Discussiones Mathematicae Graph Theory 31 (2011) 397–409

DISTANCE INDEPENDENCE IN GRAPHS

J. LOUIS SEWELL

Department of Mathematical Sciences University of Alabama in Huntsville Huntsville, AL 35899 USA

e-mail: louis.sewell@gmail.com

AND

Peter J. Slater

Department of Mathematical Sciences and Computer Sciences Department University of Alabama in Huntsville Huntsville, AL 35899 USA

Abstract

For a set D of positive integers, we define a vertex set $S \subseteq V(G)$ to be D-independent if $u, v \in S$ implies the distance $d(u, v) \notin D$. The D-independence number $\beta_D(G)$ is the maximum cardinality of a D-independent set. In particular, the independence number $\beta(G) = \beta_{\{1\}}(G)$. Along with general results we consider, in particular, the odd-independence number $\beta_{ODD}(G)$ where $ODD = \{1, 3, 5, \ldots\}$.

Keywords: independence number, distance set.

2010 Mathematics Subject Classification: 05C12, 05C38, 05C69, 05C70, 05C76.

1. INTRODUCTION

A vertex subset S of a graph G = (V, E) is independent if no two vertices in S are adjacent. Alternatively, one can say that $S \subseteq V(G)$ is independent if for each edge $e = \{u, v\}$ in E(G) we have either (1) $|S \cap e| \leq 1$ or, equivalently, (2) $|S \cap e| < |e| = 2$. The difference in viewpoint between (1) and (2) for general set systems (hypergraphs) led to different generalized graphical independence, covering, domination, enclaveless, \ldots parameters as discussed in Sinko and Slater [6, 7].

Likewise, defining independence (and other parameters) in terms of distance leads to the generalizations presented here. In particular, vertex subset $S \subseteq V(G)$ is independent if for any two vertices x and y in S the distance between x and y satisfies d(x,y) > 1, that is, $d(x,y) \neq 1$ or, equivalently, $d(x,y) \notin \{1\}$. More generally, $S \subseteq V(G)$ is a k-packing if for any distinct x and y in S we have distance the d(x,y) > k, that is, $d(x,y) \notin [k] = \{1,2,\ldots,k\}$. In general, for any set $D \subseteq \mathbb{Z}^+$ of positive integers we say $S \subseteq V(G)$ is *D*-independent if for any two vertices x and y in Swe have $d(x,y) \notin D$. The *D*-independence number $\beta_D(G)$ is the maximum cardinality of a D-independent set. Thus, the normal independence number $\beta(G)$ satisfies $\beta(G) = \beta_{\{1\}}(G)$; the packing number $\rho(G) = \beta_{\{1,2\}}(G)$; and the k-packing number $\rho_k(G) = \beta_{[k]}(G)$.

For a new example, consider $D = \{1, 4, 5\}$ and the path $P_n = v_1, v_2, \ldots, v_n$, shown in Figure 1.1. Let vertex set $S \subseteq V(P_n)$ be a $\{1, 4, 5\}$ -independent set and $k = \min \{i | v_i \in S\}$. Then, $S^* = \{v_{i-(k-1)} | v_i \in S\}$ is a $\{1, 4, 5\}$ -independent set with the same cardinality as S. So, without loss of generality, suppose $v_1 \in S$. In this case, the vertices labeled above by $*_1$ in Figure 1.1(a) (namely, v_2, v_5 , and v_6) cannot be in S since the distance from one of these vertices to v_1 is in $\{1, 4, 5\}$. More generally, in Figure 1.1 a $*_i$ above a vertex indicates that it is at a distance in $\{1, 4, 5\}$ from v_i , and v_i is in S. If we successively, greedily place the next possible vertex to the right of v_1 in S, then the result is the pattern shown in Figure 1.1(a). Notice that here $|S| = \left\lfloor \frac{1}{4}n \right\rfloor$, showing that $\beta_{\{1,4,5\}}(P_n) \geq \left\lfloor \frac{1}{4}n \right\rfloor$.

