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Abstract

Let D be a finite and simple digraph with the vertex set V (D), and
let f : V (D) → {−1, 1} be a two-valued function. If

∑

x∈N−[v] f(x) ≥ 1

for each v ∈ V (D), where N−[v] consists of v and all vertices of D
from which arcs go into v, then f is a signed dominating function on
D. The sum f(V (D)) is called the weight w(f) of f . The minimum of
weights w(f), taken over all signed dominating functions f on D, is the
signed domination number γS(D) of D. A set {f1, f2, . . . , fd} of signed

dominating functions on D with the property that
∑d

i=1 fi(x) ≤ 1 for
each x ∈ V (D), is called a signed dominating family (of functions) on
D. The maximum number of functions in a signed dominating family
on D is the signed domatic number of D, denoted by dS(D).

In this work we show that 4 − n ≤ γS(D) ≤ n for each digraph D
of order n ≥ 2, and we characterize the digraphs attending the lower
bound as well as the upper bound. Furthermore, we prove that γS(D)+
dS(D) ≤ n+ 1 for any digraph D of order n, and we characterize the
digraphs D with γS(D) + dS(D) = n+1. Some of our theorems imply
well-known results on the signed domination number of graphs.
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In this paper all digraphs are finite without loops or multiple arcs. A digraph
without directed cycles of length 2 is an oriented graph. The vertex set and
arc set of a digraph D are denoted by V (D) and A(D), respectively. The
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order n = n(D) of a digraph D is the number of its vertices. If uv is an
arc of D, then we also write u → v, and we say that v is an out-neighbor

of u and u is an in-neighbor of v. If A and B are two disjoint vertex sets
of a digraph D such that a → b for each a ∈ A and each b ∈ B, then
we use the symbol A → B. For a vertex v of a digraph D, we denote
the set of in-neighbors and out-neighbors of v by N−(v) = N−

D (v) and
N+(v) = N+

D (v), respectively. Furthermore, N−[v] = N−

D [v] = N−(v)∪{v}.
The numbers d−D(v) = d−(v) = |N−(v)| and d+D(v) = d+(v) = |N+(v)|
are the indegree and outdegree of v, respectively. The minimum indegree,
maximum indegree, minimum outdegree and maximum outdegree of D are
denoted by δ− = δ−(D), ∆− = ∆−(D), δ+ = δ+(D) and ∆+ = ∆+(D),
respectively. A digraph D is strongly connected if, for each pair of vertices
u and v in D, there is a directed path from u to v in D. If X ⊆ V (D) and
v ∈ V (D), then E(X, v) is the set of arcs from X to v. The complete digraph

of order n is denoted by K∗

n. If X ⊆ V (D) and f is a mapping from V (D)
into some set of numbers, then f(X) =

∑

x∈X f(x).
A signed dominating function of a digraph D is defined in [6] as a two-

valued function f : V (D) → {−1, 1} such that f(N−[v]) =
∑

x∈N−[v] f(x)
≥ 1 for each v ∈ V (D). The sum f(V (D)) is called the weight w(f) of f .
The minimum of weights w(f), taken over all signed dominating functions
f on D, is called the signed domination number of D, denoted by γS(D).
Signed domination in digraphs has been studied in [3] and [6].

A set {f1, f2, . . . , fd} of signed dominating functions on D with the
property that

∑d
i=1 fi(x) ≤ 1 for each vertex x ∈ V (D), is called a signed

dominating family (of functions) on D. The maximum number of functions
in a signed dominating family on D is the signed domatic number of D,
denoted by dS(D). The signed domatic number of digraphs was introduced
by Sheikholeslami and Volkmann [4]. We start with a simple observation.

Observation 1. Let D be a digraph of order n. If 1 ≤ n ≤ 2, then

γS(D) = n, and if n ≥ 3, then

4− n ≤ γS(D) ≤ n.

