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Abstract

For a set D of positive integers, we define a vertex set S ⊆ V (G)
to be D-independent if u, v ∈ S implies the distance d(u, v) 6∈ D.
The D-independence number βD(G) is the maximum cardinality of a
D-independent set. In particular, the independence number β(G) =
β{1}(G). Along with general results we consider, in particular, the
odd-independence number βODD(G) where ODD = {1, 3, 5, . . .}.
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1. Introduction

A vertex subset S of a graph G = (V,E) is independent if no two vertices
in S are adjacent. Alternatively, one can say that S ⊆ V (G) is independent
if for each edge e = {u, v} in E(G) we have either (1) |S ∩ e| ≤ 1 or,
equivalently, (2) |S ∩ e| < |e| = 2. The difference in viewpoint between (1)
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and (2) for general set systems (hypergraphs) led to different generalized
graphical independence, covering, domination, enclaveless, . . . parameters
as discussed in Sinko and Slater [6, 7].

Likewise, defining independence (and other parameters) in terms of dis-
tance leads to the generalizations presented here. In particular, vertex sub-
set S ⊆ V (G) is independent if for any two vertices x and y in S the
distance between x and y satisfies d(x, y) > 1, that is, d(x, y) 6= 1 or,
equivalently, d(x, y) 6∈ {1}. More generally, S ⊆ V (G) is a k-packing if
for any distinct x and y in S we have distance the d(x, y) > k, that is,
d(x, y) 6∈ [k] = {1, 2, . . . , k}. In general, for any set D ⊆ Z

+ of positive inte-
gers we say S ⊆ V (G) is D-independent if for any two vertices x and y in S
we have d(x, y) 6∈ D. The D-independence number βD(G) is the maximum
cardinality of a D-independent set. Thus, the normal independence number
β(G) satisfies β(G) = β{1}(G); the packing number ρ(G) = β{1,2}(G); and
the k-packing number ρk(G) = β[k](G).

For a new example, consider D = {1, 4, 5} and the path Pn = v1, v2, . . . ,

vn, shown in Figure 1.1. Let vertex set S ⊆ V (Pn) be a {1, 4, 5}-independent
set and k = min {i|vi ∈ S}. Then, S∗ =

{

vi−(k−1)|vi ∈ S
}

is a {1, 4, 5}-
independent set with the same cardinality as S. So, without loss of general-
ity, suppose v1 ∈ S. In this case, the vertices labeled above by ∗1 in Figure
1.1(a) (namely, v2, v5, and v6) cannot be in S since the distance from one of
these vertices to v1 is in {1, 4, 5}. More generally, in Figure 1.1 a ∗i above
a vertex indicates that it is at a distance in {1, 4, 5} from vi, and vi is in S.
If we successively, greedily place the next possible vertex to the right of v1
in S, then the result is the pattern shown in Figure 1.1(a). Notice that here
|S| =

⌈

1
4n

⌉

, showing that β{1,4,5}(Pn) ≥
⌈

1
4n

⌉

.

Now suppose v1 ∈ S, but we do not take a greedy approach to adding
vertices to S. In particular, we can use every third vertex as in Figure
1.1(b). Note that |S| =

⌈

1
3n

⌉

. To show that β(Pn) is essentially 1
3n, we

can associate with each v ∈ S two vertices from V (Pn) \S. Consider vertex
vi ∈ S with i ≤ n − 5. Then we cannot have vi+1, vi+4 nor vi+5 in S. If
vi+2 6∈ S, then associate vi+1 and vi+2 with vi. Otherwise, associate vi+1

and vi+5 with vi. Note that here vi+3 and vi+4 are associated with vi+2. It
follows that β{1,4,5}(Pn) =

⌈

1
3n

⌉

for n ≥ 4.

The minimum cardinality of a maximally independent vertex set S ⊆
V (G) is the lower-independence number i(G). More generally, for each D ⊆
Z
+ a vertex set S ⊆ V (G) is maximally D-independent if S is D-independent

and for each v ∈ V (G) \ S there is a vertex w ∈ S such that d(v,w) ∈ D.
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Figure 1.1. β{1,4,5}(Pn) and i{1,4,5}(Pn).