Now suppose $v_1 \in S$, but we do not take a greedy approach to adding vertices to S. In particular, we can use every third vertex as in Figure 1.1(b). Note that $|S| = \lfloor \frac{1}{3}n \rfloor$. To show that $\beta(P_n)$ is essentially $\frac{1}{3}n$, we can associate with each $v \in S$ two vertices from $V(P_n) \setminus S$. Consider vertex $v_i \in S$ with $i \leq n-5$. Then we cannot have v_{i+1} , v_{i+4} nor v_{i+5} in S. If $v_{i+2} \notin S$, then associate v_{i+1} and v_{i+2} with v_i . Otherwise, associate v_{i+1} and v_{i+5} with v_i . Note that here v_{i+3} and v_{i+4} are associated with v_{i+2} . It follows that $\beta_{\{1,4,5\}}(P_n) = \lfloor \frac{1}{3}n \rfloor$ for $n \geq 4$.

The minimum cardinality of a maximally independent vertex set $S \subseteq V(G)$ is the lower-independence number i(G). More generally, for each $D \subseteq \mathbb{Z}^+$ a vertex set $S \subseteq V(G)$ is maximally D-independent if S is D-independent and for each $v \in V(G) \setminus S$ there is a vertex $w \in S$ such that $d(v, w) \in D$.

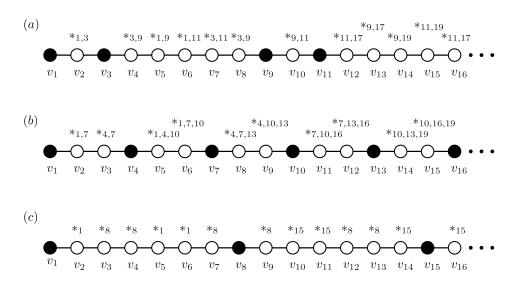


Figure 1.1. $\beta_{\{1,4,5\}}(P_n)$ and $i_{\{1,4,5\}}(P_n)$.

We define the *lower-D-independence number* of G, denoted $i_D(G)$, to be the minimum cardinality of a maximally D-independent set. For example, for the tree $T_{1,k}$ in Figure 1.2, $\{v, w, x\}$ is a maximally $\{3, 5\}$ -independent set. In fact, $i_{\{3,5\}}(T_{1,k}) = 3$, while $\beta_{\{3,5\}}(T_{1,k}) = k + 2$. Clearly, $i_D(G) \leq \beta_D(G)$ for all G and $D \subseteq \mathbb{Z}^+$.

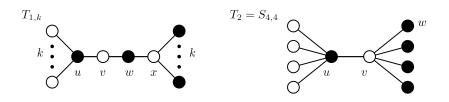


Figure 1.2. Illustrating $i_D(T)$ and $\beta_D(T)$.

For T_2 in Figure 1.2, the set of all endpoints forms a $\beta(T_2)$ -set, while the set containing an endpoint, say w, and all vertices at distance two from w form an $i(T_2)$ -set. Thus, $\beta_{\{1\}}(T_2) = \beta(T_2) = 8$ and $i_{\{1\}}(T_2) = i(T_2) = 5$. Also, notice that a set formed by any pair of adjacent vertices of T_2 or a set formed by endpoints at distance three are the only maximal {2}-independent sets of T_2 . Thus, $\beta_{\{2\}}(T_2) \equiv i_{\{2\}}(T_2) = 2$. (The symbol \equiv denotes strong equality as introduced in Haynes and Slater [3]. See also [10, 11]. Here, for a graph G, $\beta_{\{2\}}(G) \equiv i_{\{2\}}(G)$ is equivalent to S is a $\beta_{\{2\}}(G)$ -set $\Leftrightarrow S$ is an $i_{\{2\}}(G)$ -set.) Finally, note that N[u] and N[v] are the only two maximal {3}-independent sets of T_2 . This shows that $\beta_{\{3\}}(T_2) \equiv i_{\{3\}}(T_2) = 6$.

For path P_n we have $\beta(P_n) = \lceil \frac{1}{2}n \rceil$, $i(P_n) = \lceil \frac{1}{3}n \rceil$ and $\beta_{\{1,4,5\}}(P_n) = \lceil \frac{1}{3}n \rceil$. We can see that $i_{\{1,4,5\}}(P_n)$ is approximately $\frac{1}{7}n$. Note that if $S \subseteq V(P_n)$ with |S| = t, then at most 6t vertices in $V(P_n) \setminus S$ are at a distance in $\{1,4,5\}$ from S. Thus $|S| < \frac{1}{7}n$ implies S is not maximally $\{1,4,5\}$ -independent, and so $i_{\{1,4,5\}}(P_n) \ge \frac{1}{7}n$. As seen in Figure 1.1(c), if S contains any two vertices $v_i, v_{i+7} \in V(P_n)$ at distance 7, then the vertices v_{i+1} through v_{i+6} cannot be in S. This shows that $i_{\{1,4,5\}}(P_n)$ is upper bounded by essentially $\frac{1}{7}n$.

