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Abstract

Let G = (V,E) be a graph. The distance between two vertices u
and v in a connected graph G is the length of the shortest (u−v) path
in G. A set D ⊆ V (G) is a dominating set if every vertex of G is at
distance at most 1 from an element of D. The domination number of G
is the minimum cardinality of a dominating set of G. A set D ⊆ V (G)
is a 2-distance dominating set if every vertex of G is at distance at
most 2 from an element of D. The 2-distance domination number of
G is the minimum cardinality of a 2-distance dominating set of G. We
characterize all trees and all unicyclic graphs with equal domination
and 2-distance domination numbers.

Keywords: domination number, trees, unicyclic graphs.

2010 Mathematics Subject Classification: 05C05, 05C69.

1. Definitions

Here we consider simple undirected graphs G = (V,E) with |V | = n(G).
The distance dG(u, v) between two vertices u and v in a connected graph G
is the length of a shortest (u − v) path in G. If D is a set and u ∈ V (G),
then dG(u,D) = min{dG(u, v) : v ∈ D}. The k-neighbourhood Nk

G[v] of a
vertex v ∈ V (G) is the set of all vertices at distance at most k from v. For
a set D ⊆ V , the k-neighbourhood Nk

G[D] is defined to be
⋃

v∈D Nk
G[v]. A
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subset D of V is k-distance dominating in G if every vertex of V (G)−D is at
distance at most k from at least one vertex of D. Let γk(G) be the minimum
cardinality of a k-distance dominating set of G. This kind of domination was
defined by Borowiecki and Kuzak [1]. Note that the 1-distance domination
number is the domination number, denoted γ(G).

The degree of a vertex v is dG(v) = |N1
G(v)| and a vertex of degree 1

is called a leaf. A vertex which is a neighbour of a leaf is called a support
vertex. Denote by S(G) the set of all support vertices of G. If a support
vertex is adjacent to more than one leaf, then we call it a strong support
vertex. We denote a path on n vertices by Pn = (v0, . . . , vn−1) and the cycle
on n vertices by Cn. For example, P2 contains two leaves and two support
vertices. For any unexplained terms and symbols see [2].

In this paper we study trees and unicyclic graphs for which the domi-
nation number and the 2-distance domination number are the same.

2. General results

First we give some general results for graphs with equal domination and 2-
distance domination numbers. Obviously, for any graph G if γ(G) = 1, then
γ2(G) = 1 and thus γ(G) = γ2(G). We start with a necessary condition for
a graph G with 1 < γ(G) = γ2(G). A set D ⊆ V (G) is a 2-packing in G if
dG(u, v) ≥ 3 for every u, v ∈ D.

Proposition 1. If G is a connected graph with γ(G) = γ2(G) and γ(G) > 1,
then every minimum dominating set of G is a 2-packing of G.

Proof. Suppose D is a minimum dominating set of G such that |D| ≥ 2 and
D is not a 2-packing. Then there exist u, v ∈ D in G such that dG(u, v) ≤ 2.
Denote by x a vertex which belongs to NG[u]∩NG[v] (if u and v are adjacent,
then possibly x = u or x = v) and let D′ = (D − {u, v}) ∪ {x}. Then
NG[u] ⊆ N2

G[x] and NG[v] ⊆ N2
G[x]. Hence D′ is a 2-distance dominating

set of G of smaller cardinality than γ(G), a contradiction.

The condition in Proposition 1 it not sufficient. Consider, for example the
cycle C9. Next result gives a sufficient condition for a graph G to have equal
domination and 2-distance domination numbers.

Proposition 2. Let G be the graph obtained from a graph H and n(H)
copies of P2, where the i th vertex of H is adjacent to exactly one vertex of
the i th copy of P2. Then γ(G) = γ2(G).
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Proof. Let G be the graph obtained from a graph H and n(H) copies of P2,
where the i th vertex of H is adjacent to exactly one vertex of the i th copy
of P2. Denote by D a γ2(G)-set. Observe that the distance between any
two leaves adjacent to two different support vertices in G is greater than
or equal to 5. For this reason, if u and v are two leaves adjacent to two
different support vertices, then u and v cannot be 2-dominated by the same
element of D. This implies that γ2(G) ≥ |S(G)|. Since γ2(G) ≤ γ(G), it
follows that γ(G) = γ2(G).

