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Abstract

Let D be a finite and simple digraph with the vertex set V(D), and
let f: V(D) — {—1,1} be a two-valued function. If 35 -1, f(z) 2 1
for each v € V(D), where N~ [v] consists of v and all vertices of D
from which arcs go into v, then f is a signed dominating function on
D. The sum f(V(D)) is called the weight w(f) of f. The minimum of
weights w(f), taken over all signed dominating functions f on D, is the
signed domination number vg(D) of D. A set {f1, fa,..., fa} of signed
dominating functions on D with the property that Z?Zl fi(x) <1 for
each z € V(D), is called a signed dominating family (of functions) on
D. The maximum number of functions in a signed dominating family
on D is the signed domatic number of D, denoted by ds(D).

In this work we show that 4 — n < y¢(D) < n for each digraph D
of order n > 2, and we characterize the digraphs attending the lower
bound as well as the upper bound. Furthermore, we prove that vs(D)+
ds(D) < n+1 for any digraph D of order n, and we characterize the
digraphs D with vs(D) 4+ dg(D) = n+ 1. Some of our theorems imply
well-known results on the signed domination number of graphs.
Keywords: digraph, oriented graph, signed dominating function,
signed domination number, signed domatic number.
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In this paper all digraphs are finite without loops or multiple arcs. A digraph
without directed cycles of length 2 is an oriented graph. The vertex set and
arc set of a digraph D are denoted by V(D) and A(D), respectively. The
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order n = n(D) of a digraph D is the number of its vertices. If uv is an
arc of D, then we also write u — v, and we say that v is an out-neighbor
of u and u is an in-neighbor of v. If A and B are two disjoint vertex sets
of a digraph D such that a — b for each ¢« € A and each b € B, then
we use the symbol A — B. For a vertex v of a digraph D, we denote
the set of in-neighbors and out-neighbors of v by N~ (v) = Np(v) and
N*(v) = N} (v), respectively. Furthermore, N~[v] = N [v] = N~ (v) U{v}.
The numbers dp(v) = d~(v) = [N~ (v)| and d5(v) = d*(v) = [Nt (v)]
are the indegree and outdegree of v, respectively. The minimum indegree,
maximum indegree, minimum outdegree and mazximum outdegree of D are
denoted by 6~ = 6 (D), A~ = A~ (D), 67 = 67(D) and AT = AT(D),
respectively. A digraph D is strongly connected if, for each pair of vertices
uw and v in D, there is a directed path from u to v in D. If X C V(D) and
v € V(D), then E(X,v) is the set of arcs from X to v. The complete digraph
of order n is denoted by K. If X C V(D) and f is a mapping from V(D)
into some set of numbers, then f(X) =" cx f(x).

A signed dominating function of a digraph D is defined in [6] as a two-
valued function f : V(D) — {—1,1} such that f(N~7[v]) = X en-py f(2)
> 1 for each v € V(D). The sum f(V(D)) is called the weight w(f) of f.
The minimum of weights w(f), taken over all signed dominating functions
f on D, is called the signed domination number of D, denoted by ~vg(D).
Signed domination in digraphs has been studied in [3] and [6].

A set {f1, f2,..., fq} of signed dominating functions on D with the
property that Y% | fi(z) < 1 for each vertex 2 € V(D), is called a signed
dominating family (of functions) on D. The maximum number of functions
in a signed dominating family on D is the signed domatic number of D,
denoted by dg(D). The signed domatic number of digraphs was introduced
by Sheikholeslami and Volkmann [4]. We start with a simple observation.

Observation 1. Let D be a digraph of order n. If 1 < n < 2, then
vs(D) =n, and if n > 3, then

4—n<~s5(D)<n.