For one more example, the Petersen graph P, we have i(P) = 3, $\beta(P) = 4$ and $i_{\{2\}}(P) \equiv \beta_{\{2\}}(P) = 2$.

In Section 2 we focus on the odd-independence case where $D = \{1, 3, 5, 7, \ldots\}$, and in Section 3 we introduce D-covering, D-enclaveless, D-dominating, and D-irredundant sets.

2. Odd-Independence

Observing that the set D can be infinite, an intriguing example is to consider the set $D = \{1, 3, 5, 7, ...\}$ of odd positive integers. We call a set $S \subseteq V(G)$ an *odd-independent set* if $u, v \in S$ implies d(u, v) is not odd. Also, we define the odd-independence number, denoted $\beta_{ODD}(G)$, to be the maximum cardinality of an odd-independent set $S \subseteq V(G)$ and the lower-oddindependence number, denoted $i_{ODD}(G)$, to be the minimum cardinality of a maximal odd-independent set $S \subseteq V(G)$.

Consider the path $P_n = v_1, v_2, \ldots, v_n$, and let $S \subseteq V(P_n)$ be a maximal odd-independent set. Then for $v_i, v_j \in S$ the distance $d(v_i, v_j)$ is even; that is, $i - j \equiv 0 \pmod{2}$. This shows that $v_i \in S$ implies $S \subseteq \{v_j \in V(P_n) | i - j \equiv 0 \pmod{2}\}$. Since S is maximal, $v_i \in S$ and $i - j \equiv 0 \pmod{2}$ implies $v_j \in S$. Hence, there are exactly two maximal odd-independent subsets of $V(P_n), S_1 = \{v_i \in V(P_n) | i = 1, 3, 5, \ldots\}$ and $S_2 = \{v_i \in V(P_n) | i = 2, 4, 6, \ldots\} = V(P_n) \setminus S_1$. Since for all $n, |S_1| = \lceil \frac{n}{2} \rceil \geq |S_2| = \lfloor \frac{n}{2} \rfloor$, we have that $\beta_{ODD}(P_n) = \lceil \frac{n}{2} \rceil$ and $i_{ODD}(P_n) = \lfloor \frac{n}{2} \rfloor$.

More generally, let G be any connected bipartite graph with partite sets S and $V(G) \setminus S$. As with P_n , there are exactly two maximal odd-independent subsets of G. To see that these are precisely the partite sets S and $V(G) \setminus S$, notice that the distance between any pair of vertices in S, or any pair of vertices in $V(G) \setminus S$, is even and the distance from any vertex in S to any vertex in $V(G) \setminus S$ is odd. This gives us the following theorem.

Theorem 2.1. For any connected bipartite graph G with partite sets S and $V(G) \setminus S$, we have $\beta_{ODD}(G) = max \{|S|, |V(G) \setminus S|\}$ and $i_{ODD}(G) = min \{|S|, |V(G) \setminus S|\}$.

Proposition 2.2. $\beta_{ODD}(P_n) = \left\lceil \frac{n}{2} \right\rceil, \ i_{ODD}(P_n) = \left\lfloor \frac{n}{2} \right\rfloor, \ \beta_{ODD}(C_{2k}) \equiv i_{ODD}(C_{2k}) = k \ and \ \beta_{ODD}(C_{2k+1}) \equiv i_{ODD}(C_{2k+1}) = \left\lceil \frac{k+1}{2} \right\rceil.$