3. Trees

In what follows, we constructively characterize all trees T for which γ(T ) =
γ2(T ).

Let T be the family of all trees T that can be obtained from sequence
T1, . . . , Tj (j ≥ 1) of trees such that T1 is the path P2 and T = Tj , and, if
j > 1, then Ti+1 can be obtained recursively from Ti by the operation T1,
T2 or T3:

• Operation T1. The tree Ti+1 is obtained from Ti by adding a vertex x1
and the edge x1y where y ∈ V (Ti) is a support vertex of Ti.

• Operation T2. The tree Ti+1 is obtained from Ti by adding a path
(x1, x2, x3) and the edge x1y where y ∈ V (Ti) is neither a leaf nor a
support vertex in Ti.

• Operation T3. The tree Ti+1 is obtained from Ti by adding a path (x1,
x2, x3, x4) and the edge x1y where y ∈ V (Ti) is a support vertex in Ti.

Additionally, let P1 belong to T.
The following observation follows immediately from the way in which

each tree in the family T is constructed.

Observation 3. If a tree T belonging to the family T has at least 2 vertices,
then:

1. If u, v ∈ S(T ), then dT (u, v) ≥ 3, that is, if u, v ∈ S(T ), then S(T ) is a
2-packing in T ;

2. If u ∈ V (T ), then |NT [u] ∩ S(T )| = 1;

3. S(T ) is a minimum dominating set of T .

We show first that each tree T belonging to the family T is a tree with
γ(T ) = γ2(T ). To this aim we prove the following lemma.
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Lemma 4. If a tree T of order at least 2 belongs to the family T, then
γ2(T ) = |S(T )|.

Proof. Let T be a tree belonging to the family T and let D be a γ2(T )-
set. Since S(T ) is a 2-packing in T , the distance between any two leaves
adjacent to different support vertices is greater than or equal to 5. For this
reason, if u and v are two leaves adjacent to different support vertices in T ,
then u and v cannot be 2-distance dominated by the same element of D.
This implies that |D| ≥ |S|. On the other hand, since S(T ) is a dominating
set of T , it is also a 2-distance dominating set of T . We conclude that
γ2(T ) = |S(T )|.

By Lemma 4 and Observation 3 we obtain immediately.

Corollary 5. If a tree T belongs to the family T, then γ(T ) = γ2(T ).

Before we prove our next Lemma, observe that for any tree T with at least 3
vertices, γ(T ) ≥ |S(T )|.

Lemma 6. If T is a tree with γ2(T ) = γ(T ), then T belongs to the family T.

Proof. Let T be a tree with γ2(T ) = γ(T ). Let (v0, v1, . . . , vk) be a longest
path in T . If k ∈ {1, 2}, then T is P1 or a star K1,p, for a positive integer p,
and clearly T is in T.

If k ∈ {3, 4}, then γ2(T ) = 1, but γ(T ) > 1. For this reason now we
assume k ≥ 5. We proceed by induction on the number n(T ) of vertices of
a tree T with γ2(T ) = γ(T ). If n(T ) = 6, then T = P6 and T belongs to the
family T. (Observe that P6 may be obtained from P2 by operation T3). Now
let T be a tree with γ2(T ) = γ(T ) and n(T ) ≥ 7, and assume that each tree
T ′ with n(T ′) < n(T ), k ≥ 5 and γ2(T ′) = γ(T ′) belongs to the family T.

If there exists v ∈ S(T ) such that v is adjacent to at least two leaves, say
x1 and x2, then clearly γ(T ′) = γ(T ) and γ2(T ′) = γ2(T ), where T ′ = T−x1.
Thus, γ2(T ′) = γ(T ′) and by the induction, T ′ belongs to the family T.
Moreover, T may be obtained from T ′ by operation T1 and we conclude
that T also belongs to the family T.

Now assume that each support vertex of T is adjacent to exactly one
leaf. For this reason dT (v1) = 2. If dT (v2) > 2, then v2 is adjacent to a leaf
or |NT (v2) ∩ S(T )| ≥ 2. In both cases v2 2-distance dominates all support
vertices and leaves at distance at most 2 from v2, while γ(T ) ≥ |S(T )|.
Hence γ(T ) > γ2(T ), which is impossible. Thus, dT (v2) = 2.