We define the lower-D-independence number of G, denoted iD(G), to be the
minimum cardinality of a maximally D-independent set. For example, for
the tree T1,k in Figure 1.2, {v,w, x} is a maximally {3, 5}-independent set.
In fact, i{3,5}(T1,k) = 3, while β{3,5}(T1,k) = k + 2. Clearly, iD(G) ≤ βD(G)
for all G and D ⊆ Z

+.

Figure 1.2. Illustrating iD(T ) and βD(T ).

For T2 in Figure 1.2, the set of all endpoints forms a β(T2)-set, while the
set containing an endpoint, say w, and all vertices at distance two from w

form an i(T2)-set. Thus, β{1}(T2) = β(T2) = 8 and i{1}(T2) = i(T2) = 5.
Also, notice that a set formed by any pair of adjacent vertices of T2 or a set
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formed by endpoints at distance three are the only maximal {2}-independent
sets of T2. Thus, β{2}(T2) ≡ i{2}(T2) = 2. (The symbol ≡ denotes strong
equality as introduced in Haynes and Slater [3]. See also [10, 11]. Here, for
a graph G, β{2}(G) ≡ i{2}(G) is equivalent to S is a β{2}(G)-set ⇔ S is an
i{2}(G)-set.) Finally, note that N [u] and N [v] are the only two maximal
{3}-independent sets of T2. This shows that β{3}(T2) ≡ i{3}(T2) = 6.

For path Pn we have β(Pn) =
⌈

1
2n

⌉

, i(Pn) =
⌈

1
3n

⌉

and β{1,4,5}(Pn) =
⌈

1
3n

⌉

. We can see that i{1,4,5}(Pn) is approximately 1
7n. Note that if

S ⊆ V (Pn) with |S| = t, then at most 6t vertices in V (Pn) \ S are at a
distance in {1, 4, 5} from S. Thus |S| < 1

7n implies S is not maximally
{1, 4, 5}-independent, and so i{1,4,5}(Pn) ≥

1
7n. As seen in Figure 1.1(c), if

S contains any two vertices vi, vi+7 ∈ V (Pn) at distance 7, then the vertices
vi+1 through vi+6 cannot be in S. This shows that i{1,4,5}(Pn) is upper

bounded by essentially 1
7n.

For one more example, the Petersen graph P, we have i(P ) = 3, β(P ) =
4 and i{2}(P ) ≡ β{2}(P ) = 2.

In Section 2 we focus on the odd-independence case where D = {1, 3, 5,
7, . . .}, and in Section 3 we introduce D-covering, D-enclaveless, D-domi-
nating, and D-irredundant sets.

2. Odd-Independence

Observing that the set D can be infinite, an intriguing example is to consider
the set D = {1, 3, 5, 7, . . .} of odd positive integers. We call a set S ⊆ V (G)
an odd-independent set if u, v ∈ S implies d(u, v) is not odd. Also, we
define the odd-independence number, denoted βODD(G), to be the maxi-
mum cardinality of an odd-independent set S ⊆ V (G) and the lower-odd-
independence number, denoted iODD(G), to be the minimum cardinality of
a maximal odd-independent set S ⊆ V (G).

Consider the path Pn = v1, v2, . . . , vn, and let S ⊆ V (Pn) be a max-
imal odd-independent set. Then for vi, vj ∈ S the distance d(vi, vj) is
even; that is, i − j ≡ 0 (mod 2). This shows that vi ∈ S implies S ⊆
{vj ∈ V (Pn)|i− j ≡ 0 (mod 2)}. Since S is maximal, vi ∈ S and i − j ≡
0 (mod 2) implies vj ∈ S. Hence, there are exactly two maximal odd-
independent subsets of V (Pn), S1 = {vi ∈ V (Pn)|i = 1, 3, 5, . . .} and S2 =
{vi ∈ V (Pn)|i = 2, 4, 6, . . .} = V (Pn) \ S1. Since for all n, |S1| =

⌈

n
2

⌉

≥
|S2| =

⌊

n
2

⌋

, we have that βODD(Pn) =
⌈

n
2

⌉

and iODD(Pn) =
⌊

n
2

⌋

.
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More generally, let G be any connected bipartite graph with partite sets S
and V (G) \S. As with Pn, there are exactly two maximal odd-independent
subsets of G. To see that these are precisely the partite sets S and V (G)\S,
notice that the distance between any pair of vertices in S, or any pair of
vertices in V (G) \ S, is even and the distance from any vertex in S to any
vertex in V (G) \ S is odd. This gives us the following theorem.

