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Abstract

Let G = (V, E) be a graph. The distance between two vertices u
and v in a connected graph G is the length of the shortest (u—v) path
in G. A set D C V(G) is a dominating set if every vertex of G is at
distance at most 1 from an element of D. The domination number of G
is the minimum cardinality of a dominating set of G. A set D C V(QG)
is a 2-distance dominating set if every vertex of G is at distance at
most 2 from an element of D. The 2-distance domination number of
G is the minimum cardinality of a 2-distance dominating set of G. We
characterize all trees and all unicyclic graphs with equal domination
and 2-distance domination numbers.
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1. DEFINITIONS

Here we consider simple undirected graphs G = (V, E) with |V| = n(G).
The distance dg(u,v) between two vertices u and v in a connected graph G
is the length of a shortest (u — v) path in G. If D is a set and u € V(G),
then dg(u, D) = min{dg(u,v) : v € D}. The k-neighbourhood NE[v] of a
vertex v € V(G) is the set of all vertices at distance at most k from v. For
a set D C V, the k-neighbourhood NE[D] is defined to be (J,cp N&[v]. A
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subset D of V' is k-distance dominating in G if every vertex of V(G)—D is at
distance at most k from at least one vertex of D. Let v*(G) be the minimum
cardinality of a k-distance dominating set of G. This kind of domination was
defined by Borowiecki and Kuzak [1]. Note that the 1-distance domination
number is the domination number, denoted v(G).

The degree of a vertex v is dg(v) = |N&(v)| and a vertex of degree 1
is called a leaf. A vertex which is a neighbour of a leaf is called a support
vertez. Denote by S(G) the set of all support vertices of G. If a support
vertex is adjacent to more than one leaf, then we call it a strong support
vertez. We denote a path on n vertices by P, = (vg,...,v,—1) and the cycle
on n vertices by C,. For example, P, contains two leaves and two support
vertices. For any unexplained terms and symbols see [2].

In this paper we study trees and unicyclic graphs for which the domi-
nation number and the 2-distance domination number are the same.

2. GENERAL RESULTS

First we give some general results for graphs with equal domination and 2-
distance domination numbers. Obviously, for any graph G if v(G) = 1, then
7?(G) = 1 and thus v(G) = v?(G). We start with a necessary condition for
a graph G with 1 < v(G) = +*(G). A set D C V(G) is a 2-packing in G if
dg(u,v) > 3 for every u,v € D.

Proposition 1. If G is a connected graph with v(G) = v*(G) and v(G) > 1,
then every minimum dominating set of G is a 2-packing of G.

Proof. Suppose D is a minimum dominating set of G such that |D| > 2 and
D is not a 2-packing. Then there exist u,v € D in G such that dg(u,v) < 2.
Denote by x a vertex which belongs to Ng[u]NNg[v] (if u and v are adjacent,
then possibly * = w or x = v) and let D' = (D — {u,v}) U {x}. Then
Nglu] € Ni[z] and Ng[v] € NZ[z]. Hence D' is a 2-distance dominating
set of G of smaller cardinality than «(G), a contradiction. |

The condition in Proposition 1 it not sufficient. Consider, for example the
cycle Cy. Next result gives a sufficient condition for a graph G to have equal
domination and 2-distance domination numbers.

Proposition 2. Let G be the graph obtained from a graph H and n(H)
copies of Ps, where the ith vertex of H is adjacent to exactly one vertex of

the ith copy of Po. Then v(G) = v*(G).
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Proof. Let G be the graph obtained from a graph H and n(H) copies of P,
where the ith vertex of H is adjacent to exactly one vertex of the ith copy
of P,. Denote by D a 7?(G)-set. Observe that the distance between any
two leaves adjacent to two different support vertices in G is greater than
or equal to 5. For this reason, if u and v are two leaves adjacent to two
different support vertices, then u and v cannot be 2-dominated by the same
element of D. This implies that v2(G) > |S(G)|. Since v*(G) < 7(G), it
follows that v(G) = v2(G). ]

3. TREES

In what follows, we constructively characterize all trees T" for which v(T") =

v(T).

