DISTANCE INDEPENDENCE IN GRAPHS

J. Louis Sewell
Department of Mathematical Sciences University of Alabama in Huntsville Huntsville, AL 35899 USA
e-mail: louis.sewell@gmail.com

AND
Peter J. Slater
Department of Mathematical Sciences and Computer Sciences Department University of Alabama in Huntsville Huntsville, AL 35899 USA

Abstract

For a set D of positive integers, we define a vertex set $S \subseteq V(G)$ to be D-independent if $u, v \in S$ implies the distance $d(u, v) \notin D$. The D-independence number $\beta_{D}(G)$ is the maximum cardinality of a D-independent set. In particular, the independence number $\beta(G)=$ $\beta_{\{1\}}(G)$. Along with general results we consider, in particular, the odd-independence number $\beta_{O D D}(G)$ where $O D D=\{1,3,5, \ldots\}$. Keywords: independence number, distance set. 2010 Mathematics Subject Classification: 05C12, 05C38, 05C69, 05C70, 05C76.

1. Introduction

A vertex subset S of a graph $G=(V, E)$ is independent if no two vertices in S are adjacent. Alternatively, one can say that $S \subseteq V(G)$ is independent if for each edge $e=\{u, v\}$ in $E(G)$ we have either (1) $|S \cap e| \leq 1$ or, equivalently, (2) $|S \cap e|<|e|=2$. The difference in viewpoint between (1)
and (2) for general set systems (hypergraphs) led to different generalized graphical independence, covering, domination, enclaveless, ... parameters as discussed in Sinko and Slater [6, 7].

Likewise, defining independence (and other parameters) in terms of distance leads to the generalizations presented here. In particular, vertex subset $S \subseteq V(G)$ is independent if for any two vertices x and y in S the distance between x and y satisfies $d(x, y)>1$, that is, $d(x, y) \neq 1$ or, equivalently, $d(x, y) \notin\{1\}$. More generally, $S \subseteq V(G)$ is a k-packing if for any distinct x and y in S we have distance the $d(x, y)>k$, that is, $d(x, y) \notin[k]=\{1,2, \ldots, k\}$. In general, for any set $D \subseteq \mathbb{Z}^{+}$of positive integers we say $S \subseteq V(G)$ is D-independent if for any two vertices x and y in S we have $d(x, y) \notin D$. The D-independence number $\beta_{D}(G)$ is the maximum cardinality of a D-independent set. Thus, the normal independence number $\beta(G)$ satisfies $\beta(G)=\beta_{\{1\}}(G)$; the packing number $\rho(G)=\beta_{\{1,2\}}(G)$; and the k-packing number $\rho_{k}(G)=\beta_{[k]}(G)$.

For a new example, consider $D=\{1,4,5\}$ and the path $P_{n}=v_{1}, v_{2}, \ldots$, v_{n}, shown in Figure 1.1. Let vertex set $S \subseteq V\left(P_{n}\right)$ be a $\{1,4,5\}$-independent set and $k=\min \left\{i \mid v_{i} \in S\right\}$. Then, $S^{*}=\left\{v_{i-(k-1)} \mid v_{i} \in S\right\}$ is a $\{1,4,5\}$ independent set with the same cardinality as S. So, without loss of generality, suppose $v_{1} \in S$. In this case, the vertices labeled above by $*_{1}$ in Figure 1.1(a) (namely, v_{2}, v_{5}, and v_{6}) cannot be in S since the distance from one of these vertices to v_{1} is in $\{1,4,5\}$. More generally, in Figure $1.1 \mathrm{a} *_{i}$ above a vertex indicates that it is at a distance in $\{1,4,5\}$ from v_{i}, and v_{i} is in S. If we successively, greedily place the next possible vertex to the right of v_{1} in S, then the result is the pattern shown in Figure 1.1(a). Notice that here $|S|=\left\lceil\frac{1}{4} n\right\rceil$, showing that $\beta_{\{1,4,5\}}\left(P_{n}\right) \geq\left\lceil\frac{1}{4} n\right\rceil$.