Proof. The result for paths follows from the discussion above. An immediate consequence of Theorem 2.1 is the result for even cycles. Now consider the odd cycle C_{2k+1} with $V(C_{2k+1}) = v_1, v_2, \ldots, v_{2k+1}$, and let $S \subseteq V(C_{2k+1})$ be a maximal odd-independent set. We show that $S \subset$ $\{v_t, v_{t+1}, \ldots, v_{t+k}\}$ for some $t = 1, 2, \ldots, 2k + 1$ where subscripts are taken modulo 2k + 1. Assume $v_i, v_j \in S$ with i < j. Taking t = i if $j - i \le k$ and t = j otherwise will show the result. Let vertex v_h also be in S with $1 \leq h < i < j \leq 2k+1$. Since 2k+1 is odd, one of i-h, j-i, or (2k + 1 + h) - j is odd. Without loss of generality, assume i - h is odd and let t = i. Since $d(v_h, v_i)$ is even, we must have that i - h > k + 1; otherwise, $d(v_h, v_i) = i - h$. This shows that $(2k + 1 + h) - i \leq k$ and $\{v_i, v_{i+1}, \dots, v_{2k+1+h} = v_h\} \subseteq \{v_t, v_{t+1}, \dots, v_{t+k}\}.$ Since i < j < (2k+1)+h, the result holds. Without loss of generality, assume $v_t \in S$. Then vertices in $\{v_t, v_{t+1}, \ldots, v_{t+k}\} \cap \{v_{t+2}, v_{t+4}, v_{t+6}, \ldots\}$ are at an even distance from v_t and each other; and each vertex in $\{v_t, v_{t+1}, ..., v_{t+k}\} \cap \{v_{t+1}, v_{t+3}, v_{t+5}, ...\}$ is at an odd distance from v_t . Since S is maximal, this shows that S = $\{v_t, v_{t+1}, \ldots, v_{t+k}\} \cap \{v_t, v_{t+2}, v_{t+4}, \ldots\}$. Since there are exactly 2k+1 such maximal odd-independent sets, one for each $t = 1, 2, \ldots, 2k + 1$, and each has the same cardinality, we have that $\beta_{ODD}(C_{2k+1}) \equiv i_{ODD}(C_{2k+1}) =$ $\left\lceil \frac{k+1}{2} \right\rceil$.

Extending the discussion of odd-independent sets of paths and cycles, we now look at the Cartesian products, namely, grids $P_s \Box P_t$, cylinders $P_s \Box C_t$ and tori $C_s \Box C_t$.

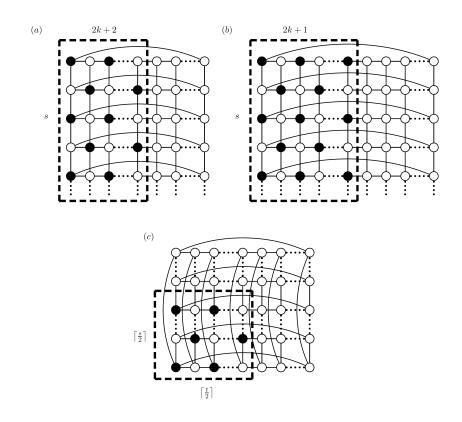


Figure 2.1. (a) $P_s \Box C_{4k+3}$; (b) $P_s \Box C_{4k+1}$; (c) $C_s \Box C_t$, s and t odd.

Theorem 2.3. (1) For positive integers s and t,

$$\beta_{ODD}(P_s \Box P_t) = \left\lceil \frac{st}{2} \right\rceil.$$

(2) (i) For positive integer s and positive even integer t,

$$\beta_{ODD}(P_s \Box C_t) = \frac{st}{2}.$$

(ii) For positive integer s and positive odd integer t,

$$\beta_{ODD}(P_s \Box C_t) = \begin{cases} \left\lceil \frac{s}{2} \right\rceil \cdot \frac{t+1}{2} & \text{if } t = 4k+1, \\ \frac{s(t+1)}{4} & \text{if } t = 4k+3. \end{cases}$$

(3) (i) For positive even integers s and t,

$$\beta_{ODD}(C_s \Box C_t) = \frac{st}{2}.$$

(ii) For positive even integer s and positive odd integer t,

$$\beta_{ODD}(C_s \Box C_t) = \frac{s(t+1)}{4}.$$

(iii) For positive odd integers s and t,

$$\beta_{ODD}(C_s \Box C_t) \ge \left\lceil \frac{\left\lceil \frac{s}{2} \right\rceil \cdot \left\lceil \frac{t}{2} \right\rceil}{2} \right\rceil.$$

Proof. (1) By Theorem 2.1, the s by t grid $P_s \Box P_t$ satisfies $\beta_{ODD}(P_s \Box P_t) = \left\lceil \frac{st}{2} \right\rceil$ and $i_{ODD}(P_s \Box P_t) = \left\lfloor \frac{st}{2} \right\rfloor$.

(2) (i) The s by t cylinder $P_s \Box C_t$ is bipartite when t is even, yielding the same values as for $P_s \Box P_t$.