Let T be the family of all trees T that can be obtained from sequence
Ti,...,T; (j > 1) of trees such that T} is the path P, and T' = T}, and, if
j > 1, then T;y1 can be obtained recursively from T; by the operation 77,
Ty or T3:

e Operation T;. The tree T;11 is obtained from T; by adding a vertex x;
and the edge x1y where y € V(T;) is a support vertex of T;.

e Operation T,. The tree T;;1 is obtained from T; by adding a path
(x1,x2,23) and the edge x1y where y € V(T;) is neither a leaf nor a
support vertex in T;.

e Operation T3. The tree T;; is obtained from T; by adding a path (x1,
x9,x3,24) and the edge z1y where y € V(T;) is a support vertex in T;.

Additionally, let P, belong to 7.
The following observation follows immediately from the way in which
each tree in the family T is constructed.

Observation 3. If a tree T belonging to the family T has at least 2 vertices,

then:

1. If u,v € S(T), then dr(u,v) > 3, that is, if u,v € S(T'), then S(T) is a
2-packing in T;

2. Ifue V(T), then |[Nplul|NS(T)| = 1;

3. S(T) is a minimum dominating set of T'. ]

We show first that each tree T belonging to the family T is a tree with
y(T) = ~+2(T). To this aim we prove the following lemma.
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Lemma 4. If a tree T of order at least 2 belongs to the family T, then
yH(T) = [S(T)].

Proof. Let T be a tree belonging to the family T and let D be a 72(T)-
set. Since S(T) is a 2-packing in T, the distance between any two leaves
adjacent to different support vertices is greater than or equal to 5. For this
reason, if u and v are two leaves adjacent to different support vertices in T,
then u and v cannot be 2-distance dominated by the same element of D.
This implies that |D| > |S|. On the other hand, since S(T") is a dominating
set of T, it is also a 2-distance dominating set of 7. We conclude that
22(T) = |S(T)]. .

By Lemma 4 and Observation 3 we obtain immediately.
Corollary 5. If a tree T belongs to the family T, then v(T) = v(T).

Before we prove our next Lemma, observe that for any tree T with at least 3
vertices, v(T') > |S(T)|.

Lemma 6. If T is a tree with v*(T) = ~(T), then T belongs to the family T.

Proof. Let T be a tree with v2(T) = v(T'). Let (vg,v1,...,v;) be a longest
path in T'. If k € {1,2}, then T is P or a star K j, for a positive integer p,
and clearly T is in 7.

If k € {3,4}, then 42(T) = 1, but v(T) > 1. For this reason now we
assume k > 5. We proceed by induction on the number n(7T') of vertices of
a tree T with v2(T') = y(T). If n(T) = 6, then T = P5 and T belongs to the
family T. (Observe that Ps may be obtained from P, by operation T3). Now
let T be a tree with v2(T') = v(T) and n(T) > 7, and assume that each tree
T’ with n(T") < n(T), k > 5 and v*(T") = «(T") belongs to the family 7.

If there exists v € S(T) such that v is adjacent to at least two leaves, say
r1 and z2, then clearly v(T") = v(T) and v*(T") = (T, where T' = T—x.
Thus, v2(T") = v(T") and by the induction, 7" belongs to the family 7.
Moreover, T may be obtained from 7" by operation J; and we conclude
that T" also belongs to the family 7.