Theorem 2.1. For any connected bipartite graph G with partite sets S

and V (G) \ S, we have βODD(G) = max {|S| , |V (G) \ S|} and iODD(G) =
min {|S| , |V (G) \ S|}.

Proposition 2.2. βODD(Pn) =
⌈

n
2

⌉

, iODD(Pn) =
⌊

n
2

⌋

, βODD(C2k) ≡

iODD(C2k) = k and βODD(C2k+1) ≡ iODD(C2k+1) =
⌈

k+1
2

⌉

.

Proof. The result for paths follows from the discussion above. An im-
mediate consequence of Theorem 2.1 is the result for even cycles. Now
consider the odd cycle C2k+1 with V (C2k+1) = v1, v2, . . . , v2k+1, and let
S ⊆ V (C2k+1) be a maximal odd-independent set. We show that S ⊂
{vt, vt+1, . . . , vt+k} for some t = 1, 2, . . . , 2k + 1 where subscripts are taken
modulo 2k + 1. Assume vi, vj ∈ S with i < j. Taking t = i if j − i ≤ k

and t = j otherwise will show the result. Let vertex vh also be in S with
1 ≤ h < i < j ≤ 2k + 1. Since 2k + 1 is odd, one of i − h, j − i, or
(2k + 1 + h) − j is odd. Without loss of generality, assume i − h is odd
and let t = i. Since d(vh, vi) is even, we must have that i − h > k + 1;
otherwise, d(vh, vi) = i − h. This shows that (2k + 1 + h) − i ≤ k and
{vi, vi+1, . . . , v2k+1+h = vh} ⊆ {vt, vt+1, . . . , vt+k}. Since i < j < (2k+1)+h,
the result holds. Without loss of generality, assume vt ∈ S. Then vertices
in {vt, vt+1, . . . , vt+k}∩{vt+2, vt+4, vt+6, . . .} are at an even distance from vt
and each other; and each vertex in {vt, vt+1, . . . , vt+k}∩{vt+1, vt+3, vt+5, . . .}
is at an odd distance from vt. Since S is maximal, this shows that S =
{vt, vt+1, . . . , vt+k} ∩ {vt, vt+2, vt+4, . . .}. Since there are exactly 2k+1 such
maximal odd-independent sets, one for each t = 1, 2, . . . , 2k + 1, and each
has the same cardinality, we have that βODD(C2k+1) ≡ iODD(C2k+1) =
⌈

k+1
2

⌉

.

Extending the discussion of odd-independent sets of paths and cycles, we
now look at the Cartesian products, namely, grids Ps�Pt, cylinders Ps�Ct

and tori Cs�Ct.
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Figure 2.1. (a) Ps�C4k+3; (b) Ps�C4k+1; (c) Cs�Ct, s and t odd.

Theorem 2.3. (1) For positive integers s and t,

βODD(Ps�Pt) =

⌈

st

2

⌉

.

(2) (i) For positive integer s and positive even integer t,

βODD(Ps�Ct) =
st

2
.

(ii) For positive integer s and positive odd integer t,

βODD(Ps�Ct) =

{
⌈

s
2

⌉

· t+1
2 if t = 4k + 1 ,

s(t+1)
4 if t = 4k + 3 .
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(3) (i) For positive even integers s and t,

βODD(Cs�Ct) =
st

2
.

(ii) For positive even integer s and positive odd integer t,

βODD(Cs�Ct) =
s(t+ 1)

4
.

(iii) For positive odd integers s and t,

βODD(Cs�Ct) ≥

⌈

⌈

s
2

⌉

·
⌈

t
2

⌉

2

⌉

.

Proof. (1) By Theorem 2.1, the s by t grid Ps�Pt satisfies
βODD(Ps�Pt) =

⌈

st
2

⌉

and iODD(Ps�Pt) =
⌊

st
2

⌋

.