(ii) For odd t, let $S \subseteq V(P_s \Box C_t) = \{v_{i,j} | 1 \le i \le s, 1 \le j \le t\}$ be a maximal odd-independent set. Notice that for each *i* no more than $\left\lceil \frac{t+1}{4} \right\rceil$ vertices from $X_i = \{v_{i,j} | 1 \le j \le t\}$ can be in *S*, per the above result for odd-independent sets of odd cycles. If t = 4k + 3 for some *k*, then this bound is achieved with the pattern shown in Figure 2.1(a), or any shift of this pattern, yielding $|S| = s \cdot \left\lceil \frac{t+1}{4} \right\rceil = \frac{s(t+1)}{4}$. For t = 4k + 1 we first show that for each *i* the intersection of *S* with $X_i \cup X_{i+1}$ can contain no more than 2k + 1 vertices. As already noted, no more than $\left\lceil \frac{t+1}{4} \right\rceil = k + 1$ vertices can be in $S \cap X_i$ or $S \cap X_{i+1}$. Without loss of generality, assume the k + 1 vertices $v_{i,1}, v_{i,3}, \ldots, v_{i,2k+1}$ are in *S*. Then the vertices $v_{i+1,1}, v_{i+1,3}, \ldots, v_{i+1,2k+1}$ and $v_{i+1,2k+2}, v_{i+1,2k+3}, \ldots, v_{i+1,4k+1}$ are at an odd distance from at least one vertex in *S*. The remaining *k* vertices in $S \cap X_i$. This gives the upper bound of $\beta_{ODD}(P_s \Box C_t) \le \left\lceil \frac{s}{2} \rceil \cdot \frac{t+1}{2}$. This bound is achieved with the pattern shown in Figure 2.1(b), or any shift of this pattern. Combining the above results, for positive *s* and odd positive *t* we have that $\beta_{ODD}(P_s \Box C_t) = \left\{ \begin{array}{c} \left\lceil \frac{s}{2} \right\rceil \cdot \frac{t+1}{2} \text{ if } t = 4k + 1, \\ \frac{s(t+1)}{4} \end{array} \right\}$

(3) Given the torus $C_s \Box C_t$, we consider three cases: s and t are even; s is even and t is odd; and s and t are both odd.

(i) When s and t are even, $C_s \Box C_t$ is bipartite and Theorem 2.1 implies $\beta_{ODD}(C_s \Box C_t) \equiv i_{ODD}(C_s \Box C_t) = \left\lceil \frac{st}{2} \right\rceil = \frac{st}{2}$.

(ii) For even s and odd t, the same reasoning used to determine $\beta_{ODD}(P_s \Box C_t)$ under this restriction shows that $\beta_{ODD}(C_s \Box C_t) = \beta_{ODD}(P_s \Box C_t)$.

(iii) Finally, when s and t are both odd $\beta_{ODD}(C_s \Box C_t) \ge \left\lceil \frac{s}{2} \rceil \cdot \frac{t}{2} \right\rceil$ as evidenced by the pattern in Figure 2.1(c). (We believe, in fact, that for odd s and t the value of $\beta_{ODD}(C_s \Box C_t)$ is exactly $\left\lceil \frac{s}{2} \rceil \cdot \frac{t}{2} \right\rceil$.)

The results for β_{ODD} of grids, cylinders and tori are summarized in Table 2.1 above with approximate values for ease of comparison.

Table 2.1. β_{ODD} for grids, cylinders and tori.

	s even	s odd	s even	s odd
	t even	t even	t odd	t odd
$P_s \Box P_t$	$\frac{st}{2}$	$\frac{st}{2}$	$\frac{st}{2}$	$\frac{st}{2}$
$P_s \Box C_t$	$\frac{\overline{st}}{2}$	$\frac{\overline{st}}{2}$	$\frac{\overline{st}}{4}$	$\frac{\overline{st}}{4}$
$C_s \Box C_t$	$\frac{st}{2}$	$\frac{st}{4}$	$\frac{st}{4}$	$\geq \frac{st}{8}$

Theorem 2.4. For any graph G and distance sets D_1 and D_2 , $D_1 \subseteq D_2$ implies $\beta_{D_2}(G) \leq \beta_{D_1}(G)$.