Now assume that each support vertex of T is adjacent to exactly one
leaf. For this reason dr(v1) = 2. If dr(vy) > 2, then vy is adjacent to a leaf
or |Np(ve) NS(T)| > 2. In both cases vy 2-distance dominates all support
vertices and leaves at distance at most 2 from vy, while v(7') > |S(T)].
Hence ~(T) > +2(T), which is impossible. Thus, dr(vs) = 2.
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Observe that either vy or v; is in every minimum dominating set of 7.
Assume dr(vs) > 2. If v belongs to some minimum dominating set of T,
say D, then (D U{v2}) — {vo,v1,v3} is a 2-distance dominating set of 7" of
cardinality smaller than v(7"), which is impossible. Hence v3 does not belong
to any minimum dominating set of 7" and this reason together with n(7") > 7
imply that vs is not a support vertex of T. Denote T' = T — {vg, v1,v2}.
Since dr(vs) > 2, v3 is not a leaf in 7" and since k > 5, v is not a support
vertex in 7”. Moreover, it is no problem to verify that v(7") = v(T) — 1 and
Y2(T") > ~*(T) — 1. Hence

PT) =1 <AHT) <AT) =A(T) = 1=7*T) - 1.

Thus, v2(T") = v(T") and by the induction, 7" belongs to the family 7.
Moreover, T" may be obtained from 7" by operation T5 and we conclude
that T also belongs to the family 7.

Thus assume dp(v1) = dr(v2) = dr(vs) = 2. Without loss of gener-
ality, denote by D a minimum dominating set of T' containing v;. In this
situation wvo,v3 or vy belong to D to dominate vs. If vy or v is in D, then
D' = (DU{vy}) — {v1,v3} is a 2-distance dominating set of T' of cardinal-
ity smaller than (7"), which is impossible. Hence vy € D. Observe that
D', defined as above, 2-distance dominates v4. Moreover, if w is a neigh-
bour of vy and dp(w,D — {vs}) < 2, then w is 2-distance dominated by
D’ and again v2(T") < (7). Thus vy has a neighbour, say u, such that
dr(u, D —{vs}) > 3. Since T is a tree and each neighbour of u is dominated
by D, we conclude that u is a leaf and for this reason vy is a support vertex.
Denote T" = T — {wg,v1,v2,v4}. Since u is a leaf in 7", vy is a support
vertex in 7”. Moreover, it is no problem to verify that v(T") + 1 = (7).
Further, since dr(u,vg) = 5, ¥2(T') + 1 = ~*(T). Thus, v*(T") = (T")
and by the induction, 7”7 belongs to the family T. Moreover, T' may be ob-
tained from 7" by operation T3 and we conclude that T also belongs to the
family 7. [

The following Theorem is an immediate consequence of Lemma 6 and Corol-
lary 5.

Theorem 7. Let T be a tree. Then v(T) = ~*(T) if and only if T belongs
to the family 7. [ |
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4. UNI1cycLiC GRAPHS

A unicyclic graph is a graph that contains precisely one cycle. Our next
results consider graphs with cycles.

Lemma 8. Let G be a connected graph with v(G) = v*(G). If u,v are two
leaves of G adjacent to the same support verter, then v(G+uv) = v*(G+uv).

Proof. Let G be a connected graph with v(G) = v(G) and let u,v be two
leaves of G such that dg(u,v) = 2 and let w be the neighbour of v and v. By
our assumptions and some immediate properties of the domination number
of a graph,

V4G + uv) < y(G +uv) < 4(G) = ¥*(G).

Hence it suffices to justify that v*(G + uv) > v*(G). Clearly, N&_,, [2] =
NZ[z] for each z € V(G). Thus, every minimum 2-distance dominating set
of G + wv is also a minimum 2-distance dominating set of G. Therefore,
Y2(G + uv) > v%(G) and hence (G + uv) = v*(G + uv). ]

By Theorem 7 and recursively using Lemma 8 we may obtain graphs G with
7(G) = 7?(G) and containing any number of induced cycles C3.

Now we characterize all connected unicyclic graphs G with y(G) =
7?(@). To this aim we introduce some additional notations. Let T be a tree
belonging to the family T. We call v € V(T') an active vertez, if v is a leaf
adjacent to a strong support vertex or v € V(T') — (S(T) UQ(T')). Further,
let @g be the family of all unicyclic graphs that may be obtained from a
tree T' belonging to the family T and the cycle Cg by identifying one vertex
of Cg with a support vertex of T'. In addition, let Cg belong to Gér.