Now suppose $v_{1} \in S$, but we do not take a greedy approach to adding vertices to S. In particular, we can use every third vertex as in Figure 1.1(b). Note that $|S|=\left\lceil\frac{1}{3} n\right\rceil$. To show that $\beta\left(P_{n}\right)$ is essentially $\frac{1}{3} n$, we can associate with each $v \in S$ two vertices from $V\left(P_{n}\right) \backslash S$. Consider vertex $v_{i} \in S$ with $i \leq n-5$. Then we cannot have v_{i+1}, v_{i+4} nor v_{i+5} in S. If $v_{i+2} \notin S$, then associate v_{i+1} and v_{i+2} with v_{i}. Otherwise, associate v_{i+1} and v_{i+5} with v_{i}. Note that here v_{i+3} and v_{i+4} are associated with v_{i+2}. It follows that $\beta_{\{1,4,5\}}\left(P_{n}\right)=\left\lceil\frac{1}{3} n\right\rceil$ for $n \geq 4$.

The minimum cardinality of a maximally independent vertex set $S \subseteq$ $V(G)$ is the lower-independence number $i(G)$. More generally, for each $D \subseteq$ \mathbb{Z}^{+}a vertex set $S \subseteq V(G)$ is maximally D-independent if S is D-independent and for each $v \in V(G) \backslash S$ there is a vertex $w \in S$ such that $d(v, w) \in D$.
(a)

(b)

(c)

Figure 1.1. $\beta_{\{1,4,5\}}\left(P_{n}\right)$ and $i_{\{1,4,5\}}\left(P_{n}\right)$.
We define the lower-D-independence number of G, denoted $i_{D}(G)$, to be the minimum cardinality of a maximally D-independent set. For example, for the tree $T_{1, k}$ in Figure 1.2, $\{v, w, x\}$ is a maximally $\{3,5\}$-independent set. In fact, $i_{\{3,5\}}\left(T_{1, k}\right)=3$, while $\beta_{\{3,5\}}\left(T_{1, k}\right)=k+2$. Clearly, $i_{D}(G) \leq \beta_{D}(G)$ for all G and $D \subseteq \mathbb{Z}^{+}$.

Figure 1.2. Illustrating $i_{D}(T)$ and $\beta_{D}(T)$.
For T_{2} in Figure 1.2, the set of all endpoints forms a $\beta\left(T_{2}\right)$-set, while the set containing an endpoint, say w, and all vertices at distance two from w form an $i\left(T_{2}\right)$-set. Thus, $\beta_{\{1\}}\left(T_{2}\right)=\beta\left(T_{2}\right)=8$ and $i_{\{1\}}\left(T_{2}\right)=i\left(T_{2}\right)=5$. Also, notice that a set formed by any pair of adjacent vertices of T_{2} or a set
formed by endpoints at distance three are the only maximal $\{2\}$-independent sets of T_{2}. Thus, $\beta_{\{2\}}\left(T_{2}\right) \equiv i_{\{2\}}\left(T_{2}\right)=2$. (The symbol \equiv denotes strong equality as introduced in Haynes and Slater [3]. See also [10, 11]. Here, for a graph $G, \beta_{\{2\}}(G) \equiv i_{\{2\}}(G)$ is equivalent to S is a $\beta_{\{2\}}(G)$-set $\Leftrightarrow S$ is an $i_{\{2\}}(G)$-set.) Finally, note that $N[u]$ and $N[v]$ are the only two maximal $\{3\}$-independent sets of T_{2}. This shows that $\beta_{\{3\}}\left(T_{2}\right) \equiv i_{\{3\}}\left(T_{2}\right)=6$.

For path P_{n} we have $\beta\left(P_{n}\right)=\left\lceil\frac{1}{2} n\right\rceil, i\left(P_{n}\right)=\left\lceil\frac{1}{3} n\right\rceil$ and $\beta_{\{1,4,5\}}\left(P_{n}\right)=$ $\left\lceil\frac{1}{3} n\right\rceil$. We can see that $i_{\{1,4,5\}}\left(P_{n}\right)$ is approximately $\frac{1}{7} n$. Note that if $S \subseteq V\left(P_{n}\right)$ with $|S|=t$, then at most $6 t$ vertices in $V\left(P_{n}\right) \backslash S$ are at a distance in $\{1,4,5\}$ from S. Thus $|S|<\frac{1}{7} n$ implies S is not maximally $\{1,4,5\}$-independent, and so $i_{\{1,4,5\}}\left(P_{n}\right) \geq \frac{1}{7} n$. As seen in Figure 1.1(c), if S contains any two vertices $v_{i}, v_{i+7} \in V\left(P_{n}\right)$ at distance 7 , then the vertices v_{i+1} through v_{i+6} cannot be in S. This shows that $i_{\{1,4,5\}}\left(P_{n}\right)$ is upper bounded by essentially $\frac{1}{7} n$.