Proof. Let G be a graph and D_1, D_2 be distance sets such that $D_1 \subseteq D_2$. Let vertex set $S \subseteq V(G)$ be a $\beta_{D_2}(G)$ -set. Given $u, v \in S$ we have $d(u, v) \notin D_2$, which implies $d(u, v) \notin D_1$. Hence, $\beta_{D_2}(G) \leq \beta_{D_1}(G)$.

This shows that for all graphs G, $\beta_{ODD}(G) \leq \beta(G)$. By definition, for every graph G and distance set D, $i_D(G) \leq \beta_D(G)$. Together, this gives us $i_{ODD}(G) \leq \beta_{ODD}(G) \leq \beta(G)$ and $i(G) \leq \beta(G)$ for every graph G. Given this, it is perhaps surprising that the lower-independence number is incomparable to both the lower-odd-independence number and the odd-independence number. We first note that using Theorem 2.1 we have Theorem 2.5.

Theorem 2.5. For connected bipartite graph B, $i(B) \leq i_{ODD}(B) \leq \frac{n}{2} \leq \beta_{ODD}(B) \leq \beta(B)$.

As noted, *i* is incomparable with i_{ODD} and β_{ODD} . In fact, H_1 , H_2 and H_3 , with $i(H_1) < i_{ODD}(H_1) < \beta_{ODD}(H_1)$, $i_{ODD}(H_2) < i(H_2) < \beta_{ODD}(H_2)$ and $i_{ODD}(H_3) < \beta_{ODD}(H_3) < i(H_3)$ are illustrated in Figure 2.2.

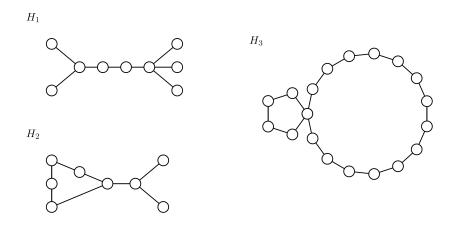


Figure 2.2. Incomparability of *i* with i_{ODD} and β_{ODD} . In particular, $i(H_1) = 2 < i_{ODD}(H_1) = 4 < \beta_{ODD}(H_1) = 5$, $i_{ODD}(H_2) = 2 < i(H_2) = 3 < \beta_{ODD}(H_2) = 4$ and $i_{ODD}(H_3) = 2 < \beta_{ODD}(H_3) = 5 < i(H_3) = 6$.

3. Other Distance Parameters

A set $R \subseteq V(G)$ is a cover if for each edge $\{u, v\} \in E(G)$ we have $\{u, v\} \cap R \neq \emptyset$. The covering number, denoted $\alpha(G)$, is the minimum cardinality of a cover. It is easy to see that R is a cover if and only if $S = V(G) \setminus R$ is independent, and we have the following result of Gallai.

Theorem 3.1 (Gallai [2]). For any graph G of order n = |V(G)|, we have $\alpha(G) + \beta(G) = n$.

The upper-covering number, denoted $\Lambda(G)$, is the maximum cardinality of a minimal cover. Using complementarity of independent sets and covers, we have the following.

Theorem 3.2 (McFall and Nowakowski [4]). For any graph G of order n = |V(G)|, we have $\Lambda(G) + i(G) = n$.

The complementation relation between covering and independence can be generalized. As described in [8], we have the following. Let \mathcal{F} be any family of subsets of some set X. Define $M(X, \mathcal{F})$ and $m(X, \mathcal{F})$ as follows:

$$(3.1) \qquad M(X,\mathcal{F}) = \max\left\{|S| : S \in \mathcal{F}\right\}, \ m(X,\mathcal{F}) = \min\left\{|S| : S \in \mathcal{F}\right\}.$$