Graphs with Equal Domination and 2-distance ... 379

Observe that either v0 or v1 is in every minimum dominating set of T .
Assume dT (v3) > 2. If v3 belongs to some minimum dominating set of T ,
say D, then (D ∪ {v2}) − {v0, v1, v3} is a 2-distance dominating set of T of
cardinality smaller than γ(T ), which is impossible. Hence v3 does not belong
to any minimum dominating set of T and this reason together with n(T ) ≥ 7
imply that v3 is not a support vertex of T . Denote T ′ = T − {v0, v1, v2}.
Since dT (v3) > 2, v3 is not a leaf in T ′ and since k ≥ 5, v3 is not a support
vertex in T ′. Moreover, it is no problem to verify that γ(T ′) = γ(T )− 1 and
γ2(T ′) ≥ γ2(T ) − 1. Hence

γ2(T ) − 1 ≤ γ2(T ′) ≤ γ(T ′) = γ(T ) − 1 = γ2(T ) − 1.

Thus, γ2(T ′) = γ(T ′) and by the induction, T ′ belongs to the family T.
Moreover, T may be obtained from T ′ by operation T2 and we conclude
that T also belongs to the family T.

Thus assume dT (v1) = dT (v2) = dT (v3) = 2. Without loss of gener-
ality, denote by D a minimum dominating set of T containing v1. In this
situation v2, v3 or v4 belong to D to dominate v3. If v2 or v3 is in D, then
D′ = (D ∪ {v2}) − {v1, v3} is a 2-distance dominating set of T of cardinal-
ity smaller than γ(T ), which is impossible. Hence v4 ∈ D. Observe that
D′, defined as above, 2-distance dominates v4. Moreover, if w is a neigh-
bour of v4 and dT (w,D − {v4}) ≤ 2, then w is 2-distance dominated by
D′ and again γ2(T ′) < γ(T ). Thus v4 has a neighbour, say u, such that
dT (u,D−{v4}) ≥ 3. Since T is a tree and each neighbour of u is dominated
by D, we conclude that u is a leaf and for this reason v4 is a support vertex.
Denote T ′ = T − {v0, v1, v2, v4}. Since u is a leaf in T ′, v4 is a support
vertex in T ′. Moreover, it is no problem to verify that γ(T ′) + 1 = γ(T ).
Further, since dT (u, v0) = 5, γ2(T ′) + 1 = γ2(T ). Thus, γ2(T ′) = γ(T ′)
and by the induction, T ′ belongs to the family T. Moreover, T may be ob-
tained from T ′ by operation T3 and we conclude that T also belongs to the
family T.

The following Theorem is an immediate consequence of Lemma 6 and Corol-
lary 5.

Theorem 7. Let T be a tree. Then γ(T ) = γ2(T ) if and only if T belongs
to the family T.
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4. Unicyclic Graphs

A unicyclic graph is a graph that contains precisely one cycle. Our next
results consider graphs with cycles.

Lemma 8. Let G be a connected graph with γ(G) = γ2(G). If u, v are two
leaves of G adjacent to the same support vertex, then γ(G+uv) = γ2(G+uv).

Proof. Let G be a connected graph with γ(G) = γ2(G) and let u, v be two
leaves of G such that dG(u, v) = 2 and let w be the neighbour of u and v. By
our assumptions and some immediate properties of the domination number
of a graph,

γ2(G + uv) ≤ γ(G + uv) ≤ γ(G) = γ2(G).

Hence it suffices to justify that γ2(G + uv) ≥ γ2(G). Clearly, N2
G+uv[x] =

N2
G[x] for each x ∈ V (G). Thus, every minimum 2-distance dominating set

of G + uv is also a minimum 2-distance dominating set of G. Therefore,
γ2(G + uv) ≥ γ2(G) and hence γ(G + uv) = γ2(G + uv).

By Theorem 7 and recursively using Lemma 8 we may obtain graphs G with
γ(G) = γ2(G) and containing any number of induced cycles C3.