Define € to be the family of all unicyclic graphs that belong to Gg or
may be obtained from a tree T' belonging to the family T by adding an edge
between two active vertices of T

The following two lemmas prove that v(G) = v2(G) for every graph G
belonging to the family C.

Lemma 9. Fach graph belonging to the family Gg has equal domination
and 2-distance domination numbers.

Proof. Let G € Cf. Obviously v(Cs) = 7*(Cs). Thus let G be obtained
from a tree T' belonging to the family T and the cycle Cgs = (v1,...,vg,v1)
by identifying the vertex v; with a support vertex of T
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Figure 1. Graph G € €. {vo,v1,v4} is the y(G)-set.

Since G is unicyclic and connected, G — vsvg is a tree. It is no problem to
observe, that G —vsvg may be obtained from T by adding to T first the path
Py = (v9,v3,v4,v5) and the edge vjvy, and then vg and the edge vivg. Since
T € T and G — vsvg may be obtained from T by operations T3 and T, we
conclude that G —vsvg € T. Thus by Lemma 4, v2(G —vsvg) = |S(G —v5vg)|
and by Lemma 5, v(G — vsvg) = v*(G — vsvg).

Let D be a v2(G)-set. Since G is obtained from T and Cg by identifying
v1 with a support vertex of T and *(T) = |S(T)|, |D| > |S(T)|. Denote
by z a leaf adjacent to v; in G. Then there exists a vertex y such that y €
NZ[z]ND. In any choice of y, at least one vertex belonging to {v1,...,ve} —
{y} belongs also to D (because D is 2-distance dominating). Thus |D| >
|S(T)| + 1. On the other hand, S(G) U {v4} is a 2-distance dominating set
of G of cardinality |S(G)|+ 1. Thus

1S(@)]+1 =9*G) <(G) < (G — vsv6)

2 )
=7%(G = vsv6) = |S(G = v3v5)|.
Since |S(G)| = \S(G—Us’UGg

—1, we have equalities throughout the inequality
chain (1). In particular, v*(G)

|
(GQ) =~v(G). |

Lemma 10. If G is a graph obtained from a tree T belonging to the family
T by adding an edge between two active vertices of T, then v(G) = v*(G).

Proof. Let T be a tree belonging to the family J. Denote by u and v two
active vertices of 7' and let D be a v%(G)-set, where G = T'+ uv. If v and v
are leaves adjacent to the same support vertex, then the result follows from
Lemma 8.

Thus assume u and v are adjacent to different support vertices of T' or
at most one of u and v is a leaf. In both cases, S(T") = S(G) and similarly
like in T, the distance between any two leaves adjacent to different support
vertices in G is greater than or equal to 5. For this reason, if u and v



382 J. RACZEK

are two leaves adjacent to different support vertices in G, then u and v
cannot be 2-distance dominated by the same element of D. This implies
that v2(G) > |S(G)|. Hence

S(G)] <7*(G) < 7(G) <A(T) =~*(T) = |S(T)] = S(G)].
Therefore v(G) = v2(G). ]

|

For a cycle C,, on n > 3 vertices it is no problem to see that v(C),) = [
and vz(Cn) = [%]

|3

Lemma 11. If G is a connected unicyclic graph with v(G) = v*(G), then
G belongs to the family C.

Proof. Let G be a unicyclic graph, where Cy, = (v1, ..., v, v1) is the unique
cycle of G. If dg(v;) > 2 for some v; € V(Cy), then let T'(v;) be the tree
attached to the vertex v; and let v; be the root of T'(v;). Let D be a minimum
dominating set of G' containing all support vertices of G.