(2) (i) The s by t cylinder Ps�Ct is bipartite when t is even, yielding the
same values as for Ps�Pt.

(ii) For odd t, let S ⊆ V (Ps�Ct) = {vi,j|1 ≤ i ≤ s, 1 ≤ j ≤ t} be a maximal
odd-independent set. Notice that for each i no more than

⌈

t+1
4

⌉

vertices from
Xi = {vi,j|1 ≤ j ≤ t} can be in S, per the above result for odd-independent
sets of odd cycles. If t = 4k + 3 for some k, then this bound is achieved
with the pattern shown in Figure 2.1(a), or any shift of this pattern, yield-

ing |S| = s ·
⌈

t+1
4

⌉

= s(t+1)
4 . For t = 4k + 1 we first show that for each

i the intersection of S with Xi ∪ Xi+1 can contain no more than 2k + 1
vertices. As already noted, no more than

⌈

t+1
4

⌉

= k + 1 vertices can be in
S ∩ Xi or S ∩ Xi+1. Without loss of generality, assume the k + 1 vertices
vi,1, vi,3, . . . , vi,2k+1 are in S. Then the vertices vi+1,1, vi+1,3, . . . , vi+1,2k+1

and vi+1,2k+2, vi+1,2k+3, . . . , vi+1,4k+1 are at an odd distance from at least
one vertex in S. The remaining k vertices in Xi+1 are at an even dis-
tance from each other and from the vertices in S ∩ Xi. This gives the
upper bound of βODD(Ps�Ct) ≤

⌈

s
2

⌉

· t+1
2 . This bound is achieved with

the pattern shown in Figure 2.1(b), or any shift of this pattern. Com-
bining the above results, for positive s and odd positive t we have that

βODD(Ps�Ct) =

{

⌈

s
2

⌉

· t+1
2 if t = 4k + 1 ,

s(t+1)
4 if t = 4k + 3 .

(3) Given the torus Cs�Ct, we consider three cases: s and t are even; s is
even and t is odd; and s and t are both odd.
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(i) When s and t are even, Cs�Ct is bipartite and Theorem 2.1 implies
βODD(Cs�Ct) ≡ iODD(Cs�Ct) =

⌈

st
2

⌉

= st
2 .

(ii) For even s and odd t, the same reasoning used to determine βODD(Ps�Ct)
under this restriction shows that βODD(Cs�Ct) = βODD(Ps�Ct).

(iii) Finally, when s and t are both odd βODD(Cs�Ct) ≥

⌈

⌈ s

2
⌉·⌈ t

2
⌉

2

⌉

as

evidenced by the pattern in Figure 2.1(c). (We believe, in fact, that for odd

s and t the value of βODD(Cs�Ct) is exactly

⌈

⌈ s

2
⌉·⌈ t

2
⌉

2

⌉

.)

The results for βODD of grids, cylinders and tori are summarized in Table
2.1 above with approximate values for ease of comparison.

Table 2.1. βODD for grids, cylinders and tori.

s even s odd s even s odd
t even t even t odd t odd

Ps�Pt
st
2

st
2

st
2

st
2

Ps�Ct
st
2

st
2

st
4

st
4

Cs�Ct
st
2

st
4

st
4 ≥ st

8

Theorem 2.4. For any graph G and distance sets D1 and D2, D1 ⊆ D2

implies βD2
(G) ≤ βD1

(G).

Proof. Let G be a graph and D1,D2 be distance sets such that D1 ⊆ D2.
Let vertex set S ⊆ V (G) be a βD2

(G)-set. Given u, v ∈ S we have d(u, v) 6∈
D2, which implies d(u, v) 6∈ D1. Hence, βD2

(G) ≤ βD1
(G).

This shows that for all graphs G, βODD(G) ≤ β(G). By definition, for ev-
ery graph G and distance set D, iD(G) ≤ βD(G). Together, this gives us
iODD(G) ≤ βODD(G) ≤ β(G) and i(G) ≤ β(G) for every graph G. Given
this, it is perhaps surprising that the lower-independence number is incompa-
rable to both the lower-odd-independence number and the odd-independence
number. We first note that using Theorem 2.1 we have Theorem 2.5.

