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Abstract

An edge coloring of a graph G with colors 1, 2, . . . , t is called an
interval t-coloring if for each i ∈ {1, 2, . . . , t} there is at least one edge
of G colored by i, and the colors of edges incident to any vertex of
G are distinct and form an interval of integers. A graph G is interval
colorable, if there is an integer t ≥ 1 for which G has an interval
t-coloring. Let N be the set of all interval colorable graphs. In 2004
Kubale and Giaro showed that if G,H ∈ N, then the Cartesian product
of these graphs belongs to N. Also, they formulated a similar problem
for the lexicographic product as an open problem. In this paper we first
show that if G ∈ N, then G[nK1] ∈ N for any n ∈ N. Furthermore,
we show that if G,H ∈ N and H is a regular graph, then strong and
lexicographic products of graphs G,H belong to N. We also prove
that tensor and strong tensor products of graphs G,H belong to N if
G ∈ N and H is a regular graph.
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1. Introduction

An edge coloring of a graph G with colors 1, 2, . . . , t is called an interval t-
coloring if for each i ∈ {1, 2, . . . , t} there is at least one edge of G colored by
i, and the colors of edges incident to any vertex of G are distinct and form
an interval of integers. Interval edge colorings naturally arise in scheduling
problems and are related to the problem of constructing timetables without
“gaps”for teachers and classes. The notion of interval edge colorings was
introduced by Asratian and Kamalian [1] in 1987. In [1] they proved that
if a triangle-free graph G = (V,E) has an interval t-coloring, then t ≤
|V |−1. In [19] interval edge colorings of complete bipartite graphs and trees
were investigated. Furthermore, Kamalian [20] showed that if G admits an
interval t-coloring, then t ≤ 2 |V | − 3. Giaro, Kubale and Ma lafiejski [12]
proved that this upper bound can be improved to 2 |V | − 4 if |V | ≥ 3. For a
planar graph G, Axenovich [5] showed that if G has an interval t-coloring,
then t ≤ 11

6 |V |. In general, it is an NP -complete problem to decide whether
a given bipartite graph G admits an interval edge coloring [35]. In papers
[2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 29, 30, 32, 34]
the problem of existence and construction of interval edge colorings was
considered and some bounds for the number of colors in such colorings of
some classes of graphs were given. Surveys on this topic can be found in
some books [3, 18, 25].

The different products of graphs were introduced by Berge [6], Sabidussi
[33] and Vizing [36]. There are many papers [17, 24, 26, 27, 28, 31, 38]
devoted to edge colorings of various products of graphs. In this paper we
investigate interval edge colorings of various products of graphs.

2. Definitions and Preliminary Results

All graphs considered in this paper are finite, undirected and have no loops
or multiple edges. Let V (G) and E(G) denote the sets of vertices and edges
of G, respectively. The maximum degree of a vertex of G is denoted by
∆(G) and the chromatic index of G by χ′(G). A partial edge coloring of
G is a coloring of some of the edges of G such that no two adjacent edges
receive the same color. If α is a partial edge coloring of G and v ∈ V (G)
then S (v, α) denotes the set of colors of colored edges incident to v.

A graph G is interval colorable, if there is an integer t ≥ 1, for which G
has an interval t-coloring. Let N be the set of all interval colorable graphs
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[1, 20]. For a graph G ∈ N, the least and the greatest values of t for which
G has an interval t-coloring are denoted by w(G) and W (G), respectively.

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs.
The Cartesian product G�H is defined as follows:

V (G�H) = V (G) × V (H), E(G�H) = {((u1, v1), (u2, v2))|

u1 = u2 and (v1, v2) ∈ E(H) or v1 = v2 and (u1, u2) ∈ E(G)}.

The tensor (direct) product G×H is defined as follows:

V (G×H) = V (G) × V (H),

E(G×H) = {((u1, v1), (u2, v2))| (u1, u2) ∈ E(G) and (v1, v2) ∈ E(H)}.

The strong tensor (semistrong) product G⊗H is defined as follows:

V (G⊗H) = V (G) × V (H), E(G ⊗H) = {((u1, v1), (u2, v2))|

(u1, u2) ∈ E(G) and (v1, v2) ∈ E(H) or v1 = v2 and (u1, u2) ∈ E(G)}.