By Proposition 1, at most L%J vertices of Cj belong to D and the dis-
tance between any two elements of D is at least 3. Thus there exists an
edge, without loss of generality say vovs (where vo,v3 € V(Cy)), such that
vy ¢ D and vz ¢ D. Note that neither vy nor vs is a support vertex. Since G
is unicyclic and connected, G —vous is a tree. Moreover, by our assumptions
and some immediate properties of the domination number of a graph,

1(G) = 7(G) < 7*(G — vav3) < 4(G — vavs). (2)

However, since vo,v3 ¢ D, D is also a dominating set in G —vovs. Therefore,
v(G) = 7(G — vav3) and thus we have equalities throughout the inequality
chain (2). In particular, 7?(G — vav3) = (G — vav3) and since G' — vov3
is a tree, Theorem 7 implies that G — vovs belongs to the family T. By
Obsevation 3, each vertex of G — v9v3 is a support vertex or is a neighbour
of exactly one support vertex. Of course ve,v3 ¢ S(G — wvovs). Hence
denote by so and s3 the support vertices adjacent in G — vovs to vo and vs,
respectively. Observe that so and s3 may not be support vertices in G.

If so = s3, then v1 = s9. If v is a support vertex in G, then G
may be obtained from the tree G — vov3 by adding an edge between two
active vertices adjacent to the same support vertex and thus G € C. If
v ¢ S(G), then at least one of vo,v3 is of degree 2 in G. Assume first
dg(v2) = dg(vs) = 2. Then vy and vs are leaves in G — vyvs and for
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this reason G again may be obtained from the tree G — vovs by adding an
edge between two active vertices. Thus assume, without loss of generality,
da(v2) = 2 and dg(v3) > 3. Observe that since vy ¢ S(G), every element of
V(G) — {v1,va} is within distance 2 from a vertex belonging to D — {v}.
Thus, D — {v;} 2-distance dominates V(G) — {v1,v2}. Denote by = an
element of DNV (T'(v3)), which is at distance 3 from v; and let (x,y,vs,v;)
be the shortest path from x to v;. Define D' = (D — {z,v1}) U {y}. Now
every element of V(@) is within distance 2 from an element of D', so D’ is
a 2-distance dominating set of G smaller than «(G), which contradicts that
1G) =7*(G).

In what follows we assume s2 # s3 and we consider three cases.

1. If s3 € S(G) and s3 € S(G), then vy and v3 are both active vertices
in G — vyus. Therefore G may be obtained from the tree G — vyv3 by adding
the edge vovg and thus G belongs to the family C.

2. Without loss of generality, assume that sy ¢ S(G) and s3 € S(G).
Then vs is the unique leaf adjacent to se in G — vyvs. Therefore dg(vy) = 2
and sy = v;. Observe, that since v; ¢ S(G), each element of V(G) — {v1} is
within distance 2 from an element of D — {v;}. Thus, D — {v;} 2-distance
dominates V(G) — {v1 }.

If dg(v1) > 3, then since vy is not a support vertex in G, DNV (T (v1))
# (). Denote by x an element of D NV (T (v1)), which is at distance 3 from
vy and let (x,y, z,v1) be the shortest path from x to v. Define D' = (D —
{z,v11})U{y}. It is no problem to see that D’ is a 2-distance dominating set
of G, which contradicts that v(G) = 4?(G). We conclude that dg(v;) = 2.

If s3 # vy, then dg(vs) > 3. Define D' = (D — {s3}) U{v3}. Then, since
dg(v1,v3) =2, D' —{v1} is a 2-distance dominating set of G, contradicting
that v(G) = v2(G). We conclude that s3 = v4 and since vy is a support
vertex, dg(v4) > 3 and vy # vg. Moreover, vs,v6 ¢ D and for this reason
vs,v6 ¢ S(G). Denote by vy a vertex belonging to D and at distance 2 from
vg. If vo # vg, then (D — {v1,v4}) U{vs} is a 2-distance dominating set of
G of smaller cardinality than v(G), a contradiction. Therefore, vy = v4 and
since dg(vy, v) = 2 we obtain v = vg.