For one more example, the Petersen graph P , we have $i(P)=3, \beta(P)=$ 4 and $i_{\{2\}}(P) \equiv \beta_{\{2\}}(P)=2$.

In Section 2 we focus on the odd-independence case where $D=\{1,3,5$, $7, \ldots\}$, and in Section 3 we introduce D-covering, D-enclaveless, D-dominating, and D-irredundant sets.

2. Odd-Independence

Observing that the set D can be infinite, an intriguing example is to consider the set $D=\{1,3,5,7, \ldots\}$ of odd positive integers. We call a set $S \subseteq V(G)$ an odd-independent set if $u, v \in S$ implies $d(u, v)$ is not odd. Also, we define the odd-independence number, denoted $\beta_{O D D}(G)$, to be the maximum cardinality of an odd-independent set $S \subseteq V(G)$ and the lower-oddindependence number, denoted $i_{O D D}(G)$, to be the minimum cardinality of a maximal odd-independent set $S \subseteq V(G)$.

Consider the path $P_{n}=v_{1}, v_{2}, \ldots, v_{n}$, and let $S \subseteq V\left(P_{n}\right)$ be a maximal odd-independent set. Then for $v_{i}, v_{j} \in S$ the distance $d\left(v_{i}, v_{j}\right)$ is even; that is, $i-j \equiv 0(\bmod 2)$. This shows that $v_{i} \in S$ implies $S \subseteq$ $\left\{v_{j} \in V\left(P_{n}\right) \mid i-j \equiv 0(\bmod 2)\right\}$. Since S is maximal, $v_{i} \in S$ and $i-j \equiv$ $0(\bmod 2)$ implies $v_{j} \in S$. Hence, there are exactly two maximal oddindependent subsets of $V\left(P_{n}\right), S_{1}=\left\{v_{i} \in V\left(P_{n}\right) \mid i=1,3,5, \ldots\right\}$ and $S_{2}=$ $\left\{v_{i} \in V\left(P_{n}\right) \mid i=2,4,6, \ldots\right\}=V\left(P_{n}\right) \backslash S_{1}$. Since for all $n,\left|S_{1}\right|=\left\lceil\frac{n}{2}\right\rceil \geq$ $\left|S_{2}\right|=\left\lfloor\frac{n}{2}\right\rfloor$, we have that $\beta_{O D D}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ and $i_{O D D}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

More generally, let G be any connected bipartite graph with partite sets S and $V(G) \backslash S$. As with P_{n}, there are exactly two maximal odd-independent subsets of G. To see that these are precisely the partite sets S and $V(G) \backslash S$, notice that the distance between any pair of vertices in S, or any pair of vertices in $V(G) \backslash S$, is even and the distance from any vertex in S to any vertex in $V(G) \backslash S$ is odd. This gives us the following theorem.

Theorem 2.1. For any connected bipartite graph G with partite sets S and $V(G) \backslash S$, we have $\beta_{O D D}(G)=\max \{|S|,|V(G) \backslash S|\}$ and $i_{O D D}(G)=$ $\min \{|S|,|V(G) \backslash S|\}$.

Proposition 2.2. $\beta_{O D D}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil, i_{O D D}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor, \beta_{O D D}\left(C_{2 k}\right) \equiv$ $i_{O D D}\left(C_{2 k}\right)=k$ and $\beta_{O D D}\left(C_{2 k+1}\right) \equiv i_{O D D}\left(C_{2 k+1}\right)=\left\lceil\frac{k+1}{2}\right\rceil$.