Now we characterize all connected unicyclic graphs G with γ(G) =
γ2(G). To this aim we introduce some additional notations. Let T be a tree
belonging to the family T. We call v ∈ V (T ) an active vertex, if v is a leaf
adjacent to a strong support vertex or v ∈ V (T ) − (S(T ) ∪ Ω(T )). Further,
let C

+
6

be the family of all unicyclic graphs that may be obtained from a
tree T belonging to the family T and the cycle C6 by identifying one vertex
of C6 with a support vertex of T . In addition, let C6 belong to C

+

6
.

Define C to be the family of all unicyclic graphs that belong to C
+

6
or

may be obtained from a tree T belonging to the family T by adding an edge
between two active vertices of T .

The following two lemmas prove that γ(G) = γ2(G) for every graph G
belonging to the family C.

Lemma 9. Each graph belonging to the family C
+
6

has equal domination
and 2-distance domination numbers.

Proof. Let G ∈ C
+

6
. Obviously γ(C6) = γ2(C6). Thus let G be obtained

from a tree T belonging to the family T and the cycle C6 = (v1, . . . , v6, v1)
by identifying the vertex v1 with a support vertex of T .
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Figure 1. Graph G ∈ C
+

6 . {v0, v1, v4} is the γ(G)-set.

Since G is unicyclic and connected, G − v5v6 is a tree. It is no problem to
observe, that G−v5v6 may be obtained from T by adding to T first the path
P4 = (v2, v3, v4, v5) and the edge v1v2, and then v6 and the edge v1v6. Since
T ∈ T and G − v5v6 may be obtained from T by operations T3 and T1, we
conclude that G−v5v6 ∈ T. Thus by Lemma 4, γ2(G−v5v6) = |S(G−v5v6)|
and by Lemma 5, γ(G− v5v6) = γ2(G− v5v6).

Let D be a γ2(G)-set. Since G is obtained from T and C6 by identifying
v1 with a support vertex of T and γ2(T ) = |S(T )|, |D| ≥ |S(T )|. Denote
by x a leaf adjacent to v1 in G. Then there exists a vertex y such that y ∈
N2

G[x]∩D. In any choice of y, at least one vertex belonging to {v1, . . . , v6}−
{y} belongs also to D (because D is 2-distance dominating). Thus |D| ≥
|S(T )| + 1. On the other hand, S(G) ∪ {v4} is a 2-distance dominating set
of G of cardinality |S(G)| + 1. Thus

|S(G)| + 1 = γ2(G) ≤ γ(G) ≤ γ(G− v5v6)

= γ2(G− v5v6) = |S(G− v5v6)|.
(1)

Since |S(G)| = |S(G−v5v6)|−1, we have equalities throughout the inequality
chain (1). In particular, γ2(G) = γ(G).

Lemma 10. If G is a graph obtained from a tree T belonging to the family
T by adding an edge between two active vertices of T , then γ(G) = γ2(G).

Proof. Let T be a tree belonging to the family T. Denote by u and v two
active vertices of T and let D be a γ2(G)-set, where G = T +uv. If u and v
are leaves adjacent to the same support vertex, then the result follows from
Lemma 8.

Thus assume u and v are adjacent to different support vertices of T or
at most one of u and v is a leaf. In both cases, S(T ) = S(G) and similarly
like in T , the distance between any two leaves adjacent to different support
vertices in G is greater than or equal to 5. For this reason, if u and v
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are two leaves adjacent to different support vertices in G, then u and v
cannot be 2-distance dominated by the same element of D. This implies
that γ2(G) ≥ |S(G)|. Hence

|S(G)| ≤ γ2(G) ≤ γ(G) ≤ γ(T ) = γ2(T ) = |S(T )| = |S(G)|.

Therefore γ(G) = γ2(G).

For a cycle Cn on n ≥ 3 vertices it is no problem to see that γ(Cn) = ⌈n
3
⌉

and γ2(Cn) = ⌈n
5
⌉.

Lemma 11. If G is a connected unicyclic graph with γ(G) = γ2(G), then
G belongs to the family C.

Proof. Let G be a unicyclic graph, where Ck = (v1, . . . , vk, v1) is the unique
cycle of G. If dG(vi) > 2 for some vi ∈ V (Ck), then let T (vi) be the tree
attached to the vertex vi and let vi be the root of T (vi). Let D be a minimum
dominating set of G containing all support vertices of G.