We have already proven, that under our conditions dg(v1) = dg(v2) = 2
and vy is a support vertex. Suppose dg(vg) > 3. Then since vg is not
a support vertex in G, D NV (T(vg)) # 0. Denote by x an element of
D NV (T(vs)), which is at distance 3 from v; and let (z,y,vg,v1) be the
shortest path from z to v;. Define D' = (D — {z,v1}) U{y}. Now D' is
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a 2-distance dominating set of G, which contradicts that v(G) = +*(G).
Therefore dg(vg) = 2.

Suppose dg(vs) > 3. Then since vs is not a support vertex in G,
DNV (T(vs)) # 0. Denote by z an element of D N V(T(vs)), which is
at distance 3 from vy and let (z,y,vs,vs4) be the shortest path from x to
vg. Define D' = (D — {z,v1,v4}) U{y,v3}. Now D’ is a 2-distance domina-
ting set of G, which contradicts that v(G) = v2(G). Therefore dg(vs) = 2.
Similarly we prove that dg(vs) = 2.

Therefore, dg(v1) = dg(v2) = dg(vs) = dg(vs) = da(ve) = 2 and vy is
a support vertex. Hence G may be obtained from a tree T" and the cycle Cg
by identifying one vertex of Cg with a support vertex of T'. Clearly, D — {v; }
is a dominating set of T, so

V(T) <4(T) £7(G) = 1=7*G) — 1. (3)

On the other hand, any 2-distance dominating set of 7' may be extended to a
dominating set of G by adding to it v;. Thus 42(G) < v*(T)+1 and we have
equalities throught the inequality chain (3). In particular, v2(T) = ~(T).
By Theorem 7, T belongs to the family T. Hence G may be obtained from
T € T and the cycle Cg by identifying one vertex of Cg with a support vertex
of T. Thus G € €F.

3. If s ¢ S(G) and s3 ¢ S(G), then dg(v2) = 2 and dg(vs) = 2.
Moreover, v1 = s9 and v4 = s3. Since vy is not a support vertex, each
element of V(G) — {v1} is within distance 2 from an element of D — {v;}.
Thus, D — {v1} 2-distance dominates V(G) — {v;}. By the same reasoning,
D —{v,} 2-distance dominates V(G)—{v4}. Similarly as in previous case, we
deduce that dg(v1) = dg(vs) = 2. Since v # vy, the unique cycle contains
at least 6 vertices, vs,vg ¢ D and vs,vg ¢ S(G).

If d(vs) > 3, then since vy is not a support vertex, D NV (T (vs)) # 0.
Denote by z an element of D N V(T(vs)), which is at distance 3 from vy
and let (x,y,vs,v4) be the shortest path from z to vy. Define D' = (D —
{z,v4})U{y}. Now D’ is a 2-distance dominating set of G, which contradicts
that v(G) = 7?(G). Therefore dg(vs) = 2.

Since D is dominating, vg has a neighbour in D. If there exists = €
N¢(vg) N D such that x # vy, then (D — {vy,v4}) U{vs} is a 2-distance do-
minating set of G, which contradicts that v(G) = 7?(G). Thus we conclude
that {v1} = Ng(ve) N D. Therefore the unique cycle of G contains exactly 6
vertices. By similar reasoning as for vs, we obtain that dg(vg) = 2. Hence
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each vertex of the unique cycle is of degree 2 and G = Cs. Therefore G
belongs to the family C. [

The following results are consequences of Theorem 7 and Lemmas 9 and 11.

Theorem 12. Let G be a connected unicyclic graph. Then v(G) = 7?(Q)
if and only if G belongs to the family C. [

Theorem 13. Let G be a unicyclic graph. Then v(G) = 7*(G) if and only
if exactly one connected component of G is a unicyclic graph belonging to
the family C and each other connected compoment of G is a tree belonging
to the family 7. [
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