Theorem 2.5. For connected bipartite graph B, i(B) ≤ iODD(B) ≤ n
2 ≤

βODD(B) ≤ β(B).



Distance Independence in Graphs 405

As noted, i is incomparable with iODD and βODD. In fact, H1, H2 and H3,
with i(H1) < iODD(H1) < βODD(H1), iODD(H2) < i(H2) < βODD(H2) and
iODD(H3) < βODD(H3) < i(H3) are illustrated in Figure 2.2.

Figure 2.2. Incomparability of i with iODD and βODD. In particu-

lar, i(H1) = 2 < iODD(H1) = 4 < βODD(H1) = 5,

iODD(H2) = 2 < i(H2) = 3 < βODD(H2) = 4 and

iODD(H3) = 2 < βODD(H3) = 5 < i(H3) = 6.

3. Other Distance Parameters

A set R ⊆ V (G) is a cover if for each edge {u, v} ∈ E(G) we have {u, v}∩R
6= ∅. The covering number, denoted α(G), is the minimum cardinality of
a cover. It is easy to see that R is a cover if and only if S = V (G) \ R is
independent, and we have the following result of Gallai.

Theorem 3.1 (Gallai [2]). For any graph G of order n = |V (G)|, we have

α(G) + β(G) = n.

The upper-covering number, denoted Λ(G), is the maximum cardinality of
a minimal cover. Using complementarity of independent sets and covers, we
have the following.

Theorem 3.2 (McFall and Nowakowski [4]). For any graph G of order

n = |V (G)|, we have Λ(G) + i(G) = n.
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The complementation relation between covering and independence can be
generalized. As described in [8], we have the following. Let F be any family
of subsets of some set X. Define M(X,F) and m(X,F) as follows:

(3.1) M(X,F) = max {|S| : S ∈ F} , m(X,F) = min {|S| : S ∈ F} .

Families F1 and F2 of subsets X will be called complement-related if S ∈ F1

if and only if X−S ∈ F2. Suppose F1 and F2 are complement-related. Since
the complement of any set in F1 is in F2, m(X,F2) ≤ |X|−M(X,F1); since
the complement of any set in F2 is in F1, M(X,F1) ≥ |X| − m(X,F2).
Thus M(X,F1) + m(X,F2) = |X|. Note that one could let F1 and F2

be the complement-related familes of independent sets and covering sets,
respectively. Then M(V (G),F1) = β(G) and m(V (G),F2) = α(G) implies
β(G) +α(G) = n. Recall that i(G), the lower-independence number (or the
independent domination number), is the minimum cardinality of a maximal
independent set. In general, let F+ denote the family of those members of
F which are set-theoretically maximal with respect to membership, and F−

those which are minimal. It is easily seen that if F1 and F2 are complement-
related, then so are F+

1 and F−
2 . Hence m(X,F+

1 ) +M(X,F−
2 ) = |X|.

Theorem 3.3 (Set Complementation [8]). If families F1 and F2 of sub-

sets of X are complement-related, then M(X,F1) + m(X,F2) = |X| =
m(X,F+

1 ) +M(X,F−
2 ).

Also, see Slater [9] for a general Y -valued Matrix Complementation Theorem
for any (complementable) set of reals Y ⊆ R, and Slater [12] discusses
complementarity and duality.

If we replace considering edges by considering closed neighborhoods and
mimic the definitions of independence and cover, we have the concepts of
enclaveless and dominating. A set S ⊆ V (G) is enclaveless if it does not en-
tirely contain any closed neighborhood N [v], that is, |S ∩N [v]| < |N [v]| for
each v ∈ V (G); the maximum cardinality of an enclaveless set is the enclave-
less number Ψ(G), and the lower-enclaveless number ψ(G) is the minimum
cardinality of a maximally enclaveless set; a set R ⊆ V (G) is dominating if
|R ∩N [v]| ≥ 1 for each v ∈ V (G); and the minimum cardinality of a domi-
nating set is the domination number γ(G), and the upper-domination num-
ber Γ(G) is the maximum cardinality of a minimal dominating set. Clearly
the families of enclaveless sets and dominating sets are complement-related,
and the Set Complementation Theorem implies the next result.
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Theorem 3.4 (Slater [8]). For any graph G of order n, Ψ(G)+γ(G) = n =
ψ(G) + Γ(G).