Proof. The result for paths follows from the discussion above. An immediate consequence of Theorem 2.1 is the result for even cycles. Now consider the odd cycle $C_{2 k+1}$ with $V\left(C_{2 k+1}\right)=v_{1}, v_{2}, \ldots, v_{2 k+1}$, and let $S \subseteq V\left(C_{2 k+1}\right)$ be a maximal odd-independent set. We show that $S \subset$ $\left\{v_{t}, v_{t+1}, \ldots, v_{t+k}\right\}$ for some $t=1,2, \ldots, 2 k+1$ where subscripts are taken modulo $2 k+1$. Assume $v_{i}, v_{j} \in S$ with $i<j$. Taking $t=i$ if $j-i \leq k$ and $t=j$ otherwise will show the result. Let vertex v_{h} also be in S with $1 \leq h<i<j \leq 2 k+1$. Since $2 k+1$ is odd, one of $i-h, j-i$, or $(2 k+1+h)-j$ is odd. Without loss of generality, assume $i-h$ is odd and let $t=i$. Since $d\left(v_{h}, v_{i}\right)$ is even, we must have that $i-h>k+1$; otherwise, $d\left(v_{h}, v_{i}\right)=i-h$. This shows that $(2 k+1+h)-i \leq k$ and $\left\{v_{i}, v_{i+1}, \ldots, v_{2 k+1+h}=v_{h}\right\} \subseteq\left\{v_{t}, v_{t+1}, \ldots, v_{t+k}\right\}$. Since $i<j<(2 k+1)+h$, the result holds. Without loss of generality, assume $v_{t} \in S$. Then vertices in $\left\{v_{t}, v_{t+1}, \ldots, v_{t+k}\right\} \cap\left\{v_{t+2}, v_{t+4}, v_{t+6}, \ldots\right\}$ are at an even distance from v_{t} and each other; and each vertex in $\left\{v_{t}, v_{t+1}, \ldots, v_{t+k}\right\} \cap\left\{v_{t+1}, v_{t+3}, v_{t+5}, \ldots\right\}$ is at an odd distance from v_{t}. Since S is maximal, this shows that $S=$ $\left\{v_{t}, v_{t+1}, \ldots, v_{t+k}\right\} \cap\left\{v_{t}, v_{t+2}, v_{t+4}, \ldots\right\}$. Since there are exactly $2 k+1$ such maximal odd-independent sets, one for each $t=1,2, \ldots, 2 k+1$, and each has the same cardinality, we have that $\beta_{O D D}\left(C_{2 k+1}\right) \equiv i_{O D D}\left(C_{2 k+1}\right)=$ $\left\lceil\frac{k+1}{2}\right\rceil$.

Extending the discussion of odd-independent sets of paths and cycles, we now look at the Cartesian products, namely, grids $P_{s} \square P_{t}$, cylinders $P_{s} \square C_{t}$ and tori $C_{s} \square C_{t}$.

Figure 2.1. (a) $P_{s} \square C_{4 k+3}$; (b) $P_{s} \square C_{4 k+1}$; (c) $C_{s} \square C_{t}, s$ and t odd.

Theorem 2.3. (1) For positive integers s and t,

$$
\beta_{O D D}\left(P_{s} \square P_{t}\right)=\left\lceil\frac{s t}{2}\right\rceil .
$$

(2) (i) For positive integer s and positive even integer t,

$$
\beta_{O D D}\left(P_{s} \square C_{t}\right)=\frac{s t}{2}
$$

(ii) For positive integer s and positive odd integer t,

$$
\beta_{O D D}\left(P_{s} \square C_{t}\right)=\left\{\begin{array}{l}
\left\lceil\frac{s}{2}\right\rceil \cdot \frac{t+1}{2} \text { if } t=4 k+1 \\
\frac{s(t+1)}{4} \text { if } t=4 k+3
\end{array}\right.
$$

(3) (i) For positive even integers s and t,

$$
\beta_{O D D}\left(C_{s} \square C_{t}\right)=\frac{s t}{2} .
$$

(ii) For positive even integer s and positive odd integer t,

$$
\beta_{O D D}\left(C_{s} \square C_{t}\right)=\frac{s(t+1)}{4} .
$$

(iii) For positive odd integers s and t,

$$
\beta_{O D D}\left(C_{s} \square C_{t}\right) \geq\left\lceil\frac{\left\lceil\frac{s}{2}\right\rceil \cdot\left\lceil\frac{t}{2}\right\rceil}{2}\right\rceil .
$$