Families \mathcal{F}_1 and \mathcal{F}_2 of subsets X will be called *complement-related* if $S \in \mathcal{F}_1$ if and only if $X - S \in \mathcal{F}_2$. Suppose \mathcal{F}_1 and \mathcal{F}_2 are complement-related. Since the complement of any set in \mathcal{F}_1 is in \mathcal{F}_2 , $m(X, \mathcal{F}_2) \leq |X| - M(X, \mathcal{F}_1)$; since the complement of any set in \mathcal{F}_2 is in \mathcal{F}_1 , $M(X, \mathcal{F}_1) \geq |X| - m(X, \mathcal{F}_2)$. Thus $M(X, \mathcal{F}_1) + m(X, \mathcal{F}_2) = |X|$. Note that one could let \mathcal{F}_1 and \mathcal{F}_2 be the complement-related familes of independent sets and covering sets, respectively. Then $M(V(G), \mathcal{F}_1) = \beta(G)$ and $m(V(G), \mathcal{F}_2) = \alpha(G)$ implies $\beta(G) + \alpha(G) = n$. Recall that i(G), the lower-independence number (or the independent domination number), is the minimum cardinality of a maximal independent set. In general, let \mathcal{F}^+ denote the family of those members of \mathcal{F} which are set-theoretically maximal with respect to membership, and $\mathcal{F}^$ those which are minimal. It is easily seen that if \mathcal{F}_1 and \mathcal{F}_2 are complementrelated, then so are \mathcal{F}_1^+ and \mathcal{F}_2^- . Hence $m(X, \mathcal{F}_1^+) + M(X, \mathcal{F}_2^-) = |X|$.

Theorem 3.3 (Set Complementation [8]). If families \mathcal{F}_1 and \mathcal{F}_2 of subsets of X are complement-related, then $M(X, \mathcal{F}_1) + m(X, \mathcal{F}_2) = |X| = m(X, \mathcal{F}_1^+) + M(X, \mathcal{F}_2^-)$.

Also, see Slater [9] for a general Y-valued Matrix Complementation Theorem for any (complementable) set of reals $Y \subseteq \mathbb{R}$, and Slater [12] discusses complementarity and duality.

If we replace considering edges by considering closed neighborhoods and mimic the definitions of independence and cover, we have the concepts of enclaveless and dominating. A set $S \subseteq V(G)$ is *enclaveless* if it does not entirely contain any closed neighborhood N[v], that is, $|S \cap N[v]| < |N[v]|$ for each $v \in V(G)$; the maximum cardinality of an enclaveless set is the *enclaveless number* $\Psi(G)$, and the *lower-enclaveless number* $\psi(G)$ is the minimum cardinality of a maximally enclaveless set; a set $R \subseteq V(G)$ is dominating if $|R \cap N[v]| \ge 1$ for each $v \in V(G)$; and the minimum cardinality of a dominating set is the domination number $\gamma(G)$, and the upper-domination number $\Gamma(G)$ is the maximum cardinality of a minimal dominating set. Clearly the families of enclaveless sets and dominating sets are complement-related, and the Set Complementation Theorem implies the next result. **Theorem 3.4** (Slater [8]). For any graph G of order n, $\Psi(G) + \gamma(G) = n = \psi(G) + \Gamma(G)$.

As we did for independence, we can define distance generalizations of these (and other) parameters. For $D \subseteq \mathbb{Z}^+$, vertex set $S \subseteq V(G)$ is D-independent if the distance $d(x, y) \in D$ implies $|S \cap \{x, y\}| \leq 1$. We define $R \subseteq V(G)$ to be a *D*-cover if $d(x, y) \in D$ implies $|R \cap \{x, y\}| \geq 1$, and $\alpha_D(G)$ and $\Lambda_D(G)$ denote the minimum and maximum cardinalities of minimal D-covers and are called the *D*-covering number and upper-D-covering number, respectively.

Call vertex set $R ext{ a } D$ -dominating set if, for each $v \in V(G) \setminus R$, there is a vertex $w \in R$ such that $d(v, w) \in D$. The D-domination number and upper-D-domination number, $\gamma_D(G)$ and $\Gamma_D(G)$, respectively, are the minimum and maximum cardinalities of minimally D-dominating sets. Vertex v will be called a D-enclave of $S \subseteq V(G)$ if $v \in S$ and $\{w \in V(G) | d(v, w) \in D\} \subseteq S$, and S is D-enclaveless if it has no D-enclaves. That is, S is D-enclaveless if for each $v \in S$ there is a vertex $w \in R = V(G) \setminus S$ with $d(v, w) \in D$. The D-enclaveless number and lower-D-enclaveless number, $\Psi_D(G)$ and $\psi_D(G)$, respectively, are the maximum and minimum cardinalities of maximal Denclaveless sets.

In particular, vertex set $S \subseteq V(G)$ is D-independent if and only if $R = V(G) \setminus S$ is a D-cover, and S is D-enclaveless if and only if $R = V(G) \setminus S$ if D-dominating. Hence, generalizing Theorems 3.1, 3.2, and 3.4, by the Set Complementation Theorem, we have the next result.