Proof. 1t is easy to see that ys(D) = n when 1 < n < 2. Assume now
that n > 3. The upper bound vg(D) < n is immediate. If f is a signed
dominating function on D, then the condition n > 3 implies that there are
at least two distinct vertices w and v such that f(u) = f(v) = 1, and thus
v(D)>2—-(n—2)=4—n. |
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Let F be the family of digraphs of order n > 3 such that there exist two
vertices u and v such {u,v} — z for each x € V(D) \ {u, v}, the set V(D) \
{u,v} is independent, and there are at most two arcs from V(D) \ {u,v}
to {u,v}. If there are two arcs from V(D) \ {u,v} to {u,v}, then the end-
vertices of these arcs are different. In addition,

if there is no arc from V(D) \ {u,v} to {u,v}, then {u,v} is an inde-
pendent set or there are one or two arcs between u and v,

if there is exactly one arc from V(D) \ {u, v} to {u,v}, say w — u, then
v = u,

if there are exactly two arcs from V(D) \ {u,v} to {u,v}, say w — u
and z — v, where w = z is admissible, then v — u as well as u — v.

Theorem 2. Let D be a digraph of order n > 3. Then vs(D) = 4 —n if
and only if D is a member of F.

Proof. If D is a member of F, then it is a simple matter to verify that
the function f: V(D) — {—1,1} such that f(u) = f(v) =1 and f(z) = —1
for x € V(D) \ {u, v} is a signed dominating function on D of weight 4 — n.
Applying Observation 1, we obtain yg(D) =4 — n.

Conversely, assume that ys(D) = 4—n, and let f be a signed dominating
function on D of weight 4 — n. Then there exist exactly two vertices, say
uw and v, such that f(u) = f(v) = 1 and f(z) = —1 for x € V(D) \
{u,v}. Because of 3- cn—(y) f(y) > 1 for each z € V(D) \ {u, v}, we deduce
that {u,v} — « for every z € V(D) \ {u,v} and that V(D) \ {u,v} is an
independent set. If there are at least three arcs from V(D) \ {u, v} to {u,v},
then u or v, say u, has at least two in-neighbors in V(D) \ {u,v}, and we
obtain the contradiction 3 c -1y f () < 0. Thus there are at most two
arcs from V(D) \ {u,v} to {u,v}. Now it is straightforward to verify that
D is a member of F. ]

Corollary 3 (Karami, Sheikholeslami, Khodar [3] 2009). If D is an ori-
ented graph of order n > 3, then vs(D) > 4 — n with equality if and only if
there exist two vertices w and v such {u,v} — x for each v € V(D) \ {u, v},
the set V(D) \ {u,v} is independent, and {u,v} is independent or there is
exactly one arc between u and v.

Corollary 4. If D is a strongly connected digraph of order n > 5, then
vs(D) > 6 —n.
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Let H be the digraph of order n > 5 with vertex set V(D) = {u,v, w,z1,
x9,...,Tp—3} such that {u,v,w} — {x1,29,...,2y_3}, T1 = 29 = -+ =
Tp—3 — wand w - v = u — w. Then H is strongly connected, and
the function f : V(H) — {—1,1} such that f(u) = f(v) = f(w) =1 and
f(x;) = —1for 1 <i<n-—3isasigned dominating function on D of weight
6 — n. Therefore the bound given in Corollary 4 is best possible.

Let @ be the digraph of order n = 4 with vertex set V(D) = {u, v, z1, 22}
such that {u,v} — {z1,22}, 1 = u, x2 — v, v — v and v — u. Then
@ is strongly connected, and the function f : V(Q) — {—1,1} such that
fu) = f(v) =1 and f(x1) = f(xe) = —1 is a signed dominating function
on @ of weight 0. This example demonstrates that Corollary 4 does not
hold for n = 4.

Theorem 5. If D is a strongly connected oriented graph of order n > 7,
then yg(D) > 8 — n, and this bound is sharp.