Proof. (1) By Theorem 2.1, the s by t grid $P_{s} \square P_{t}$ satisfies $\beta_{O D D}\left(P_{s} \square P_{t}\right)=\left\lceil\frac{s t}{2}\right\rceil$ and $i_{O D D}\left(P_{s} \square P_{t}\right)=\left\lfloor\frac{s t}{2}\right\rfloor$.
(2) (i) The s by t cylinder $P_{s} \square C_{t}$ is bipartite when t is even, yielding the same values as for $P_{s} \square P_{t}$.
(ii) For odd t, let $S \subseteq V\left(P_{s} \square C_{t}\right)=\left\{v_{i, j} \mid 1 \leq i \leq s, 1 \leq j \leq t\right\}$ be a maximal odd-independent set. Notice that for each i no more than $\left\lceil\frac{t+1}{4}\right\rceil$ vertices from $X_{i}=\left\{v_{i, j} \mid 1 \leq j \leq t\right\}$ can be in S, per the above result for odd-independent sets of odd cycles. If $t=4 k+3$ for some k, then this bound is achieved with the pattern shown in Figure 2.1(a), or any shift of this pattern, yielding $|S|=s \cdot\left\lceil\frac{t+1}{4}\right\rceil=\frac{s(t+1)}{4}$. For $t=4 k+1$ we first show that for each i the intersection of S with $X_{i} \cup X_{i+1}$ can contain no more than $2 k+1$ vertices. As already noted, no more than $\left\lceil\frac{t+1}{4}\right\rceil=k+1$ vertices can be in $S \cap X_{i}$ or $S \cap X_{i+1}$. Without loss of generality, assume the $k+1$ vertices $v_{i, 1}, v_{i, 3}, \ldots, v_{i, 2 k+1}$ are in S. Then the vertices $v_{i+1,1}, v_{i+1,3}, \ldots, v_{i+1,2 k+1}$ and $v_{i+1,2 k+2}, v_{i+1,2 k+3}, \ldots, v_{i+1,4 k+1}$ are at an odd distance from at least one vertex in S. The remaining k vertices in X_{i+1} are at an even distance from each other and from the vertices in $S \cap X_{i}$. This gives the upper bound of $\beta_{O D D}\left(P_{s} \square C_{t}\right) \leq\left\lceil\frac{s}{2}\right\rceil \cdot \frac{t+1}{2}$. This bound is achieved with the pattern shown in Figure 2.1(b), or any shift of this pattern. Combining the above results, for positive s and odd positive t we have that $\beta_{O D D}\left(P_{s} \square C_{t}\right)=\left\{\begin{array}{l}\left\lceil\frac{s}{2}\right\rceil \cdot \frac{t+1}{2} \text { if } t=4 k+1, \\ \frac{s(t+1)}{4} \text { if } t=4 k+3 .\end{array}\right.$
(3) Given the torus $C_{s} \square C_{t}$, we consider three cases: s and t are even; s is even and t is odd; and s and t are both odd.
(i) When s and t are even, $C_{s} \square C_{t}$ is bipartite and Theorem 2.1 implies $\beta_{O D D}\left(C_{s} \square C_{t}\right) \equiv i_{O D D}\left(C_{s} \square C_{t}\right)=\left\lceil\frac{s t}{2}\right\rceil=\frac{s t}{2}$.
(ii) For even s and odd t, the same reasoning used to determine $\beta_{O D D}\left(P_{s} \square C_{t}\right)$ under this restriction shows that $\beta_{O D D}\left(C_{s} \square C_{t}\right)=\beta_{O D D}\left(P_{s} \square C_{t}\right)$.
(iii) Finally, when s and t are both odd $\beta_{O D D}\left(C_{s} \square C_{t}\right) \geq\left\lceil\frac{\left\lceil\frac{s}{2}\right\rceil \cdot\left\lceil\frac{t}{2}\right\rceil}{2}\right\rceil$ as evidenced by the pattern in Figure 2.1(c). (We believe, in fact, that for odd s and t the value of $\beta_{O D D}\left(C_{s} \square C_{t}\right)$ is exactly $\left\lceil\frac{\left\lceil\frac{s}{2}\right\rceil \cdot\left\lceil\frac{t}{2}\right\rceil}{2}\right\rceil$.)
The results for $\beta_{O D D}$ of grids, cylinders and tori are summarized in Table 2.1 above with approximate values for ease of comparison.

Table 2.1. $\beta_{O D D}$ for grids, cylinders and tori.

	s even	s odd	s even	s odd
	t even	t even	t odd	t odd
$P_{s} \square P_{t}$	$\frac{s t}{2}$	$\frac{s t}{2}$	$\frac{s t}{2}$	$\frac{s t}{2}$
$P_{s} \square C_{t}$	$\frac{s t}{2}$	$\frac{s t}{2}$	$\frac{s t}{4}$	$\frac{s t}{4}$
$C_{s} \square C_{t}$	$\frac{s t}{2}$	$\frac{s t}{4}$	$\frac{s t}{4}$	$\geq \frac{s t}{8}$

Theorem 2.4. For any graph G and distance sets D_{1} and $D_{2}, D_{1} \subseteq D_{2}$ implies $\beta_{D_{2}}(G) \leq \beta_{D_{1}}(G)$.

Proof. Let G be a graph and D_{1}, D_{2} be distance sets such that $D_{1} \subseteq D_{2}$. Let vertex set $S \subseteq V(G)$ be a $\beta_{D_{2}}(G)$-set. Given $u, v \in S$ we have $d(u, v) \notin$ D_{2}, which implies $d(u, v) \notin D_{1}$. Hence, $\beta_{D_{2}}(G) \leq \beta_{D_{1}}(G)$.