By Proposition 1, at most ⌊k
3
⌋ vertices of Ck belong to D and the dis-

tance between any two elements of D is at least 3. Thus there exists an
edge, without loss of generality say v2v3 (where v2, v3 ∈ V (Ck)), such that
v2 /∈ D and v3 /∈ D. Note that neither v2 nor v3 is a support vertex. Since G
is unicyclic and connected, G−v2v3 is a tree. Moreover, by our assumptions
and some immediate properties of the domination number of a graph,

γ(G) = γ2(G) ≤ γ2(G− v2v3) ≤ γ(G− v2v3). (2)

However, since v2, v3 /∈ D, D is also a dominating set in G−v2v3. Therefore,
γ(G) = γ(G − v2v3) and thus we have equalities throughout the inequality
chain (2). In particular, γ2(G − v2v3) = γ(G − v2v3) and since G − v2v3
is a tree, Theorem 7 implies that G − v2v3 belongs to the family T. By
Obsevation 3, each vertex of G− v2v3 is a support vertex or is a neighbour
of exactly one support vertex. Of course v2, v3 /∈ S(G − v2v3). Hence
denote by s2 and s3 the support vertices adjacent in G− v2v3 to v2 and v3,
respectively. Observe that s2 and s3 may not be support vertices in G.

If s2 = s3, then v1 = s2. If v1 is a support vertex in G, then G
may be obtained from the tree G − v2v3 by adding an edge between two
active vertices adjacent to the same support vertex and thus G ∈ C. If
v1 /∈ S(G), then at least one of v2, v3 is of degree 2 in G. Assume first
dG(v2) = dG(v3) = 2. Then v2 and v3 are leaves in G − v2v3 and for
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this reason G again may be obtained from the tree G − v2v3 by adding an
edge between two active vertices. Thus assume, without loss of generality,
dG(v2) = 2 and dG(v3) ≥ 3. Observe that since v1 /∈ S(G), every element of
V (G) − {v1, v2} is within distance 2 from a vertex belonging to D − {v1}.
Thus, D − {v1} 2-distance dominates V (G) − {v1, v2}. Denote by x an
element of D ∩V (T (v3)), which is at distance 3 from v1 and let (x, y, v3, v1)
be the shortest path from x to v1. Define D′ = (D − {x, v1}) ∪ {y}. Now
every element of V (G) is within distance 2 from an element of D′, so D′ is
a 2-distance dominating set of G smaller than γ(G), which contradicts that
γ(G) = γ2(G).

In what follows we assume s2 6= s3 and we consider three cases.

1. If s2 ∈ S(G) and s3 ∈ S(G), then v2 and v3 are both active vertices
in G− v2v3. Therefore G may be obtained from the tree G− v2v3 by adding
the edge v2v3 and thus G belongs to the family C.

2. Without loss of generality, assume that s2 /∈ S(G) and s3 ∈ S(G).
Then v2 is the unique leaf adjacent to s2 in G− v2v3. Therefore dG(v2) = 2
and s2 = v1. Observe, that since v1 /∈ S(G), each element of V (G) −{v1} is
within distance 2 from an element of D − {v1}. Thus, D − {v1} 2-distance
dominates V (G) − {v1}.

If dG(v1) ≥ 3, then since v1 is not a support vertex in G, D ∩ V (T (v1))
6= ∅. Denote by x an element of D ∩ V (T (v1)), which is at distance 3 from
v1 and let (x, y, z, v1) be the shortest path from x to v1. Define D′ = (D −
{x, v1})∪{y}. It is no problem to see that D′ is a 2-distance dominating set
of G, which contradicts that γ(G) = γ2(G). We conclude that dG(v1) = 2.

If s3 6= v4, then dG(v3) ≥ 3. Define D′ = (D−{s3})∪{v3}. Then, since
dG(v1, v3) = 2, D′ − {v1} is a 2-distance dominating set of G, contradicting
that γ(G) = γ2(G). We conclude that s3 = v4 and since v4 is a support
vertex, dG(v4) ≥ 3 and v1 6= v4. Moreover, v5, v6 /∈ D and for this reason
v5, v6 /∈ S(G). Denote by v0 a vertex belonging to D and at distance 2 from
vk. If v0 6= vk, then (D − {v1, v4}) ∪ {v3} is a 2-distance dominating set of
G of smaller cardinality than γ(G), a contradiction. Therefore, v0 = v4 and
since dG(v4, vk) = 2 we obtain vk = v6.