Proof. According to Corollary 4, we have yg(D) > 6 — n. Suppose to the
contrary that vs(D) = 6 — n, and let f be a signed dominating function on
D of weight 6 — n. Then there exist exactly three vertices, say u,v and w,
such that f(u) = f(v) = f(w) =1 and f(x) = —1 for x € V(D) \ {u,v,w}.
Because of 30 cn-[y f(y) > 1 for each z € V(D) \ {u,v,w}, each such
vertex has at least two in-neighbors in {u,v,w}. Let V(D) \ {u,v,w} =
{.’L’l, Ty nn ,{L’n_g}.

First we show that V(D) \ {u,v,w} is an independent set. Suppose to
the contrary that there exists an arc, say zixe, in V(D) \ {u,v,w}. Then
{u,v,w} — x9, and since D is a strongly connected oriented graph, o
dominates a further vertex, say xs3, in V(D) \ {u,v,w}. Thus {u,v,w} —
x3, and since D is a strongly connected oriented graph, x3 dominates a
further vertex of V(D) \ {u,v,w}. If we continue this process we arrive at
a directed cycle C1, say C1 = x122...xpx; with & > 3. This implies that
{u,v,w} — V(C1). Since D is an oriented graph, there is no arc from C to
{u,v,w}. If k = n — 3, then D is not strongly connected, a contradiction.
Otherwise, as D is strongly connected, there exists an arc az from C] to
V(D)\ (V(C1)U{u,v,w}). This implies {u,v,w} — z. As above the vertex
z is contained in a cycle Cy such that V(Cy) C (V(D)\ (V(C1)U{u,v,w})).
But this leads to the contradiction 3 cn-1, f(z) < 0, and thus V(D) \
{u,v,w} is an independent set.

Since D is strongly connected, we deduce that each vertex of V(D) \
{u,v,w} has an out-neighbor in {u,v,w}. The hypothesis n > 7 implies
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that at least one vertex in {u,v,w}, say u, has at least two in-neighbors in
V(D) \ {u,v,w}. If u has at least three in-neighbors in V(D) \ {u,v,w},
then we obtain the contradiction >,y f (x) < 0. If w has exactly two in-
neighbors in V(D) \ {u, v, w}, then it follows that {v,w} — u. If v or w, say
v, has two in-neighbors in V(D) \ {u, v, w}, then it follows that {u,w} — v,
a contradiction to the fact that D is an oriented graph. Finally, if v and
w have exactly one in-neighbor in V(D) \ {u,v,w}, then w — v, and we
obtain the contradition u — w or v — w. This contradiction implies that

vs(D) > 8 — n.

In order to prove that this bound is sharp, let H be the digraph of
order n > 7 with vertex set V(H) = {u,v,w, z,21,x2,...,Ty—4} such that
{v,w,z} = {x1,29,...,Tpn-a}, 11 = u — {X2,23,...,Tp_u}, T1 = T3 —

- = Tpg4 > 21 and u > v - w — z = u. Then H is a strongly
connected oriented graph, and the function f : V(H) — {—1,1} such that
flw) = f(v) = f(w) = f(2) =1 and f(x;) = —1for 1 <i<n-—4isasigned
dominating function on H of weight 8 — n. Therefore y¢(H) < 8 — n, and
thus vs(H) = 8 — n. ]

Let @ be the digraph of order n = 6 with vertex set V(Q) = {u,v,w,x1,
x9,x3} such that u — {2,235}, v = {x1,23}, w — {r1,22}, T11 — w,
To — v, x3 — w and u = v — w — u. Then Q is a strongly connected
oriented graph, and the function f : V(Q) — {—1,1} such that f(u) =
fw) = f(w) =1 and f(z1) = f(x2) = f(x3) = —1 is a signed dominating
function on ) of weight 0. This example demonstrates that Theorem 5 does
not hold for n = 6.

Theorem 6. Let v > 0 be an integer, and let D be an oriented graph of
order n such that d~(x) = r for every vertex x € V(D). Then

vs(D)>2r+2—nif r is even

and
vs(D) > 2r+4—n if r is odd.