This shows that for all graphs $G, \beta_{O D D}(G) \leq \beta(G)$. By definition, for every graph G and distance set $D, i_{D}(G) \leq \beta_{D}(G)$. Together, this gives us $i_{O D D}(G) \leq \beta_{O D D}(G) \leq \beta(G)$ and $i(G) \leq \beta(G)$ for every graph G. Given this, it is perhaps surprising that the lower-independence number is incomparable to both the lower-odd-independence number and the odd-independence number. We first note that using Theorem 2.1 we have Theorem 2.5.

Theorem 2.5. For connected bipartite graph $B, i(B) \leq i_{O D D}(B) \leq \frac{n}{2} \leq$ $\beta_{O D D}(B) \leq \beta(B)$.

As noted, i is incomparable with $i_{O D D}$ and $\beta_{O D D}$. In fact, H_{1}, H_{2} and H_{3}, with $i\left(H_{1}\right)<i_{O D D}\left(H_{1}\right)<\beta_{O D D}\left(H_{1}\right), i_{O D D}\left(H_{2}\right)<i\left(H_{2}\right)<\beta_{O D D}\left(H_{2}\right)$ and $i_{O D D}\left(H_{3}\right)<\beta_{O D D}\left(H_{3}\right)<i\left(H_{3}\right)$ are illustrated in Figure 2.2.
H_{1}

H_{2}

Figure 2.2. Incomparability of i with $i_{O D D}$ and $\beta_{O D D}$. In particular, $i\left(H_{1}\right)=2<i_{O D D}\left(H_{1}\right)=4<\beta_{O D D}\left(H_{1}\right)=5$, $i_{O D D}\left(H_{2}\right)=2<i\left(H_{2}\right)=3<\beta_{O D D}\left(H_{2}\right)=4$ and $i_{O D D}\left(H_{3}\right)=2<\beta_{O D D}\left(H_{3}\right)=5<i\left(H_{3}\right)=6$.

3. Other Distance Parameters

A set $R \subseteq V(G)$ is a cover if for each edge $\{u, v\} \in E(G)$ we have $\{u, v\} \cap R$ $\neq \emptyset$. The covering number, denoted $\alpha(G)$, is the minimum cardinality of a cover. It is easy to see that R is a cover if and only if $S=V(G) \backslash R$ is independent, and we have the following result of Gallai.

Theorem 3.1 (Gallai [2]). For any graph G of order $n=|V(G)|$, we have $\alpha(G)+\beta(G)=n$.

The upper-covering number, denoted $\Lambda(G)$, is the maximum cardinality of a minimal cover. Using complementarity of independent sets and covers, we have the following.

Theorem 3.2 (McFall and Nowakowski [4]). For any graph G of order $n=|V(G)|$, we have $\Lambda(G)+i(G)=n$.

The complementation relation between covering and independence can be generalized. As described in [8], we have the following. Let \mathcal{F} be any family of subsets of some set X. Define $M(X, \mathcal{F})$ and $m(X, \mathcal{F})$ as follows:

$$
\begin{equation*}
M(X, \mathcal{F})=\max \{|S|: S \in \mathcal{F}\}, m(X, \mathcal{F})=\min \{|S|: S \in \mathcal{F}\} \tag{3.1}
\end{equation*}
$$

Families \mathcal{F}_{1} and \mathcal{F}_{2} of subsets X will be called complement-related if $S \in \mathcal{F}_{1}$ if and only if $X-S \in \mathcal{F}_{2}$. Suppose \mathcal{F}_{1} and \mathcal{F}_{2} are complement-related. Since the complement of any set in \mathcal{F}_{1} is in $\mathcal{F}_{2}, m\left(X, \mathcal{F}_{2}\right) \leq|X|-M\left(X, \mathcal{F}_{1}\right)$; since the complement of any set in \mathcal{F}_{2} is in $\mathcal{F}_{1}, M\left(X, \mathcal{F}_{1}\right) \geq|X|-m\left(X, \mathcal{F}_{2}\right)$. Thus $M\left(X, \mathcal{F}_{1}\right)+m\left(X, \mathcal{F}_{2}\right)=|X|$. Note that one could let \mathcal{F}_{1} and \mathcal{F}_{2} be the complement-related familes of independent sets and covering sets, respectively. Then $M\left(V(G), \mathcal{F}_{1}\right)=\beta(G)$ and $m\left(V(G), \mathcal{F}_{2}\right)=\alpha(G)$ implies $\beta(G)+\alpha(G)=n$. Recall that $i(G)$, the lower-independence number (or the independent domination number), is the minimum cardinality of a maximal independent set. In general, let \mathcal{F}^{+}denote the family of those members of \mathcal{F} which are set-theoretically maximal with respect to membership, and \mathcal{F}^{-} those which are minimal. It is easily seen that if \mathcal{F}_{1} and \mathcal{F}_{2} are complementrelated, then so are \mathcal{F}_{1}^{+}and \mathcal{F}_{2}^{-}. Hence $m\left(X, \mathcal{F}_{1}^{+}\right)+M\left(X, \mathcal{F}_{2}^{-}\right)=|X|$.