We have already proven, that under our conditions dG(v1) = dG(v2) = 2
and v4 is a support vertex. Suppose dG(v6) ≥ 3. Then since v6 is not
a support vertex in G, D ∩ V (T (v6)) 6= ∅. Denote by x an element of
D ∩ V (T (v6)), which is at distance 3 from v1 and let (x, y, v6, v1) be the
shortest path from x to v1. Define D′ = (D − {x, v1}) ∪ {y}. Now D′ is
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a 2-distance dominating set of G, which contradicts that γ(G) = γ2(G).
Therefore dG(v6) = 2.

Suppose dG(v5) ≥ 3. Then since v5 is not a support vertex in G,
D ∩ V (T (v5)) 6= ∅. Denote by x an element of D ∩ V (T (v5)), which is
at distance 3 from v4 and let (x, y, v5, v4) be the shortest path from x to
v4. Define D′ = (D − {x, v1, v4}) ∪ {y, v3}. Now D′ is a 2-distance domina-
ting set of G, which contradicts that γ(G) = γ2(G). Therefore dG(v5) = 2.
Similarly we prove that dG(v3) = 2.

Therefore, dG(v1) = dG(v2) = dG(v3) = dG(v5) = dG(v6) = 2 and v4 is
a support vertex. Hence G may be obtained from a tree T and the cycle C6

by identifying one vertex of C6 with a support vertex of T . Clearly, D−{v1}
is a dominating set of T , so

γ2(T ) ≤ γ(T ) ≤ γ(G) − 1 = γ2(G) − 1. (3)

On the other hand, any 2-distance dominating set of T may be extended to a
dominating set of G by adding to it v1. Thus γ2(G) ≤ γ2(T )+1 and we have
equalities throught the inequality chain (3). In particular, γ2(T ) = γ(T ).
By Theorem 7, T belongs to the family T. Hence G may be obtained from
T ∈ T and the cycle C6 by identifying one vertex of C6 with a support vertex
of T . Thus G ∈ C

+
6

.

3. If s2 /∈ S(G) and s3 /∈ S(G), then dG(v2) = 2 and dG(v3) = 2.
Moreover, v1 = s2 and v4 = s3. Since v1 is not a support vertex, each
element of V (G) − {v1} is within distance 2 from an element of D − {v1}.
Thus, D−{v1} 2-distance dominates V (G) −{v1}. By the same reasoning,
D−{v4} 2-distance dominates V (G)−{v4}. Similarly as in previous case, we
deduce that dG(v1) = dG(v4) = 2. Since v1 6= v4, the unique cycle contains
at least 6 vertices, v5, v6 /∈ D and v5, v6 /∈ S(G).

If dG(v5) ≥ 3, then since v5 is not a support vertex, D ∩ V (T (v5)) 6= ∅.
Denote by x an element of D ∩ V (T (v5)), which is at distance 3 from v4
and let (x, y, v5, v4) be the shortest path from x to v4. Define D′ = (D −
{x, v4})∪{y}. Now D′ is a 2-distance dominating set of G, which contradicts
that γ(G) = γ2(G). Therefore dG(v5) = 2.

Since D is dominating, v6 has a neighbour in D. If there exists x ∈
NG(v6) ∩D such that x 6= v1, then (D − {v1, v4}) ∪ {v3} is a 2-distance do-
minating set of G, which contradicts that γ(G) = γ2(G). Thus we conclude
that {v1} = NG(v6)∩D. Therefore the unique cycle of G contains exactly 6
vertices. By similar reasoning as for v5, we obtain that dG(v6) = 2. Hence
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each vertex of the unique cycle is of degree 2 and G = C2. Therefore G
belongs to the family C.

The following results are consequences of Theorem 7 and Lemmas 9 and 11.

Theorem 12. Let G be a connected unicyclic graph. Then γ(G) = γ2(G)
if and only if G belongs to the family C.

Theorem 13. Let G be a unicyclic graph. Then γ(G) = γ2(G) if and only
if exactly one connected component of G is a unicyclic graph belonging to
the family C and each other connected compoment of G is a tree belonging
to the family T.
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