The strong product G⊠H is defined as follows:

V (G⊠H) = V (G) × V (H),

E(G ⊠H) = {((u1, v1), (u2, v2))| (u1, u2) ∈ E(G)

and (v1, v2) ∈ E(H) or u1 = u2

and (v1, v2) ∈ E(H) or v1 = v2 and (u1, u2) ∈ E(G)}.

The lexicographic product (composition) G[H] is defined as follows:

V (G[H]) = V (G) × V (H),

E(G[H]) = {((u1, v1), (u2, v2))| (u1, u2) ∈ E(G)

or u1 = u2 and (v1, v2) ∈ E(H)}.

The terms and concepts that we do not define can be found in [37].
Asratian and Kamalian proved the following:

Theorem 1 [1]. Let G be a regular graph. Then

(1) G ∈ N if and only if χ′(G) = ∆(G).

(2) If G ∈ N and ∆(G) ≤ t ≤W (G), then G has an interval t-coloring.

Corollary 2. If G is an r-regular bipartite graph, then G ∈ N and w(G) = r.
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Kubale and Giaro proved the following:

Theorem 3 [25]. If G,H ∈ N, then G�H ∈ N. Moreover, w(G�H) ≤
w(G) + w(H) and W (G�H) ≥W (G) +W (H).

The k-dimensional grid G(n1, n2, . . . , nk), ni ∈ N is the Cartesian product of
paths Pn1

�Pn2
� · · ·�Pnk

. The cylinder C(n1, n2) is the Cartesian product
Pn1

�Cn2
and the torus T (n1, n2) is the Cartesian product Cn1

�Cn2
, where

Cni
is the cycle of length ni. For these graphs Kubale and Giaro proved the

following:

Theorem 4 [10]. If G = G(n1, n2, . . . , nk) or G = C(m, 2n), m ∈ N,

n ≥ 2, or G = T (2m, 2n), m,n ≥ 2, then G ∈ N and w(G) = ∆(G).

For the greatest possible number of colors in interval edge colorings of grid
graphs Petrosyan and Karapetyan proved the following theorems:

Theorem 5 [29]. If G = C(m, 2n), m ∈ N, n ≥ 2, then

W (G) ≥ 3m + n− 2.

Theorem 6 [29]. If G = T (2m, 2n), m,n ≥ 2, then

W (G) ≥ max{3m + n, 3n+m}.

In [30] Petrosyan investigated interval edge colorings of complete graphs and
n-dimensional cubes Qn. In particular, he proved the following theorems:

Theorem 7. W (Qn) ≥ n(n+1)
2 for any n ∈ N.

Theorem 8. Let n = p2q, where p is odd and q is nonnegative. Then

W (K2n) ≥ 4n− 2 − p− q.

The Hamming graph H(n1, n2, . . . , nk), ni ∈ N is the Cartesian product
of complete graphs Kn1

�Kn2
� · · ·�Knk

. The graph Hk
n is the Cartesian

product of the complete graph Kn by itself k times. It is easy to see that
from Theorems 1, 3 and 8, we have the following result:

Theorem 9. Let n = p2q, where p is odd and q is nonnegative. Then

(1) Hk
2n ∈ N,
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(2) w(Hk
2n) = (2n− 1)k,

(3) W (Hk
2n) ≥ (4n− 2 − p− q)k.

It is known that there are graphs G and H for which G�H ∈ N (G[H] ∈ N),
but G ∈ N, H /∈ N or G,H /∈ N. For example, K2�C3 ∈ N and K1,1,3�C3 ∈
N (K2[C5] ∈ N and C5[P ] ∈ N), but K1,1,3, C3 /∈ N (P,C5 /∈ N, where P
is the Petersen graph). Moreover, general results can be obtained from the
following theorems:

Theorem 10 (Kotzig [24], Pisanski, Shawe-Taylor, Mohar [31]). If G and

H are two regular graphs for which at least one of the following conditions

holds:

(1) G and H contain a perfect matching,

(2) χ′(G) = ∆(G),

(3) χ′(H) = ∆(H),

then χ′(G�H) = ∆(G�H) and χ′(G[H]) = ∆(G[H]).