Theorem 3.5. For any graph G of order n, we have $\alpha_D(G) + \beta_D(G) = n = \Lambda_D(G) + i_D(G)$ and $\Psi_D(G) + \gamma_D(G) = n = \psi_D(G) + \Gamma_D(G)$.

If $S \subseteq V(G)$, $v \notin S$, and $d(v, w) \in D$, then S is a D-cover implies that $w \in S$, and so S D-dominates v. Hence, any D-cover S will Ddominate any vertex $v \notin S$ if there is some vertex y such that $d(v, y) \in D$ or, equivalently, if the eccentricity $ecc(v) \geq \min \{d | d \in D\}$.

Theorem 3.6. If $ecc(v) \ge \min\{d|d \in D\}$ for all $v \in V(G)$, then every *D*-cover of *G* is *D*-dominating, so $\gamma_D(G) \le \alpha_D(G)$ and $\beta_D(G) \le \Psi_D(G)$.

Call $S \subseteq V(G)$ a *D-irredundant set* if for each $v \in S$ there is a vertex $w \in V(G) \setminus (S \setminus \{v\}) = (V(G) \setminus S) \cup \{v\}$ such that $d(w, x) \notin D$ for each $x \in S \setminus \{v\}$ and if $w \neq v$ then $d(w, v) \in D$. The *D-irredundance number* and *lower-D-irredundance number*, $IR_D(G)$ and $ir_D(G)$, respectively, are

the maximum and minimum cardinalities of maximally D-irredundant sets for G.

Observation 3.7. A D-independent set S is maximally D-independent if and only if S if minimally D-dominating. A D-dominating set R is minimally D-dominating if and only if R is maximally D-irredundant.

Hence we have the following generalization from $D = \{1\}$ in [1] for a parametric chain.

Theorem 3.8. For any graph G, $ir_D(G) \leq \gamma_D(G) \leq i_D(G) \leq \beta_D(G) \leq \Gamma_D(G) \leq IR_D(G)$.

4. Related Work

Many questions concerning the general distance-set parameters introduced are under study (bounds, extremal values, Nordhaus-Gaddum results, etc.), along with other D-parameters.

We note that such generalizations also apply to edge sets, such as Dcycles, D-paths and D-geodesics. For example, several different interesting definitions of a D-matching are possible. Letting the *D*-power of *G* be the graph G^D with $V(G^D) = V(G)$ and $uv \in E(G^D)$ if and only if $d_G(u, v) \in D$, one can observe that Theorems 3.5, 3.6 and 3.8 can be proven by considering G^D . In defining a *D*-matching, one can consider matchings in G^D . Another way to consider *D*-independence for edges is to consider *D*-independent (vertex) sets in the line graph L(G).

Many of these results will appear in Sewell [5].

References

- E.J. Cockayne, S.T. Hedetniemi, and D.J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 (1978) 461–468.
- [2] T. Gallai, Uber extreme Punkt-und Kantenmengen, Ann. Univ. Sci. Budapest, Eotvos Sect. Math. 2 (1959) 133–138.
- [3] T.W. Haynes and P.J. Slater, *Paired domination in graphs*, Networks **32** (1998) 199–206.
- [4] J.D. McFall and R. Nowakowski, Strong independence in graphs, Congr. Numer. 29 (1980) 639–656.

408

- [5] J.L. Sewell, *Distance Generalizations of Graphical Parameters*, (Univ. Alabama in Huntsville, 2011).
- [6] A. Sinko and P.J. Slater, *Generalized graph parametric chains*, submitted for publication.
- [7] A. Sinko and P.J. Slater, *R*-parametric and *R*-chromatic problems, submitted for publication.
- [8] P.J. Slater, Enclaveless sets and MK-systems, J. Res. Nat. Bur. Stan. 82 (1977) 197–202.
- P.J. Slater, Generalized graph parametric chains, in: Combinatorics, Graph Theory and Algorithms (New Issues Press, Western Michigan University 1999) 787–797.
- [10] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of upper domination and independence in trees, Util. Math. 59 (2001) 111–124.
- [11] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of domination parameters in trees, Discrete Math. 260 (2003) 77–87.
- [12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, *LP-duality, complementarity and generality of graphical subset problems*, in: Domination in Graphs Advanced Topics, T.W. Haynes *et al.* (eds) (Marcel-Dekker, Inc. 1998) 1–30.

Received 4 January 2010 Revised 6 January 2011 Accepted 10 January 2011