Proof. Let f be an arbitrary signed dominating function on D, and let
V* be the set of vertices with f(z) =1forz € Vt and V- =V(D)\ V™.
Furthermore, define |V 1| = t.

First, let r = 2k be even. Because of > ey [y f(z) > 1 for each vertex
u, every vertex z € V' has at most k in-neighbors in V~. It follows that
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tt— 1)

2kt =Y d (z) < kt+

zeV+

and thus t > 2k + 1. Since f was chosen arbitrary, this implies the desired
bound v5(D) >2k+1—-(n—(2k+1)) =4k+2—n=2r+2—n.

Second, let r = 2k — 1 be odd. Because of 3, cn-, f(z) > 1 for each
vertex u, every vertex x € V1 has at most & — 1 in-neighbors in V~. It
follows that

tt—1)
2

2k —1)t= > d (z)<t(k—1)+

zeV+

and thus ¢ > 2k + 1. This implies that y¢(D) > 2k+1— (n — (2k + 1))
4k + 2 —n = 2r + 4 — n, and the proof is complete.

Theorem 7. If D is a digraph of order n, then

St +2 - AT
py>2 == |
150D) 2 AT "
Proof. Let f be an arbitrary signed dominating function on D, and let

V* be the set of vertices with f(z) =1forz € Vtand V- =V (D)\ V™.
Then

n< Y, fWNTR) = ) (d (@) +1)f(2)

z€V(D) 2eV (D)
= Z (d¥(z)+1) - Z (dt(z) +1)
zeV+t eV~

< WVHAT +1) = |[VT|(6T +1)
= V(AT +61 +2) —n(dT +1).

This implies
v > n(6t +2)
ot 424 At

and hence we obtain the desired bound as follows

15(D) = [VF = [VT|=2[VT]—n
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2n(6t +2) .
— 4+ 2+ AT
ot H2 - AT "
St 24 AT T m

Corollary 8. If D is a digraph of order n such that d*(x) = k for all
x € V(D), then

n
E+1

vs(D) =
Corollary 9 (Karami, Sheikholeslami, Khodar [3] 2009). If D is a digraph
of order n such that d(x) = d*(z) =k for all z € V(D), then

n
E+1

vs(D) >

If f is a signed dominating function on D, and d~ (v) is odd, then it follows
that f(N~[v]) = > zeN~-[v] f(x) > 2. Using this inequality, we obtain the
next result analogously to the proof of Theorem 7.

Theorem 10. If D is a digraph of order n such that d—(v) is odd for all
v e V(D), then
St 4+4 - AT
[ —
15(0) 2 G AT "

Corollary 11. Let D be a digraph of order n such that d~(z) = d* (x) =k
for all x € V(D). If k is odd, then

2n
E+1

Theorem 12. If D is a digraph of order n, then

vs(D) >

n+|A(D)| —nAT
At +1 '

vs(D) >

Proof. Let f be an arbitrary signed dominating function on D, and let
V* be the set of vertices with f(z) =1forz € Vt and V- =V(D)\ V™.
Then

n< Y, fWNTR)= Y (@) +1)f(2)

zeV (D) zeV (D)
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= Z (d¥(z)+1) - Z (dt(z)+1)

zeV+t eV~
= VA= VTI+ ) df (@) - ) d(z)
zeV+ eV~
=2V —n+2 > di@)— > df(x)
eVt zeV (D)
= 2VT|—n+2 Y df(z) - |AD)|
zeV+

< 2VF| —n+2[VT|AT — |A(D)|
= 2|lVT|(AT +1) —n — |A(D)|.
This implies

2n+ |AD))|

| >
vriz 2AT +1)

and hence we obtain the desired bound as follows

(D) = [V = [V =2VF—n
o+ [A(D)|
- At 41
_ n+|A(D)| —nA*
B At +1 ' -

Theorem 12 also implies Corollary 8 immediately. In the special case that
d~(v) is odd for all v € V(D), we obtain vs(D) > (2n + |A(D)| — nA™*)/
(AT + 1) instead of the bound in Theorem 12.