Theorem 11 (Kotzig [24], Pisanski, Shawe-Taylor, Mohar [31]). Let G be

a cubic graph. Then χ′(G�Cn) = ∆(G�Cn) = 5 and χ′(Cn[G]) = ∆(Cn[G])
for any n ≥ 4.

Corollary 12. If G and H are two regular graphs for which at least one of

the following conditions holds:

(1) G and H contain a perfect matching,

(2) G ∈ N,

(3) H ∈ N,

then G�H,G[H] ∈ N and w(G�H) = ∆(G�H), w(G[H]) = ∆(G[H]).

Corollary 13. Let G be a cubic graph. Then G�Cn, Cn[G] ∈ N and

w(G�Cn) = ∆(G�Cn) = 5, w(Cn[G]) = ∆(Cn[G]) for any n ≥ 4.

Theorem 14. The torus T (n1, n2) ∈ N if n1 · n2 is even, T (n1, n2) /∈ N if

n1 · n2 is odd and the Hamming graph H(n1, n2, . . . , nk) ∈ N if n1 · n2 · · ·nk
is even, H(n1, n2, . . . , nk) /∈ N if n1 · n2 · · ·nk is odd.

Proof. Since T (n1, n2) and H(n1, n2, . . . , nk) are regular graphs, by The-
orem 1 and Corollary 12, we have T (n1, n2) ∈ N when n1 · n2 is even and
H(n1, n2, . . . , nk) ∈ N when n1 · n2 · · ·nk is even.
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Let us show that T (n1, n2) /∈ N when n1 · n2 is odd and H(n1, n2, . . . , nk)
/∈ N when n1 · n2 · · · nk is odd.

Since T (n1, n2) and H(n1, n2, . . . , nk) are regular graphs, we have

|E(T (n1, n2))| = 2n1 · n2 and

|E(H(n1, n2, . . . , nk))| =
n1 · n2 · · ·nk · ∆(H(n1, n2, . . . , nk))

2
.

If χ′(T (n1, n2)) = ∆(T (n1, n2)) = 4, then

|E(T (n1, n2))| ≤ 2(n1 · n2 − 1), since n1 · n2 is odd.

This shows that χ′(T (n1, n2)) = ∆(T (n1, n2)) + 1 = 5 and, by Theorem 1,
T (n1, n2) /∈ N.

Similarly, if χ′(H(n1, n2, . . . , nk)) = ∆(H(n1, n2, . . . , nk)), then

|E(H(n1, n2, . . . , nk))| ≤
(n1 · n2 · · · nk − 1) · ∆(H(n1, n2, . . . , nk))

2
,

since n1 · n2 · · ·nk is odd.
This shows that χ′(H(n1, n2, . . . , nk)) = ∆(H(n1, n2, . . . , nk)) + 1 and,

by Theorem 1, H(n1, n2, . . . , nk) /∈ N.

3. Main Results

First, we consider interval edge colorings of the tensor product of graphs.
In [25] Kubale and Giaro noted that there are graphs G,H ∈ N, such that
G×H /∈ N. Here, we prove that if one of the graphs belongs to N and the
other is regular, then G×H ∈ N.

Theorem 15. If G ∈ N and H is an r-regular graph, then G × H ∈ N.

Moreover, w(G ×H) ≤ w(G) · r and W (G×H) ≥W (G) · r.

Proof. Let V (G) = {u1, u2, . . . , un}, V (H) = {v1, v2, . . . , vm} and

V (G×H) =
{

w
(i)
j | 1 ≤ i ≤ n, 1 ≤ j ≤ m

}

,

E (G×H) =
{(

w
(i)
p , w

(j)
q

)

| (ui, uj) ∈ E(G) and (vp, vq) ∈ E(H)
}

.
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Let us consider the graph K2×H. Clearly, K2×H is an r-regular bipartite
graph, thus, by Corollary 2, K2 ×H ∈ N and w (K2 ×H) = r. Let α be an
interval t-coloring of the graph G, β be an interval r-coloring of the graph
K2 ×H and

V (K2 ×H) = {x1, x2, . . . , xm, y1, y2, . . . , ym},

E (K2 ×H) = {(xi, yj) | (vi, vj) ∈ E(H), 1 ≤ i ≤ m, 1 ≤ j ≤ m}.

