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e-mail: janka.oravcova@tuke.sk

and

Roman Soták

Institute of Mathematics

Faculty of Science, P.J. Šafárik University
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Abstract

Let P be a graph property and r, s ∈ N, r ≥ s. A strong circu-
lar (P , r, s)-colouring of a graph G is an assignment f : V (G) →
{0, 1, . . . , r − 1}, such that the edges uv ∈ E(G) satisfying |f(u) −
f(v)| < s or |f(u) − f(v)| > r − s, induce a subgraph of G with the
propery P . In this paper we present some basic results on strong circu-
lar (P , r, s)-colourings. We introduce the strong circular P-chromatic
number of a graph and we determine the strong circular P-chromatic
number of complete graphs for additive and hereditary graph proper-
ties.
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1. Introduction

Throughout this paper, by a graph property P, we mean a nonempty iso-
morphism closed subclass of the class I of all finite simple graphs. We say
that a graph G has a property P if G ∈ P. The empty set is called the
empty property and it is denoted by E . The class of graphs without edges
is denoted by O.

A graph property P is called hereditary whenever it is closed under
taking subgraphs, that is, if H is a subgraph of a graph G and G ∈ P, then
H ∈ P, too.

A graph property P is called additive if it is closed under disjoint union,
so that every graph G whose components have property P satisfies G ∈ P,
too.

For each hereditary graph property P, there exists nonnegative integer
c(P) (called the completeness of P) such that c(P) = sup{k : Kk+1 ∈ P}.

The following list shows several well-known hereditary and additive
graph properties P with c(P) = k (we use in this paper the notations of
[3, 4]):

Ok = {G ∈ I : each component of G has at most k + 1 vertices},
Sk = {G ∈ I : ∆(G) ≤ k},
Dk = {G ∈ I : δ(H) ≤ k for each H ⊆ G},
Ok+1 = {G ∈ I : G is k + 1 colourable},
Ik = {G ∈ I : G contains no Kk+2}.

In this paper we consider vertex colourings of graphs. The proper graph
colouring requires that for each colour i the subgraph induced by vertices
coloured by the colour i is independent, so that it belongs to the property
O. One of generalizations of proper vertex graph colouring is the vertex P-
colouring. For a graph property P, by a P-colouring of a graph G we mean
a partition (V1, V2, . . . , Vk) of vertices of G such that, for each i = 1, 2, . . . , k,
the subgraph G[Vi] induced by Vi has the property P.

If we restrict ourselves to additive hereditary graph properties, the def-
inition of P-colouring may be reformulated as follows: for a graph G and
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a k-colouring f : V (G) → {0, 1, . . . , k − 1}, k ∈ N, let us define the graph
Gf with the vertex set V (Gf ) = V (G) and the edge set E(Gf ) = {uv ∈
E(G) : f(u) = f(v)}. We say that G has a (P, k)-colouring (or G is (P, k)-
colourable), if there exists a colouring f : V (G) → {0, 1, . . . , k−1} such that
Gf ∈ P. Then the P-chromatic number of G is defined as

χP(G) = min{k : G is (P, k)-colourable}.

In order to simplify the notation, the set of n consecutive integers {a, a +
1, . . . , a+ n− 1} will be denoted by [a, a+ n− 1].

As a refinement of proper vertex colouring of graphs, one may consider
(k, q)-colouring, called also the circular graph colouring, as follows: a graph
G has a (k, q)-colouring with k ≥ q > 1, if there exists a mapping f :
V (G) → [0, k − 1] such that, for each pair of adjacent vertices u and v,
q ≤ |f(u)− f(v)| ≤ k − q holds.

The circular chromatic number of G (defined and called originally by
Vince [8] ”‘the star chromatic number”’) is the infimum of rational numbers
k/q such that there is a (k, q)-colouring of G. Note, a (k, 1)-colouring of a
graph G is an ordinary k-colouring of G, for any k ∈ N.

As a generalization of proper graph colouring, we define the strong cir-

cular P-colouring of graphs: let r, s ∈ N, r ≥ s and P be a hereditary and
additive graph property. Let f : V (G) → [0, r − 1] be an r-colouring of
a graph G. Then, for G and f , define the graph Gf,s with the vertex set
V (Gf,s) = V (G), where the edge uv ∈ E(G) belongs to the set E(Gf,s) if and
only if |f(u)− f(v)| < s or |f(u)− f(v)| > r − s. We say that the graph G
has a strong circular (P, r, s)-colouring (or G is (P, r, s)-colourable), if there
exists a colouring f : V (G) → [0, r − 1] such that Gf,s ∈ P (such colour-
ing will be called also ”‘strong circular P-colouring”’. The strong circular
P-chromatic number of the graph G is defined as follows:

χc,P(G) = inf
{r

s
: G is (P, r, s)-colourable

}

.

The introduced colouring is called ”‘strong”’ because there is also a weaker
version of the natural generalisation of the fractional and circular colouring
(see [7]), however we shall not deal with this parameter here.

For s = 1 in a (P, r, s)-colouring f of a graph G uv ∈ E(G) is an edge
of Gf,s if and only if |f(u) − f(v)| = 0 and in this case the colouring f is
a (P, r)-colouring of G, so that χc,P(G) ≤ χP(G). The strong circular P-
chromatic number χc,P is a generalization of the circular chromatic number
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χc (for which P = O). In fact, e.g. the strong circular Sk-colouring, k ∈ N,
is the defective circular colouring introduced by Klostermeyer in [5]. He
investigated the defective circular vertex colouring of planar, outerplanar
and series-parallel graphs. Let us remark here, that the famous Borodin’s
Five Colour Theorem (see [2]) implies that each planar graph G has a strong
circular (D1, 5, 2)-colouring.

In Chapter 2 we introduce the basic properties of the strong circular
P-chromatic number of graphs. Borowiecki a Mihók showed in [3] that the
set of all additive hereditary properties partially ordered by set inclusion is
a complete distributive lattice (La,⊆) with the smallest element E and the
greatest element I. Moreover, the set of properties P ∈ L

a with c(P) = k,
k ∈ N, with partial order ⊆ is a complete distributive lattice (La

k,⊆) with the
smallest element Ok and the greatest element Ik. Remark Ok ⊆ Sk ⊂ Dk ⊂
Ok+1 ⊂ Ik. More details on the lattices of hereditary properties may be
found in [6]. Therefore it is interesting to study strong circular P-chromatic
number for P = Ok or P = Ik. It will be our intention in Chapter 3, where
the strong circular P-chromatic numbers of complete graphs are determined.

2. Basic Properties

First we show that for determining the strong circular P-chromatic number
of graphs it is sufficient to consider only those rational numbers r

s
for which

r and s are coprime.

Lemma 1. Let r, s ∈ N, r ≥ s. Then, for any n ∈ N, the graph G is

(P, r, s)-colourable if and only if it is (P, nr, ns)-colourable.

Proof. Suppose that a graph G has (P, r, s)-colouring f : V (G) → [0, r−1].
Define a new colouring g : V (G) → [0, nr − 1] of G in the following way:
g(v) = nf(v) for each v ∈ V (G). Then, for each edge uv ∈ E(G), s ≤
|f(u) − f(v)| ≤ r − s if and only if ns ≤ |g(u) − g(v)| ≤ nr − ns; thus
Gg,ns

∼= Gf,s and so Gg,ns ∈ P. Hence, g is a (P, nr, ns)-colouring of G.

Conversely, suppose that G has (P, nr, ns)-colouring g′ : V (G) →
[0, nr − 1] and define new vertex colouring f ′ of G in the following way:

f ′(v) =
⌊

g′(v)
n

⌋

. Then for each vertex v ∈ V (G), f ′(v) ∈ [0, r − 1]. Without

loss of generality, let us consider the edge uv ∈ E(G) satisfying g′(v) ≤ g′(u).
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If ns ≤ g′(u)− g′(v) ≤ n(r − s), then

f ′(v) + s =

⌊

g′(v)

n

⌋

+ s =

⌊

g′(v) + ns

n

⌋

≤

⌊

g′(u)

n

⌋

= f ′(u)

and, also

f ′(u) =

⌊

g′(u)

n

⌋

≤

⌊

g′(v) + n(r − s)

n

⌋

=

⌊

g′(v)

n

⌋

+(r− s) = f ′(v)+ (r− s).

Thus the graph Gf ′,s is isomorphic with a subgraph of the graph Gg′,ns

which implies that f ′ is (P, r, s)-colouring of G.

Corollary 2. If a graph is (P, r, s)-colourable, then it is also (P, a, b)-
colourable with a/b = r/s and a, b are coprime.

Lemma 3. Let r, s, a, b ∈ N. If a graph G is (P, r, s)-colourable, then it is

(P, a, b)-colourable for each a/b ≥ r/s.

Proof. Suppose that a graph G is (P, r, s)-colourable and a/b ≥ r/s. Let
t = nsn(s, b). Adjust the fractions r/s and a/b such that

r

s
=

rr′

t
,

a

b
=

aa′

t
.

By Lemma 1, G is (P, rr′, t)-colourable. Since a/b ≥ r/s, we have aa′ ≥
rr′, thus (P, rr′, t)-colouring of G is also its (P, aa′, t)-colouring. Then, by
Lemma 1, the graph G is (P, a, b)-colourable.

The strong circular chromatic number is a refinement of the classical chro-
matic number, that is, for each finite graph G, χ(G) − 1 < χc(G) ≤ χ(G).
We prove here an analogical statement for the strong circular P-chromatic
number.

Theorem 4. Let P be graph property. Then, for each finite graph G,

χ
P
(G) − 1 < χ

c,P
(G) ≤ χ

P
(G).

Proof. Since each (P, r, 1)-colouring of a graph G is also its (P, r)-colouring,
we have χ

c,P
(G) ≤ χ

P
(G).

If χ
P
(G)− 1 ≥ χ

c,P
(G), then there exists a (P, r, s)-colouring of G, for

which r/s ≤ χ
P
(G)− 1. Then, by Lemma 3, there exists (P, χ

P
(G)− 1, 1)-

colouring of G which is also its (P, χ
P
(G)− 1)-colouring — a contradiction.
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Before showing that the strong circular P-chromatic number exists and is
rational for each finite graph, we prove that, in every (P, r, s)-colouring of
a graph G with χ(G) = r

s
, each of r colours is assigned to a vertex of G.

The proof of the following lemma is inspired by the proof of Bondy and
Hell in [1].

Lemma 5. Let G have (P, r, s)-colouring f with gcd(r, s) = 1 and r >
|{f(v) : v ∈ V (G)}|. Then G is (P, a, b)-colourable with a < r and a/b <
r/s.

Proof. Suppose that a graphG has a (P, r, s)-colouring f : V (G) → [0, r−1]
such that, in this colouring, at least one colour is not used; denote this colour
by s. Recolour each vertex having the colour 2s with the colour 2s − 1.
By this recolouring, we obtain a colouring f2 which satisfies Gf2,s ⊆ Gf,s,
hence, f2 is also a (P, r, s)-colouring of G. In the colouring f2, the colour
2s is not assigned to a vertex of G, hence, each vertex coloured with 3s
may be assigned with the colour 3s − 1. The colouring f3 obtained in this
way is also a (P, r, s)-colouring of G. Now, perform described recolouring
for colours 2s, 3s, . . . , σs, where σs ≡ 1 (mod r) (such a σ exists because
gcd(r, s) = 1). Note that the values 2s, 3s, . . . , σs are considered modulo
r and are pairwise different. The colouring fσ uses r − σ colours. Let
F = {s, 2s, . . . , σs}. Define the colouring g : V (G) → [0, r − σ − 1] in the
following way: g(v) = fσ(v)− |{x ∈ F : x < fσ(v)}|.

Let t := σs−1
r

. We show that the colouring g is (P, r−σ, s− t)-colouring
of the graph G.

For each i = 0, 1, . . . , r−1, consider the setMi = {i, i+1, . . . , i+s−1} ⊆
[0, r− 1] (where the value r− 1 is followed by 0). Each of the sets Mi, i 6= 1
contains exactly t values which are not used in the colouring fσ; the set M1

contains t+1 such values. From this follows that, if s ≤ |f(u)−f(v)| ≤ r−s
for an edge uv ∈ E(G) in the colouring f , then, in the colouring g, for the
edge uv, we have s−t ≤ |g(u)−g(v)| ≤ r−σ−(s−t). Hence, Gg,s−t ⊆ Gf,s.
Moreover,

r − σ

s− t
=

r(r − σ)

rs− (σs− 1)
=

r(r − σ)

s(r − σ) + 1
<

r

s
.

Lemma 5 and Corollary 2 imply that the strong circular P-chromatic number
can be defined as the minimum of a finite set of rational numbers.
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Theorem 6. For strong circular P-chromatic number of a simple graph G,

χ
c,P

(G) = min
{r

s
: the graph G has a (P, r, s)-colouring and r ≤ |V (G)|

}

.

Proof. By Corollary 2, when determining the strong circular P-chromatic
number of a graph, it is enough to consider those rational numbers r

s
, for

which gcd(r, s) = 1. Also, by Lemma 5, if the graph G has a (P, r′, s′)-
colouring with r′ > |V (G)|, then G has also a (P, r, s)-colouring with r ≤
|V (G)| and r

s
< r′

s′
. This implies that

χ
c,P

(G) = inf
{r

s
: the graph G has a (P, r, s)-colouring and r ≤ |V (G)|

}

.

Since this set is finite, we can change infimum by minimum.

Now let us remark that the strong circular P-chromatic number is an mono-
tone graph invariant.

Lemma 7. Let H be a subgraph of a graph G. Then for each hereditary

additive graph property P, χ
c,P

(H) ≤ χ
c,P

(G).

Proof. By restricting the (P, r, s)-colouring f : V (G) → [0, r − 1] on the
set V (H), we obtain the (P, r, s)-colouring of the graph H.

Lemma 8. Let P ⊆ Q. Then χc,P(G) ≥ χc,Q(G).

Proof. Let a colouring f : V (G) → [0, r − 1] of a graph G be a (P, r, s)-
colouring. Then Gf,s ∈ P. Since P ⊆ Q, we have that Gf,s ∈ Q; thus, the
colouring f is also a (Q, r, s)-colouring of G, and so χc,Q(G) ≤ χc,P(G).

Let us denote by P ◦ P the class of all (P, 2)-colourable graphs.

Theorem 9. For a graph G and an additive hereditary property P it holds:

(1) χc,P(G) = 1 if and only if G ∈ P.

(2) χc,P(G) = 2 if and only if G ∈ (P ◦ P) − P.

(3) χc,P(G) > 2 if and only if G /∈ P ◦ P.

Proof. (1) If χc,P(G) = 1 then there is (P, 1, 1)-colouring f : V (G) → {0}
of G such that Gf,1 ∈ P. Whereas Gf,1

∼= G, that G ∈ P. On the other
hand if G ∈ P, then if we colour all vertices of G with the same colour,
we obtain a colouring f , for which Gf,1

∼= G, so Gf,1 ∈ P. Then f is a
(P, 1, 1)-colouring of G and χc,P(G) = 1.
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(2) Suppose 1 < r/s < 2 and χc,P(G) = r
s
. Consider (P, r, s)-colouring

f of a graph G and arbitrary two adjacent vertices u, v ∈ V (G). Then either
|f(u) − f(v)| < s or |f(u) − f(v)| ≥ s > r − s. Therefore Gf,s

∼= G. Then
by (1.) χc,P(G) = 1 — a contradiction. This implies that if χc,P(G) > 1,
then χc,P(G) ≥ 2.

Let us assume that χc,P(G) = 2. Then from (1) it follows that G 6∈ P.
Consider some (P, 2, 1)-colouring f of G. Since the property P is hereditary,
a subgraph of Gf,s induced by vertices of colour 0 (or colour 1), has the
property P. Whereas V (Gf,1) = V (G), so G ∈ (P ◦ P)\P.

On the other hand if G ∈ (P ◦ P)\P, then from (1) and previous con-
siderations it follows that χc,P(G) ≥ 2. Simultaneously vertices of G can be
divided into two classes V1, V2 such that G[V1] ∈ P and G[V2] ∈ P. Then by
colouring of vertices from V1 with colour 0 and vertices from V2 with colour
1 we obtain a (P, 2, 1)-colouring of G. Therefore χc,P(G) ≤ 2.

(3) Let G /∈ P ◦ P, then (by (2)) G has no (P, 2, 1)-colouring.

3. Strong Circular Chromatic Number of Complete Graphs

By Theorem 9 for the graph Kn, n ∈ N and the property P with c(P) = k,
k ∈ N, we obtain:

• χc,P(Kn) = 1 if and only if n ≤ k + 1.

• χc,P(Kn) = 2 if and only if k + 2 ≤ n ≤ 2k + 2.

• χc,P(Kn) > 2 if and only if n ≥ 2k + 3.

As we have mentioned in the first chapter, for any additive and hereditary
property P with completeness c(P) = k it holds: Ok ⊆ P ⊆ Ik and thus
χc,Ik(G) ≤ χc,P(G) ≤ χc,Ok

(G) for every G. Therefore we will investigate
strong circular P-chromatic number of graphs for P = Ok or P = Ik.

For every property P and graph G it holds: χP(G) ≥ ω(G)
c(P)+1 . We show,

that ω(G)
c(P)+1 is the lower bound for strong circular P-chromatic number of

graphs and simultaneously we prove, there is a graph property, for which
this value is attained.

Theorem 10. χc,Ok
(Kn) = ⌈ n

k+1⌉.

Proof. The complete graph Kn is (Ok, ⌈
n

k+1⌉, 1)-colourable, because
χ
c,Ok

(Kn) ≤ χ
Ok

(Kn) = ⌈ n
k+1⌉.
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Suppose that Kn has a (Ok, r, s)-colouring f , where r
s
≤ ⌈ n

k+1⌉. Then each
component of the graph Gf,s has at most k+1 vertices, thus, the graph Gf,s

has at least ⌈ n
k+1⌉ components.

Consequently, any colouring of Kn requires at least s · ⌈ n
k+1⌉ colours.

Hence, r ≥ s⌈ n
k+1⌉, which implies that r

s
≥ ⌈ n

k+1⌉.

In the second chapter we have shown that if Kn ⊆ G, then χc,P(G) ≥
χc,P(Kn). Thus by evaluating χc,Ik(Kn) we have also the lower bound for
strong circular P-chromatic number of graphs with clique number at least
n and properties P with c(P) = k.

Theorem 11. Let n, k ∈ N, n ≥ 2k + 3. Then χc,Ik(Kn) =
n

k+1 .

Proof. For the graph Kn with vertex set V (Kn) = {v0, v1, . . . , vn−1}, con-
sider the colouring f : V (G) → [0, n − 1] defined as follows: f(vi) = i for
each i = 0, 1, . . . , n− 1. Then the graph (Kn)f,k+1 (isomorphic to the circu-
lant graph Cn(1, 2, . . . , k)) has ω((Kn)f,k+1) = k + 1. Therefore (Kn)f,k+1

belongs to the property Ik and f is a (Ik, n, k + 1)-colouring of Kn (thus
χc,Ik(Kn) ≤

n
k+1).

Let r, s ∈ N, r ≥ s and let a mapping f : V (G) → [0, r−1] be a (Ik, r, s)-
colouring of Kn. Consider the sets Vj = {v ∈ V (G) : f(v) ∈ [j, j+s−1]} for
j = 0, 1, . . . , r − 1, where the values j, j + 1, . . . , j + s− 1 are taken modulo
r. For each j = 0, 1, . . . , r − 1, the graph G[Vj ] ⊆ (Kn)f,s is complete and,
since (Kn)f,s ∈ Ik, we have |Vj| ≤ k + 1 for each j = 0, . . . , r − 1. Then
there are at most (k+1)r pairs [v, Vj ] such that v ∈ Vj . On the other hand,
Kn has n vertices and each fixed vertex belongs to s of the sets Vj. We
conclude that there are sn pairs [v, Vj ] such that v belongs to Vj . Therefore,
sn ≤ (k + 1)r, which implies that n

k+1 ≤ r
s
. Since this argument holds for

each (Ik, r, s)-colouring of Kn, χc,Ik(Kn) ≥
n

k+1 .

The following statement is a direct consequence of Theorem 10 and Theorem
11 for the property P, where Ok ⊆ P ⊆ Ik.

Corollary 12. For each property P with c(P) = k,

n

k + 1
≤ χc,P(Kn) ≤

⌈

n

k + 1

⌉

.

Theorem 13. χc,Ok+1(Kn) = ⌈ n
k+1⌉.
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Proof. Let us suppose to the contrary that χc,Ok+1(Kn) = r
s
= t + r0

s
,

where t ∈ Z and 0 < r0 < s. From Corollary 12 we obtain that n
k+1 ≤

χc,Ok+1(Kn) ≤ ⌈ n
k+1⌉, thus, in this case, t < n

k+1 . Consider now the

corresponding (Ok+1, r, s)-colouring f of Kn. This colouring is such that
(Kn)f,s ∈ Ok+1. Hence, consider the proper circular vertex colouring g :
V ((Kn)f,s) → [1, k + 1]. Let i ∈ [1, k + 1] be a colour and a vertex v be
coloured with i, so g(v) = i. Let us put f(v) = α and let Vj = {u ∈
V ((Kn)f,s) : f(u) ∈ [j, j + s − 1]} for j = 0, . . . , r − 1 (where the val-
ues j, j + 1, . . . , j + s − 1 are taken modulo r). But now the sequence
Vα ∪ Vα+ts, Vα+s, Vα+2s, . . . , Vα+(t−1)s contains all vertices of Kn (because
r0 < s). Moreover, in each of these sets, there is at most one vertex coloured
with i in the colouring g, because, except the set Vα ∪ Vα+ts, all other sets
induce a complete subgraph of the graph (Kn)f,s. However, the considered
vertex v belongs to the set Vα ∪Vα+ts and it is adjacent to all other vertices
from this set; therefore, this set cannot contain any other vertex coloured
with i in the colouring g.

Hence it follows that |g−1(i)| ≤ t, and this argument can be used for
each colour i ∈ [1, k+1]. Thus n = |V ((Kn)f,s)| = |g−1([1, k+1])| ≤ t(k+1),
which implies n

k+1 ≤ t — a contradiction.

For the complete graph Kn, Theorems 11 and 13 imply that

• For each P : Ok ⊆ P ⊆ Ok+1 we have: χc,P(Kn) = ⌈ n
k+1⌉ and

• For each P : Ok+1 ⊆ P ⊆ Ik we have: χc,P(Kn) ∈ 〈 n
k+1 , ⌈

n
k+1⌉〉.

Corollary 14. For each property P and each finite graph G,

χc,P(G) ≥
ω(G)

c(P) + 1
.

Proof. If ω(G) = d, then Kd ⊆ G. Then χc,P(G) ≥ χc,P(Kd) ≥
d

c(P)+1 by
Theorem 7 and Corollary 12.

We shall denote by Gb
a, a ≥ b the graph with the set of vertices {0, . . . , a−1}

and edges {ij : b ≤ |i− j| ≤ a− b}. In [1, 8] it was shown that for any pair
of integers a, b with a ≥ 2b and gcd(a, b) = 1, the graph Gb

a is vertex critical
and circulal chromatic number χc(G

b
a) = a

b
. We shall use this fact in the

proof of Theorem 15.
This statement is an answer to the question if any rational number from

〈 n
k+1 , ⌈

n
k+1⌉〉 is the strong circular P-chromatic number for some property

P and finite graph G.
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Theorem 15. Let k ∈ N and n ≥ 2(k+1). For any r
s
∈ 〈 n

k+1 , ⌈
n

k+1⌉〉, r ≤ n
there is a graph property P such that χc,P(Kn) =

r
s
and c(P) = k.

Proof. Let n be positive integer and n ≥ 2(k + 1). Consider finite set of
rational numbers M = { r

s
| n

k+1 ≤ r
s
≤ ⌈ n

k+1⌉ ∧ r ≤ n}. Put |M | = t + 1
and sort its elements in increasing order: n

k+1 = r0
s0

< r1
s1

< · · · < ri
si

< · · · <
rt
st

= ⌈ n
k+1⌉.

We shall provide a property Pi for each
ri
si

∈ M such that χc,P(Kn) =
ri
si

and c(Pi) = k.
Put P0 = