Graphs in Surfaces 457

where the last inequality is obtained by adding ten times (4.4) to (4.3) and
dividing by 3. Dividing by 5 and rearranging gives 6d2 + 5d− (5− 4ǫ) 6 0,
and this contradicts the hypothesis of Theorem 2(a)(iii).

If G is not (5, d)∗-choosable and d > 3 (so that 20
3 < d + k − 1) then

Lemma 3.7 with d′ = 20
3 gives

75(d + 1)− 100 6
∑

i>d+k

(3i− 20)ni 6 −20ǫ,

i.e., d 6
1
3 − 4

15ǫ, while if d = 2 then 20
3 = d + k − 1

3 , and Lemma 3.7 with
p = 1

3 gives 60 · 3− 80+9 6 −20ǫ, i.e., 20ǫ 6 −109; both of these contradict
the hypothesis of Theorem 2(b)(iii).

Case (iv). k > 6.

In this case we ignore (4.3) and use only (4.4), together with the fact that,
by Lemma 3.1, G has at least k(d + 1) + 1 = kd + k + 1 vertices, all with
degree at least k (property P4). Since i − 6 = (k − 6) + (i − k), it follows
that

(kd+ k + 1)(k − 6) +
∑

i>d+k

(i− k)ni 6
∑

i>k

(i− 6)ni = −6ǫ.(4.5)

If G is not (k, d)∗-colorable then (4.5) and Lemma 3.2(b) give

(kd+ k+1)(k− 6)+ [12k(k− 1)d+ k2)(d+1)]− k[(k− 1)(d+1)+1] 6 −6ǫ,

i.e.,
1
2k(k − 1)d2 + (32k(k − 1)− 4k)d+ (k2 − 5k − 6 + 6ǫ) 6 0,

and this contradicts the hypothesis of Theorem 2(a)(iv).

If G is not (k, d)∗-choosable then (4.5) and Lemma 3.7 with d′ = k (if
d > 1), or (4.5) alone (if d = 0), gives

(kd+ k + 1)(k − 6) + k2d 6 −6ǫ,

i.e., 2k(k− 3)d+ (k2 − 5k− 6+ 6ǫ) 6 0, and this contradicts the hypothesis
of Theorem 2(b)(iv).

In every case we have obtained a contradiction, and so the proof of
Theorem 2 is complete.
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