Define an edge coloring γ of the graph G×H in the following way: for every
(

w
(i)
p , w

(j)
q

)

∈ E(G×H)

γ
((

w
(i)
p , w

(j)
q

))

= (α ((ui, uj)) − 1) · r + β ((xp, yq)),

where 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ p ≤ m, 1 ≤ q ≤ m.

It is not difficult to see that γ is an interval t · r-coloring of the graph
G×H. By the definition of γ, we have w(G×H) ≤ w(G)·r and W (G×H) ≥
W (G) · r.

The Figure 1 shows the interval 6-coloring γ of the graph P4 ×C5 described
in the proof of Theorem 15.

Note that from Theorems 1 and 15, we have the following result:

Corollary 16 (Pisanski, Shawe-Taylor, Mohar [31]). If G is 1-factorable
and H is a regular graph, then G×H is also 1-factorable.

We showed that if G ∈ N and H is regular, then G×H ∈ N. Now we prove
a similar result for the strong tensor product of graphs.

Theorem 17. If G ∈ N and H is an r-regular graph, then G ⊗ H ∈ N.

Moreover, w(G ⊗H) ≤ w(G) · (r + 1) and W (G⊗H) ≥W (G) · (r + 1).

Proof. Let V (G) = {u1, u2, . . . , un}, V (H) = {v1, v2, . . . , vm} and

V (G⊗H) =
{

w
(i)
j | 1 ≤ i ≤ n, 1 ≤ j ≤ m

}

,

E (G⊗H) = E (G×H) ∪
{(

w
(i)
p , w

(j)
p

)

| 1 ≤ p ≤ m and (ui, uj) ∈ E(G)
}

.
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Figure 1. The interval 6-coloring γ of the graph P4 × C5.

Let us consider the graph K2 ⊗ H. Clearly, K2 ⊗ H is an (r + 1)-regular
bipartite graph, thus, by Corollary 2, K2 ⊗H ∈ N and w (K2 ⊗H) = r+ 1.
Let α be an interval t-coloring of the graph G, β be an interval (r + 1)-
coloring of the graph K2 ⊗H and

V (K2 ⊗H) = {x1, x2, . . . , xm, y1, y2, . . . , ym},

E (K2 ⊗H) = {(xi, yi) | 1 ≤ i ≤ m} ∪ E (K2 ×H).

Define an edge coloring γ of the graph G⊗H in the following way: for every
(

w
(i)
p , w

(j)
q

)

∈ E(G⊗H)

γ
((

w
(i)
p , w

(j)
q

))

= (α ((ui, uj)) − 1) · (r + 1) + β ((xp, yq)),

where 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ p ≤ m, 1 ≤ q ≤ m.
It is not difficult to see that γ is an interval t · (r + 1)-coloring of the

graph G ⊗H. By the definition of γ, we have w(G ⊗H) ≤ w(G) · (r + 1)
and W (G⊗H) ≥W (G) · (r + 1).
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The Figure 2 shows the interval 9-coloring γ of the graph P4 ⊗C5 described
in the proof of Theorem 17.

Figure 2. The interval 9-coloring γ of the graph P4 ⊗ C5.

Note that from Theorems 1 and 17, we have the following result:

Corollary 18 (Pisanski, Shawe-Taylor, Mohar [31]). If G is 1-factorable
and H is a regular graph, then G⊗H is also 1-factorable.

Next, we consider interval edge colorings of the strong product of graphs.
In [25] Kubale and Giaro noted that there are graphs G,H ∈ N, such that
G⊠H /∈ N. Here, we prove that if two graphs belong to N and one of them
is regular, then G⊠H ∈ N.

Theorem 19. If G,H ∈ N and H is an r-regular graph, then G⊠H ∈ N.

Moreover, w(G⊠H) ≤ w(G) ·(r+1)+r and W (G⊠H) ≥W (G) ·(r+1)+r.

Proof. Let V (G) = {u1, u2, . . . , un}, V (H) = {v1, v2, . . . , vm} and

V (G⊠H) =
⋃n

i=1 V
i(H), where V i(H) =

{

w
(i)
j | 1 ≤ j ≤ m

}

,

E (G⊠H) = E (G⊗H) ∪
⋃n

i=1E
i(H), where
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Ei(H) =
{(

w
(i)
p , w

(i)
q

)

| (vp, vq) ∈ E(H)
}

.

For i = 1, 2, . . . , n, define a graph Hi as follows:

Hi =
(

V i(H), Ei(H)
)

.

First of all note that χ′(H) = ∆(H) = r since H ∈ N and H is an r-regular
graph. This implies that there exists an interval r-coloring of the graph H.
Let us consider the graph K2 ⊗ H. Clearly, K2 ⊗ H is an (r + 1)-regular
bipartite graph, thus, by Corollary 2, K2 ⊗H ∈ N and w (K2 ⊗H) = r+ 1.
Let α be an interval t-coloring of the graph G, β be an interval (r + 1)-
coloring of the graph K2 ⊗H.

Define an edge coloring γ of the graph G⊠H in the following way:

(1) for every
(

w
(i)
p , w

(j)
q

)

∈ E(G ⊗H)

γ
((

w(i)
p , w(j)

q

))

= (α ((ui, uj)) − 1) · (r + 1) + β ((xp, yq)) ,

where 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ p ≤ m, 1 ≤ q ≤ m.

(2) for i = 1, 2, . . . , n, the edges of the subgraph Hi we color properly with
colors

maxS (ui, α)·(r+1)+1,maxS (ui, α)·(r+1)+2, . . . ,maxS (ui, α)·(r+1)+r

It is easy to see that γ is an interval (t · (r + 1) + r)-coloring of the graph
G⊠H. By the definition of γ, we have w(G ⊠H) ≤ w(G) · (r + 1) + r and
W (G⊠H) ≥W (G) · (r + 1) + r.

The Figure 3 shows the interval 11-coloring γ of the graph P4⊠C4 described
in the proof of Theorem 19.

Note that there are graphs G and H for which G ⊠ H ∈ N, but G ∈
N,H /∈ N. For example, K2 ⊠ C3 ∈ N, but C3 /∈ N. For regular graphs the
following result was obtained by Zhou [38].

Theorem 20. If G is 1-factorable and H is a regular graph, then G⊠H is

also 1-factorable.

Corollary 21. Let G and H be two regular graphs and G ∈ N. Then

G⊠H ∈ N.
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Figure 3. The interval 11-coloring γ of the graph P4 ⊠ C4.

Finally, we turn our attention to interval edge colorings of the lexicographic
product of graphs. In [25] Kubale and Giaro posed the following question:

Problem 1. Does G[H] ∈ N if G,H ∈ N?

We start by focusing on the special case of this problem, when G ∈ N and
H = nK1 for any n ∈ N.

Theorem 22. If G ∈ N, then G[nK1] ∈ N for any n ∈ N. Moreover,

w(G[nK1]) ≤ w(G) · n and W (G[nK1]) ≥ (W (G) + 1) · n− 1.

Proof. Let V (G) = {u1, u2, . . . , um} and

V (G[nK1]) =
{

v
(i)
j | 1 ≤ i ≤ m, 1 ≤ j ≤ n

}

,

E (G[nK1]) =
{(

v
(i)
p , v

(j)
q

)

| (ui, uj) ∈ E(G) and p, q = 1, 2, . . . , n
}

.
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Let α be an interval t-coloring of the graph G.

Define an edge coloring β of the graph G[nK1] in the following way:

for every
(

v
(i)
p , v

(j)
q

)

∈ E (G[nK1])

β
((

v(i)p , v(j)q

))

=











(α((ui, uj)) − 1) · n+ p+ q − 1 (mod n),

if p+ q 6= n+ 1,

α((ui, uj)) · n, if p+ q = n+ 1.

where 1 ≤ i ≤ m, 1 ≤ j ≤ m, 1 ≤ p ≤ n, 1 ≤ q ≤ n.

It can be verified that β is an interval t ·n-coloring of the graph G[nK1].
By the definition of β, we have w(G[nK1]) ≤ w(G) · n.

Now we show that W (G[nK1]) ≥ (W (G) + 1) · n− 1.

Let φ be an interval W (G)-coloring of the graph G.

Define an edge coloring ψ of the graph G[nK1] in the following way:

for every
(

v
(i)
p , v

(j)
q

)

∈ E (G[nK1])

ψ
((

v
(i)
p , v

(j)
q

))

= (φ((ui, uj)) − 1) · n+ p+ q − 1,

where 1 ≤ i ≤ m, 1 ≤ j ≤ m, 1 ≤ p ≤ n, 1 ≤ q ≤ n.

It is easy to see that ψ is an interval (W (G) · n+ n− 1)-coloring of the
graph G[nK1].

The Figure 4 shows the interval 6-coloring β of the graph (K1,3 + e)[2K1]
described in the proof of Theorem 22.

Corollary 23 (Kamalian, Petrosyan [22]). If k is even, then Ck[nK1] ∈ N

and

W (Ck[nK1]) ≥ 2n + n·k
2 − 1.

Corollary 24 (Kamalian, Petrosyan [23]). Let k = p2q, where p is odd and

q ∈ N. Then Kk[nK1] ∈ N and

W (Kk[nK1]) ≥ (2k − p− q) · n− 1.

Now we show that G[H] ∈ N if G,H ∈ N and H is regular.
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Figure 4. The interval 6-coloring β of the graph (K1,3 + e)[2K1].

Theorem 25. If G,H ∈ N and H is an r-regular graph, then G[H] ∈ N.

Moreover, if |V (H)| = n, then w(G[H]) ≤ w(G) · n + r and W (G[H]) ≥
W (G) · n+ r.

Proof. Let V (G) = {u1, u2, . . . , um}, V (H) = {v1, v2, . . . , vn} and

V (G[H]) =
⋃m

i=1 V
i(H), where V i(H) = {w

(i)
j | 1 ≤ j ≤ n},

E (G[H]) =
{(

w
(i)
p , w

(j)
q

)

| (ui, uj) ∈ E(G) and p, q = 1, 2, . . . , n
}

∪
⋃m

i=1E
i(H), where Ei(H) =

{(

w
(i)
p , w

(i)
q

)

| (vp, vq) ∈ E(H)
}

.

Let α be an interval t-coloring of the graph G and

Hi =
(

V i(H), Ei(H)
)

for i = 1, 2, . . . ,m.

Note that χ′(H) = ∆(H) = r since H ∈ N and H is an r-regular graph.
This implies that there exists an interval r-coloring of the graph H.
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Define an edge coloring β of the graph G[H] in the following way:

(1) for every
(

w
(i)
p , w

(j)
q

)

∈ E(G[H])

β
((

w
(i)
p , w

(j)
q

))

=







r + (α((ui, uj)) − 1) · n+ p+ q − 1 (mod n),
if p+ q 6= n+ 1,

r + α((ui, uj)) · n, if p+ q = n+ 1,

where 1 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j, 1 ≤ p ≤ n, 1 ≤ q ≤ n.

(2) for i = 1, 2, . . . ,m, the edges of the subgraph Hi we color properly with
colors

(minS (ui, α) − 1) · n+ 1, (minS (ui, α) − 1) · n+ 2, . . . ,

(minS (ui, α) − 1) · n+ r.

It can be verified that β is an interval (t ·n+ r)-coloring of the graph G[H].
By the definition of β, we have w(G[H]) ≤ w(G) · n + r and W (G[H]) ≥
W (G) · n+ r.

The Figure 5 shows the interval 9-coloring β of the graph K4[K2] described
in the proof of Theorem 25.

Figure 5. The interval 9-coloring β of the graph K4[K2].
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4. Problems

We conclude with the following problems on interval edge colorings of prod-
ucts of graphs.

Problem 2. Are there graphs G,H /∈ N, such that G×H ∈ N?

Problem 3. Are there graphs G,H /∈ N, such that G⊗H ∈ N?

Problem 4. Are there graphs G,H /∈ N, such that G⊠H ∈ N?
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