The signed dominating function of a graph G is defined in [1] as a func-
tion f : V(G) — {—1,1} such that 3 c . f(z) > 1 for all v € V(G).
The sum }°,cy () f(x) is the weight w(f) of f. The minimum of weights
w(f), taken over all signed dominating functions f on G is called the signed
domination number of G, denoted by vs(G).

The associated digraph D(G) of a graph G is the digraph obtained when
each edge e of G is replaced by two oppositely oriented arcs with the same
ends as e. Since Np ) (v) = Ng(v) for each vertex v € V(G) = V(D(G)),
the following useful observation is valid.
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Observation 13. If D(G) is the associated digraph of a graph G, then
15(D(G)) = 75(G).

There are a lot of interesting applications of Observation 13, as for example
the following three results.

Corollary 14 (Zhang, Xu, Li, Liu [7] 1999). If G is a graph of order n,
mazimum degree A(G) and minimum degree 6(G), then
I(G)+2-A(G)

5@ 2 521 a0) ™

Proof. Since 6(G) =67 (D(G)), A(G) = AT(D(G)) and n = n(D(G)), it
follows from Theorem 7 and Observation 13 that
B St (D(G)) +2 — AT(D(G)) B IG)+2—-A(G)
1506 =3P 2 5 (@) 12+ ATD@) "~ 56 +2 1 AG) "
| ]

Corollary 15 (Dunbar, Hedetniemi, Henning, Slater [1] 1995). If G is a
k-regular graph of order n, then vs(G) > n/(k +1).

Corollary 16 (Henning, Slater [2] 1996). For every k-regular graph G of
order n with k odd, vs(G) > 2n/(k +1).

Proof. Since k is odd and dg(z) = dB(G)(ac) = dJB(G)(w) = k for all
x € V(GQ) and n = n(D(Q)), it follows from Corollary 11 and Observation

13 that
2n(D(G))  2n(G)

E+1  k+1° ]

75(G) = vs(D(G)) >

Theorem 17. If D is a digraph of order n, then

.- 2|2 +1 - A%(D)

Proof. Let f be a signed dominating function on D such that w(f) =
vs(D), and let VT be the set of vertices with f(z) = 1 for x € V' and
V= =V(D)\ V™. In addition, let s be the number of arcs from V' to V.
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The condition f(N~[x]) > 1 implies that |[E(V ", 2)| > |[E(V ™, z)| for z €
V*tand |[E(VT,z)| > |E(V~,z)| +2 for z € V~. Thus we obtain
57(D) < d(2) = [E(V*,2)| + |E(V—, 2)] < 2AB(V*,2)| 2

and so |[E(V T, z)| > [lé”ﬂ for each vertex z € V~. Hence we deduce
that

1) s= Y [EvHao)l> Y {‘S(Zﬁw — v F(D;Jrﬂ.

zeV— zeV—

Since |[E(V T, x)| > P}D)W for z € V't it follows that
0~ (D
BOWH) = Y 1BV )= V] {#w |
yev+
This implies that

s= Y d"(y) - |EDVT])

yeVv+

@) < 3 - |2

yeV+

IN

VA (D) - [V F fﬂ

Inequalities (1) and (2) lead to

VHA*D) - [V |25
[6*§D)+2}

2

VoI <
Since vg(D) = |[VT| = |V~ | and n = |VT| + |V, it follows from the last
inequality that

VHAT(D) - v [ 2]
[6*1[2)&2"

v5(D) = [VF|~
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6 (D
_ (e [ s
2 [P +1
and this yields to the desired bound. [ |

Note that Observation 13 and Theorem 17 also imply Corollaries 15 and 16
immediately.