As we did for independence, we can define distance generalizations of these
(and other) parameters. For D ⊆ Z

+, vertex set S ⊆ V (G) is D-independent
if the distance d(x, y) ∈ D implies |S ∩ {x, y}| ≤ 1. We define R ⊆ V (G) to
be a D-cover if d(x, y) ∈ D implies |R ∩ {x, y}| ≥ 1, and αD(G) and ΛD(G)
denote the minimum and maximum cardinalities of minimal D-covers and
are called the D-covering number and upper-D-covering number, respec-
tively.

Call vertex set R a D-dominating set if, for each v ∈ V (G)\R, there is a
vertex w ∈ R such that d(v,w) ∈ D. The D-domination number and upper-

D-domination number, γD(G) and ΓD(G), respectively, are the minimum
and maximum cardinalities of minimally D-dominating sets. Vertex v will be
called a D-enclave of S ⊆ V (G) if v ∈ S and {w ∈ V (G)|d(v,w) ∈ D} ⊆ S,
and S is D-enclaveless if it has no D-enclaves. That is, S is D-enclaveless if
for each v ∈ S there is a vertex w ∈ R = V (G) \ S with d(v,w) ∈ D. The
D-enclaveless number and lower-D-enclaveless number, ΨD(G) and ψD(G),
respectively, are the maximum and minimum cardinalities of maximal D-
enclaveless sets.

In particular, vertex set S ⊆ V (G) is D-independent if and only if
R = V (G)\S is a D-cover, and S is D-enclaveless if and only if R = V (G)\S
if D-dominating. Hence, generalizing Theorems 3.1, 3.2, and 3.4, by the Set
Complementation Theorem, we have the next result.

Theorem 3.5. For any graph G of order n, we have αD(G)+βD(G) = n =
ΛD(G) + iD(G) and ΨD(G) + γD(G) = n = ψD(G) + ΓD(G).

If S ⊆ V (G), v 6∈ S, and d(v,w) ∈ D, then S is a D-cover implies
that w ∈ S, and so S D-dominates v. Hence, any D-cover S will D-
dominate any vertex v 6∈ S if there is some vertex y such that d(v, y) ∈ D

or, equivalently, if the eccentricity ecc(v) ≥ min {d|d ∈ D}.

Theorem 3.6. If ecc(v) ≥ min {d|d ∈ D} for all v ∈ V (G), then every

D-cover of G is D-dominating, so γD(G) ≤ αD(G) and βD(G) ≤ ΨD(G).

Call S ⊆ V (G) a D-irredundant set if for each v ∈ S there is a vertex
w ∈ V (G) \ (S \ {v}) = (V (G) \ S) ∪ {v} such that d(w, x) 6∈ D for each
x ∈ S \ {v} and if w 6= v then d(w, v) ∈ D. The D-irredundance number

and lower-D-irredundance number, IRD(G) and irD(G), respectively, are
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the maximum and minimum cardinalities of maximally D-irredundant sets
for G.

Observation 3.7. A D-independent set S is maximally D-independent if

and only if S if minimally D-dominating. A D-dominating set R is mini-

mally D-dominating if and only if R is maximally D-irredundant.

Hence we have the following generalization from D = {1} in [1] for a para-
metric chain.

Theorem 3.8. For any graph G, irD(G) ≤ γD(G) ≤ iD(G) ≤ βD(G) ≤
ΓD(G) ≤ IRD(G).

4. Related Work

Many questions concerning the general distance-set parameters introduced
are under study (bounds, extremal values, Nordhaus-Gaddum results, etc.),
along with other D-parameters.

We note that such generalizations also apply to edge sets, such as D-
cycles, D-paths and D-geodesics. For example, several different interesting
definitions of a D-matching are possible. Letting the D-power of G be the
graph GD with V (GD) = V (G) and uv ∈ E(GD) if and only if dG(u, v) ∈ D,
one can observe that Theorems 3.5, 3.6 and 3.8 can be proven by considering
GD. In defining a D-matching, one can consider matchings in GD. Another
way to consider D-independence for edges is to consider D-independent
(vertex) sets in the line graph L(G).

Many of these results will appear in Sewell [5].
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