Proof. It is easy to see that γS(D) = n when 1 ≤ n ≤ 2. Assume now
that n ≥ 3. The upper bound γS(D) ≤ n is immediate. If f is a signed
dominating function on D, then the condition n ≥ 3 implies that there are
at least two distinct vertices u and v such that f(u) = f(v) = 1, and thus
γS(D) ≥ 2− (n− 2) = 4− n.
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Let F be the family of digraphs of order n ≥ 3 such that there exist two
vertices u and v such {u, v} → x for each x ∈ V (D) \ {u, v}, the set V (D) \
{u, v} is independent, and there are at most two arcs from V (D) \ {u, v}
to {u, v}. If there are two arcs from V (D) \ {u, v} to {u, v}, then the end-
vertices of these arcs are different. In addition,

if there is no arc from V (D) \ {u, v} to {u, v}, then {u, v} is an inde-
pendent set or there are one or two arcs between u and v,

if there is exactly one arc from V (D) \{u, v} to {u, v}, say w → u, then
v → u,

if there are exactly two arcs from V (D) \ {u, v} to {u, v}, say w → u
and z → v, where w = z is admissible, then v → u as well as u → v.

Theorem 2. Let D be a digraph of order n ≥ 3. Then γS(D) = 4 − n if

and only if D is a member of F .

Proof. If D is a member of F , then it is a simple matter to verify that
the function f : V (D) → {−1, 1} such that f(u) = f(v) = 1 and f(x) = −1
for x ∈ V (D) \ {u, v} is a signed dominating function on D of weight 4− n.
Applying Observation 1, we obtain γS(D) = 4− n.

Conversely, assume that γS(D) = 4−n, and let f be a signed dominating
function on D of weight 4 − n. Then there exist exactly two vertices, say
u and v, such that f(u) = f(v) = 1 and f(x) = −1 for x ∈ V (D) \
{u, v}. Because of

∑

y∈N−[x] f(y) ≥ 1 for each x ∈ V (D) \ {u, v}, we deduce
that {u, v} → x for every x ∈ V (D) \ {u, v} and that V (D) \ {u, v} is an
independent set. If there are at least three arcs from V (D)\{u, v} to {u, v},
then u or v, say u, has at least two in-neighbors in V (D) \ {u, v}, and we
obtain the contradiction

∑

x∈N−[u] f(x) ≤ 0. Thus there are at most two
arcs from V (D) \ {u, v} to {u, v}. Now it is straightforward to verify that
D is a member of F .

Corollary 3 (Karami, Sheikholeslami, Khodar [3] 2009). If D is an ori-

ented graph of order n ≥ 3, then γS(D) ≥ 4− n with equality if and only if

there exist two vertices u and v such {u, v} → x for each x ∈ V (D) \ {u, v},
the set V (D) \ {u, v} is independent, and {u, v} is independent or there is

exactly one arc between u and v.

Corollary 4. If D is a strongly connected digraph of order n ≥ 5, then

γS(D) ≥ 6− n.
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Let H be the digraph of order n ≥ 5 with vertex set V (D) = {u, v, w, x1,
x2, . . . , xn−3} such that {u, v, w} → {x1, x2, . . . , xn−3}, x1 → x2 → · · · →
xn−3 → w and w → v → u → w. Then H is strongly connected, and
the function f : V (H) → {−1, 1} such that f(u) = f(v) = f(w) = 1 and
f(xi) = −1 for 1 ≤ i ≤ n−3 is a signed dominating function on D of weight
6− n. Therefore the bound given in Corollary 4 is best possible.

LetQ be the digraph of order n = 4 with vertex set V (D) = {u, v, x1, x2}
such that {u, v} → {x1, x2}, x1 → u, x2 → v, u → v and v → u. Then
Q is strongly connected, and the function f : V (Q) → {−1, 1} such that
f(u) = f(v) = 1 and f(x1) = f(x2) = −1 is a signed dominating function
on Q of weight 0. This example demonstrates that Corollary 4 does not
hold for n = 4.

Theorem 5. If D is a strongly connected oriented graph of order n ≥ 7,
then γS(D) ≥ 8− n, and this bound is sharp.

Proof. According to Corollary 4, we have γS(D) ≥ 6− n. Suppose to the
contrary that γS(D) = 6− n, and let f be a signed dominating function on
D of weight 6− n. Then there exist exactly three vertices, say u, v and w,
such that f(u) = f(v) = f(w) = 1 and f(x) = −1 for x ∈ V (D) \ {u, v, w}.
Because of

∑

y∈N−[x] f(y) ≥ 1 for each x ∈ V (D) \ {u, v, w}, each such
vertex has at least two in-neighbors in {u, v, w}. Let V (D) \ {u, v, w} =
{x1, x2, . . . , xn−3}.

First we show that V (D) \ {u, v, w} is an independent set. Suppose to
the contrary that there exists an arc, say x1x2, in V (D) \ {u, v, w}. Then
{u, v, w} → x2, and since D is a strongly connected oriented graph, x2
dominates a further vertex, say x3, in V (D) \ {u, v, w}. Thus {u, v, w} →
x3, and since D is a strongly connected oriented graph, x3 dominates a
further vertex of V (D) \ {u, v, w}. If we continue this process we arrive at
a directed cycle C1, say C1 = x1x2 . . . xkx1 with k ≥ 3. This implies that
{u, v, w} → V (C1). Since D is an oriented graph, there is no arc from C1 to
{u, v, w}. If k = n − 3, then D is not strongly connected, a contradiction.
Otherwise, as D is strongly connected, there exists an arc az from C1 to
V (D) \ (V (C1)∪{u, v, w}). This implies {u, v, w} → z. As above the vertex
z is contained in a cycle C2 such that V (C2) ⊆ (V (D)\ (V (C1)∪{u, v, w})).
But this leads to the contradiction

∑

x∈N−[z] f(x) ≤ 0, and thus V (D) \
{u, v, w} is an independent set.

Since D is strongly connected, we deduce that each vertex of V (D) \
{u, v, w} has an out-neighbor in {u, v, w}. The hypothesis n ≥ 7 implies
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that at least one vertex in {u, v, w}, say u, has at least two in-neighbors in
V (D) \ {u, v, w}. If u has at least three in-neighbors in V (D) \ {u, v, w},
then we obtain the contradiction

∑

x∈N−[u] f(x) ≤ 0. If u has exactly two in-
neighbors in V (D)\{u, v, w}, then it follows that {v,w} → u. If v or w, say
v, has two in-neighbors in V (D) \ {u, v, w}, then it follows that {u,w} → v,
a contradiction to the fact that D is an oriented graph. Finally, if v and
w have exactly one in-neighbor in V (D) \ {u, v, w}, then w → v, and we
obtain the contradition u → w or v → w. This contradiction implies that
γS(D) ≥ 8− n.

In order to prove that this bound is sharp, let H be the digraph of
order n ≥ 7 with vertex set V (H) = {u, v, w, z, x1, x2, . . . , xn−4} such that
{v,w, z} → {x1, x2, . . . , xn−4}, x1 → u → {x2, x3, . . . , xn−4}, x1 → x2 →
· · · → xn−4 → x1 and u → v → w → z → u. Then H is a strongly
connected oriented graph, and the function f : V (H) → {−1, 1} such that
f(u) = f(v) = f(w) = f(z) = 1 and f(xi) = −1 for 1 ≤ i ≤ n−4 is a signed
dominating function on H of weight 8 − n. Therefore γS(H) ≤ 8 − n, and
thus γS(H) = 8− n.

Let Q be the digraph of order n = 6 with vertex set V (Q) = {u, v, w, x1,
x2, x3} such that u → {x2, x3}, v → {x1, x3}, w → {x1, x2}, x1 → u,
x2 → v, x3 → w and u → v → w → u. Then Q is a strongly connected
oriented graph, and the function f : V (Q) → {−1, 1} such that f(u) =
f(v) = f(w) = 1 and f(x1) = f(x2) = f(x3) = −1 is a signed dominating
function on Q of weight 0. This example demonstrates that Theorem 5 does
not hold for n = 6.

Theorem 6. Let r ≥ 0 be an integer, and let D be an oriented graph of

order n such that d−(x) = r for every vertex x ∈ V (D). Then

γS(D) ≥ 2r + 2− n if r is even

and

γS(D) ≥ 2r + 4− n if r is odd.

Proof. Let f be an arbitrary signed dominating function on D, and let
V + be the set of vertices with f(x) = 1 for x ∈ V + and V − = V (D) \ V +.
Furthermore, define |V +| = t.

First, let r = 2k be even. Because of
∑

x∈N−[u] f(x) ≥ 1 for each vertex
u, every vertex x ∈ V + has at most k in-neighbors in V −. It follows that
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2kt =
∑

x∈V +

d−(x) ≤ kt+
t(t− 1)

2

and thus t ≥ 2k + 1. Since f was chosen arbitrary, this implies the desired
bound γS(D) ≥ 2k + 1− (n− (2k + 1)) = 4k + 2− n = 2r + 2− n.

Second, let r = 2k − 1 be odd. Because of
∑

x∈N−[u] f(x) ≥ 1 for each
vertex u, every vertex x ∈ V + has at most k − 1 in-neighbors in V −. It
follows that

(2k − 1)t =
∑

x∈V +

d−(x) ≤ t(k − 1) +
t(t− 1)

2

and thus t ≥ 2k + 1. This implies that γS(D) ≥ 2k + 1 − (n − (2k + 1)) =
4k + 2− n = 2r + 4− n, and the proof is complete.

Theorem 7. If D is a digraph of order n, then

γS(D) ≥ δ+ + 2−∆+

δ+ + 2 +∆+
· n.

Proof. Let f be an arbitrary signed dominating function on D, and let
V + be the set of vertices with f(x) = 1 for x ∈ V + and V − = V (D) \ V +.
Then

n ≤
∑

x∈V (D)

f(N−[x]) =
∑

x∈V (D)

(d+(x) + 1)f(x)

=
∑

x∈V +

(d+(x) + 1)−
∑

x∈V −

(d+(x) + 1)

≤ |V +|(∆+ + 1)− |V −|(δ+ + 1)

= |V +|(∆+ + δ+ + 2)− n(δ+ + 1).

This implies

|V +| ≥ n(δ+ + 2)

δ+ + 2 +∆+
,

and hence we obtain the desired bound as follows

γS(D) ≥ |V +| − |V −| = 2|V +| − n
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≥ 2n(δ+ + 2)

δ+ + 2 +∆+
− n

=
δ+ + 2−∆+

δ+ + 2 +∆+
· n.

Corollary 8. If D is a digraph of order n such that d+(x) = k for all

x ∈ V (D), then

γS(D) ≥ n

k + 1
.

Corollary 9 (Karami, Sheikholeslami, Khodar [3] 2009). If D is a digraph

of order n such that d−(x) = d+(x) = k for all x ∈ V (D), then

γS(D) ≥ n

k + 1
.

If f is a signed dominating function on D, and d−(v) is odd, then it follows
that f(N−[v]) =

∑

x∈N−[v] f(x) ≥ 2. Using this inequality, we obtain the
next result analogously to the proof of Theorem 7.

Theorem 10. If D is a digraph of order n such that d−(v) is odd for all

v ∈ V (D), then

γS(D) ≥ δ+ + 4−∆+

δ+ + 2 +∆+
· n.

Corollary 11. Let D be a digraph of order n such that d−(x) = d+(x) = k
for all x ∈ V (D). If k is odd, then

γS(D) ≥ 2n

k + 1
.

Theorem 12. If D is a digraph of order n, then

γS(D) ≥ n+ |A(D)| − n∆+

∆+ + 1
.

Proof. Let f be an arbitrary signed dominating function on D, and let
V + be the set of vertices with f(x) = 1 for x ∈ V + and V − = V (D) \ V +.
Then

n ≤
∑

x∈V (D)

f(N−[x]) =
∑

x∈V (D)

(d+(x) + 1)f(x)
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=
∑

x∈V +

(d+(x) + 1)−
∑

x∈V −

(d+(x) + 1)

= |V +| − |V −|+
∑

x∈V +

d+(x)−
∑

x∈V −

d+(x)

= 2|V +| − n+ 2
∑

x∈V +

d+(x)−
∑

x∈V (D)

d+(x)

= 2|V +| − n+ 2
∑

x∈V +

d+(x)− |A(D)|

≤ 2|V +| − n+ 2|V +|∆+ − |A(D)|

= 2|V +|(∆+ + 1)− n− |A(D)|.

This implies

|V +| ≥ 2n+ |AD)|
2(∆+ + 1)

,

and hence we obtain the desired bound as follows

γS(D) ≥ |V +| − |V −| = 2|V +| − n

≥ 2n + |A(D)|
∆+ + 1

− n

=
n+ |A(D)| − n∆+

∆+ + 1
.

Theorem 12 also implies Corollary 8 immediately. In the special case that
d−(v) is odd for all v ∈ V (D), we obtain γS(D) ≥ (2n + |A(D)| − n∆+)/
(∆+ + 1) instead of the bound in Theorem 12.

The signed dominating function of a graph G is defined in [1] as a func-
tion f : V (G) −→ {−1, 1} such that

∑

x∈NG[v] f(x) ≥ 1 for all v ∈ V (G).
The sum

∑

x∈V (G) f(x) is the weight w(f) of f . The minimum of weights
w(f), taken over all signed dominating functions f on G is called the signed
domination number of G, denoted by γS(G).

The associated digraph D(G) of a graph G is the digraph obtained when
each edge e of G is replaced by two oppositely oriented arcs with the same
ends as e. Since N−

D(G)(v) = NG(v) for each vertex v ∈ V (G) = V (D(G)),
the following useful observation is valid.
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Observation 13. If D(G) is the associated digraph of a graph G, then

γS(D(G)) = γS(G).

There are a lot of interesting applications of Observation 13, as for example
the following three results.

Corollary 14 (Zhang, Xu, Li, Liu [7] 1999). If G is a graph of order n,
maximum degree ∆(G) and minimum degree δ(G), then

γS(G) ≥ δ(G) + 2−∆(G)

δ(G) + 2 + ∆(G)
· n.

Proof. Since δ(G) = δ+(D(G)), ∆(G) = ∆+(D(G)) and n = n(D(G)), it
follows from Theorem 7 and Observation 13 that

γS(G) = γS(D(G)) ≥ δ+(D(G)) + 2−∆+(D(G))

δ+(D(G)) + 2 + ∆+(D(G))
n =

δ(G) + 2−∆(G)

δ(G) + 2 + ∆(G)
n.

Corollary 15 (Dunbar, Hedetniemi, Henning, Slater [1] 1995). If G is a

k-regular graph of order n, then γS(G) ≥ n/(k + 1).

Corollary 16 (Henning, Slater [2] 1996). For every k-regular graph G of

order n with k odd, γS(G) ≥ 2n/(k + 1).

Proof. Since k is odd and dG(x) = d−
D(G)(x) = d+

D(G)(x) = k for all

x ∈ V (G) and n = n(D(G)), it follows from Corollary 11 and Observation
13 that

γS(G) = γS(D(G)) ≥ 2n(D(G))

k + 1
=

2n(G)

k + 1
.

Theorem 17. If D is a digraph of order n, then

γS(D) ≥ n





2
⌈

δ−(D)
2

⌉

+ 1−∆+(D)

∆+(D) + 1



 .

Proof. Let f be a signed dominating function on D such that w(f) =
γS(D), and let V + be the set of vertices with f(x) = 1 for x ∈ V + and
V − = V (D) \ V +. In addition, let s be the number of arcs from V + to V −.
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The condition f(N−[x]) ≥ 1 implies that |E(V +, x)| ≥ |E(V −, x)| for x ∈
V + and |E(V +, x)| ≥ |E(V −, x)| + 2 for x ∈ V −. Thus we obtain

δ−(D) ≤ d−(x) = |E(V +, x)|+ |E(V −, x)| ≤ 2|E(V +, x)| − 2

and so |E(V +, x)| ≥
⌈

δ−(D)+2
2

⌉

for each vertex x ∈ V −. Hence we deduce

that

s =
∑

x∈V −

|E(V +, x)| ≥
∑

x∈V −

⌈

δ−(D) + 2

2

⌉

= |V −|
⌈

δ−(D) + 2

2

⌉

.(1)

Since |E(V +, x)| ≥
⌈

δ−(D)
2

⌉

for x ∈ V +, it follows that

|E(D[V +])| =
∑

y∈V +

|E(V +, y)| ≥ |V +|
⌈

δ−(D)

2

⌉

.

This implies that

s =
∑

y∈V +

d+(y)− |E(D[V +])|

≤
∑

y∈V +

d+(y)− |V +|
⌈

δ−(D)

2

⌉

(2)

≤ |V +|∆+(D)− |V +|
⌈

δ−(D)

2

⌉

.

Inequalities (1) and (2) lead to

|V −| ≤
|V +|∆+(D)− |V +|

⌈

δ−(D)
2

⌉

⌈

δ−(D)+2
2

⌉ .

Since γS(D) = |V +| − |V −| and n = |V +| + |V −|, it follows from the last
inequality that

γS(D) ≥ |V +| −
|V +|∆+(D)− |V +|

⌈

δ−(D)
2

⌉

⌈

δ−(D)+2
2

⌉
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=

(

n+ γS(D)

2

) 2
⌈

δ−(D)
2

⌉

+ 1−∆+(D)
⌈

δ−(D)
2

⌉

+ 1

and this yields to the desired bound.

Note that Observation 13 and Theorem 17 also imply Corollaries 15 and 16
immediately.

Theorem 18. For any digraph D, γS(D) = n(D) if and only if every

vertex has either indegree less or equal one or is an in-neighbor of a vertex

of indegree one.

Proof. Assume that every vertex has either indegree less or equal one or
is an in-neighbor of a vertex of indegree one. Let f be an arbitrary signed
dominating function on D. If v is vertex such that d−(v) ≤ 1, then the
definition of the signed dominating function implies that f(v) = 1. If v
is an in-neighbor of a vertex y such that d−(y) = 1, then the condition
∑

x∈N−[y] f(x) ≥ 1 leads to f(v) = 1. Hence f(v) = 1 for each v ∈ V (D)
and we deduce that γS(D) = n(D).

The necessity follows from the observation that if we have a vertex v
that is neither of indegree less or equal one nor an in-neighbor of a vertex
of indegree one, then we can assign the value -1 to v and the value 1 to
each other vertex to produce a signed dominating function on D of weight
n(D)− 2.

The following known results are useful for the proof of our last theorem.

Theorem A (Sheikholeslami, Volkmann [4]). For any digraph D,

γS(D) · dS(D) ≤ n(D).

Theorem B (Sheikholeslami, Volkmann [4]). For any digraph D,

1 ≤ dS(D) ≤ δ−(D) + 1.

Theorem C (Sheikholeslami, Volkmann [4]). The signed domatic number

of a digraph is an odd integer.

Theorem D (Sheikholeslami, Volkmann [4] and Volkmann, Zelinka [5]).
Let K∗

n be the complete digraph of order n. Then dS(K
∗

n) = n if n is odd,
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and if n = 2p is even, then dS(K
∗

n) = p if p is odd and dS(K
∗

n) = p− 1 if p
is even.

Theorem 19. If D is a digraph of order n, then

γS(D) + dS(D) ≤ n+ 1(3)

with equality if and only if n is odd and D = K∗

n or every vertex of D has

either indegree less or equal one or is an in-neighbor of a vertex of indegree

one.

Proof. According to Theorem A, we obtain

γS(D) + dS(D) ≤ n

dS(D)
+ dS(D).

Using the fact that g(x) = x + n/x is decreasing for 1 ≤ x ≤ √
n and

increasing for
√
n ≤ x ≤ n, this inequality leads to (3) immediately.

If n is odd and D = K∗

n, then γS(D) = 1 and Theorem D implies
dS(D) = n, and we obtain equality in (3). If every vertex of D has either
indegree less or equal one or is an in-neighbor of a vertex of indegree one,
then Theorems B, C and 18 yield that γS(D) = n and dS(D) = 1, and so
we have equality in (3) too.

Conversely, assume that D is neither complete of odd order nor that
every vertex of D has either indegree less or equal one or is an in-neighbor
of a vertex of indegree one. First we note that every digraph of order 1 ≤
n ≤ 3 is complete of odd order or every vertex of D has either indegree
less or equal one or is an in-neighbor of a vertex of indegree one, and hence
γS(D) + dS(D) = n+ 1 for n ∈ {1, 2, 3}.

Assume now that n ≥ 4. If D is not complete, then δ−(D) ≤ n− 2, and
thus Theorem B leads to dS(D) ≤ n−1. If D is complete and n is even, then
Theorem D implies dS(D) ≤ n/2 ≤ n− 1. Thus, in view of Theorem 18, we
observe that dS(D) ≤ n − 1 and γS(G) ≤ n − 1 if D is neither complete of
odd order nor that every vertex of D has either indegree less or equal one or
is an in-neighbor of a vertex of indegree one. If dS(D) = 1, then we deduce
that γS(D)+ dS(D) ≤ 1+n− 1 = n. If dS(D) ≥ 2, then as above and since
n ≥ 4, we obtain

γS(D) + dS(D) ≤ n

dS(D)
+ dS(D) ≤ max

{

n

2
+ 2,

n

n− 1
+ n− 1

}

< n+ 1.
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Hence the equality γS(D) + dS(D) = n + 1 is impossible in this case, and
the proof of Theorem 19 is complete.

Note that the inequality (3) was proved in [4], however, the characterization
of the digraphs D with γS(D) + dS(D) = n+ 1 is new.
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