Theorem 3.3 (Set Complementation [8]). If families \mathcal{F}_{1} and \mathcal{F}_{2} of subsets of X are complement-related, then $M\left(X, \mathcal{F}_{1}\right)+m\left(X, \mathcal{F}_{2}\right)=|X|=$ $m\left(X, \mathcal{F}_{1}^{+}\right)+M\left(X, \mathcal{F}_{2}^{-}\right)$.

Also, see Slater [9] for a general Y-valued Matrix Complementation Theorem for any (complementable) set of reals $Y \subseteq \mathbb{R}$, and Slater [12] discusses complementarity and duality.

If we replace considering edges by considering closed neighborhoods and mimic the definitions of independence and cover, we have the concepts of enclaveless and dominating. A set $S \subseteq V(G)$ is enclaveless if it does not entirely contain any closed neighborhood $N[v]$, that is, $|S \cap N[v]|<|N[v]|$ for each $v \in V(G)$; the maximum cardinality of an enclaveless set is the enclaveless number $\Psi(G)$, and the lower-enclaveless number $\psi(G)$ is the minimum cardinality of a maximally enclaveless set; a set $R \subseteq V(G)$ is dominating if $|R \cap N[v]| \geq 1$ for each $v \in V(G)$; and the minimum cardinality of a dominating set is the domination number $\gamma(G)$, and the upper-domination number $\Gamma(G)$ is the maximum cardinality of a minimal dominating set. Clearly the families of enclaveless sets and dominating sets are complement-related, and the Set Complementation Theorem implies the next result.

Theorem 3.4 (Slater [8]). For any graph G of order $n, \Psi(G)+\gamma(G)=n=$ $\psi(G)+\Gamma(G)$.

As we did for independence, we can define distance generalizations of these (and other) parameters. For $D \subseteq \mathbb{Z}^{+}$, vertex set $S \subseteq V(G)$ is D-independent if the distance $d(x, y) \in D$ implies $|S \cap\{x, y\}| \leq 1$. We define $R \subseteq V(G)$ to be a D-cover if $d(x, y) \in D$ implies $|R \cap\{x, y\}| \geq 1$, and $\alpha_{D}(G)$ and $\Lambda_{D}(G)$ denote the minimum and maximum cardinalities of minimal D-covers and are called the D-covering number and upper-D-covering number, respectively.

Call vertex set R a D-dominating set if, for each $v \in V(G) \backslash R$, there is a vertex $w \in R$ such that $d(v, w) \in D$. The D-domination number and upper-D-domination number, $\gamma_{D}(G)$ and $\Gamma_{D}(G)$, respectively, are the minimum and maximum cardinalities of minimally D-dominating sets. Vertex v will be called a D-enclave of $S \subseteq V(G)$ if $v \in S$ and $\{w \in V(G) \mid d(v, w) \in D\} \subseteq S$, and S is D-enclaveless if it has no D-enclaves. That is, S is D-enclaveless if for each $v \in S$ there is a vertex $w \in R=V(G) \backslash S$ with $d(v, w) \in D$. The D-enclaveless number and lower-D-enclaveless number, $\Psi_{D}(G)$ and $\psi_{D}(G)$, respectively, are the maximum and minimum cardinalities of maximal Denclaveless sets.

In particular, vertex set $S \subseteq V(G)$ is D-independent if and only if $R=V(G) \backslash S$ is a D-cover, and S is D-enclaveless if and only if $R=V(G) \backslash S$ if D-dominating. Hence, generalizing Theorems 3.1, 3.2, and 3.4, by the Set Complementation Theorem, we have the next result.

Theorem 3.5. For any graph G of order n, we have $\alpha_{D}(G)+\beta_{D}(G)=n=$ $\Lambda_{D}(G)+i_{D}(G)$ and $\Psi_{D}(G)+\gamma_{D}(G)=n=\psi_{D}(G)+\Gamma_{D}(G)$.

If $S \subseteq V(G), v \notin S$, and $d(v, w) \in D$, then S is a D-cover implies that $w \in S$, and so S D-dominates v. Hence, any D-cover S will Ddominate any vertex $v \notin S$ if there is some vertex y such that $d(v, y) \in D$ or, equivalently, if the eccentricity $\operatorname{ecc}(v) \geq \min \{d \mid d \in D\}$.

Theorem 3.6. If ecc $(v) \geq \min \{d \mid d \in D\}$ for all $v \in V(G)$, then every D-cover of G is D-dominating, so $\gamma_{D}(G) \leq \alpha_{D}(G)$ and $\beta_{D}(G) \leq \Psi_{D}(G)$.

Call $S \subseteq V(G)$ a D-irredundant set if for each $v \in S$ there is a vertex $w \in V(G) \backslash(S \backslash\{v\})=(V(G) \backslash S) \cup\{v\}$ such that $d(w, x) \notin D$ for each $x \in S \backslash\{v\}$ and if $w \neq v$ then $d(w, v) \in D$. The D-irredundance number and lower-D-irredundance number, $I R_{D}(G)$ and $\operatorname{ir}_{D}(G)$, respectively, are
the maximum and minimum cardinalities of maximally D-irredundant sets for G.

Observation 3.7. A D-independent set S is maximally D-independent if and only if S if minimally D-dominating. A D-dominating set R is minimally D-dominating if and only if R is maximally D-irredundant.

Hence we have the following generalization from $D=\{1\}$ in [1] for a parametric chain.

Theorem 3.8. For any graph G, $i r_{D}(G) \leq \gamma_{D}(G) \leq i_{D}(G) \leq \beta_{D}(G) \leq$ $\Gamma_{D}(G) \leq I R_{D}(G)$.

4. Related Work

Many questions concerning the general distance-set parameters introduced are under study (bounds, extremal values, Nordhaus-Gaddum results, etc.), along with other D-parameters.

We note that such generalizations also apply to edge sets, such as Dcycles, D-paths and D-geodesics. For example, several different interesting definitions of a D-matching are possible. Letting the D-power of G be the graph G^{D} with $V\left(G^{D}\right)=V(G)$ and $u v \in E\left(G^{D}\right)$ if and only if $d_{G}(u, v) \in D$, one can observe that Theorems 3.5, 3.6 and 3.8 can be proven by considering G^{D}. In defining a D-matching, one can consider matchings in G^{D}. Another way to consider D-independence for edges is to consider D-independent (vertex) sets in the line graph $L(G)$.

Many of these results will appear in Sewell [5].

References

[1] E.J. Cockayne, S.T. Hedetniemi, and D.J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 (1978) 461-468.
[2] T. Gallai, Über extreme Punkt-und Kantenmengen, Ann. Univ. Sci. Budapest, Eotvos Sect. Math. 2 (1959) 133-138.
[3] T.W. Haynes and P.J. Slater, Paired domination in graphs, Networks 32 (1998) 199-206.
[4] J.D. McFall and R. Nowakowski, Strong indepedence in graphs, Congr. Numer. 29 (1980) 639-656.
[5] J.L. Sewell, Distance Generalizations of Graphical Parameters, (Univ. Alabama in Huntsville, 2011).
[6] A. Sinko and P.J. Slater, Generalized graph parametric chains, submitted for publication.
[7] A. Sinko and P.J. Slater, \mathcal{R}-parametric and \mathcal{R}-chromatic problems, submitted for publication.
[8] P.J. Slater, Enclaveless sets and MK-systems, J. Res. Nat. Bur. Stan. 82 (1977) 197-202.
[9] P.J. Slater, Generalized graph parametric chains, in: Combinatorics, Graph Theory and Algorithms (New Issues Press, Western Michigan University 1999) 787-797.
[10] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of upper domination and independence in trees, Util. Math. 59 (2001) 111-124.
[11] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of domination parameters in trees, Discrete Math. 260 (2003) 77-87.
[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, LP-duality, complementarity and generality of graphical subset problems, in: Domination in Graphs Advanced Topics, T.W. Haynes et al. (eds) (Marcel-Dekker, Inc. 1998) 1-30.

Received 4 January 2010
Revised 6 January 2011
Accepted 10 January 2011