Theorem 18. For any digraph D, vs(D) = n(D) if and only if every
vertex has either indegree less or equal one or is an in-neighbor of a vertex
of indegree one.

Proof. Assume that every vertex has either indegree less or equal one or
is an in-neighbor of a vertex of indegree one. Let f be an arbitrary signed
dominating function on D. If v is vertex such that d~(v) < 1, then the
definition of the signed dominating function implies that f(v) = 1. If v
is an in-neighbor of a vertex y such that d~(y) = 1, then the condition
Yeen-py f(x) = 1 leads to f(v) = 1. Hence f(v) =1 for each v € V(D)
and we deduce that ys(D) = n(D).

The necessity follows from the observation that if we have a vertex v
that is neither of indegree less or equal one nor an in-neighbor of a vertex
of indegree one, then we can assign the value -1 to v and the value 1 to
each other vertex to produce a signed dominating function on D of weight

n(D) — 2. =
The following known results are useful for the proof of our last theorem.
Theorem A (Sheikholeslami, Volkmann [4]). For any digraph D,
Vs(D) - ds(D) < n(D).
Theorem B (Sheikholeslami, Volkmann [4]). For any digraph D,
1<dsg(D)<é (D)+1.

Theorem C (Sheikholeslami, Volkmann [4]). The signed domatic number
of a digraph is an odd integer.

Theorem D (Sheikholeslami, Volkmann [4] and Volkmann, Zelinka [5]).
Let K be the complete digraph of order n. Then dg(K}) = n if n is odd,
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and if n = 2p is even, then dg(K}) =p if p is odd and ds(K}) =p—1ifp
18 even.

Theorem 19. If D is a digraph of order n, then
(3) 75(D) +ds(D) <n+1

with equality if and only if n is odd and D = K, or every vertex of D has
either indegree less or equal one or is an in-neighbor of a verter of indegree
one.

Proof. According to Theorem A, we obtain

v5(D) +ds(D) < (D) +dgs(D).

Using the fact that g(z) = x + n/x is decreasing for 1 < x < /n and
increasing for \/n < x < n, this inequality leads to (3) immediately.

If n is odd and D = K, then yg(D) = 1 and Theorem D implies
ds(D) = n, and we obtain equality in (3). If every vertex of D has either
indegree less or equal one or is an in-neighbor of a vertex of indegree one,
then Theorems B, C and 18 yield that v¢(D) = n and dg(D) = 1, and so
we have equality in (3) too.

Conversely, assume that D is neither complete of odd order nor that
every vertex of D has either indegree less or equal one or is an in-neighbor
of a vertex of indegree one. First we note that every digraph of order 1 <
n < 3 is complete of odd order or every vertex of D has either indegree
less or equal one or is an in-neighbor of a vertex of indegree one, and hence
vs(D) +ds(D) =n+1 for n € {1,2,3}.

Assume now that n > 4. If D is not complete, then 6~ (D) < n —2, and
thus Theorem B leads to dg(D) < n—1. If D is complete and n is even, then
Theorem D implies dg(D) < n/2 < n—1. Thus, in view of Theorem 18, we
observe that ds(D) < n —1 and v5(G) < n — 1 if D is neither complete of
odd order nor that every vertex of D has either indegree less or equal one or
is an in-neighbor of a vertex of indegree one. If dg(D) = 1, then we deduce
that ys(D) +ds(D) <1+n—1=n. If dg(D) > 2, then as above and since
n > 4, we obtain

n

WS(D)%—ds(D)<L+ds(D)§max{g+2, 7 +n—1} <n+L

~ ds(D)

n
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Hence the equality vs(D) + dg(D) = n + 1 is impossible in this case, and
the proof of Theorem 19 is complete. [ |

Note that the inequality (3) was proved in [4], however, the characterization
of the digraphs D with vs(D) + dg(D) = n + 1 is new.

1]
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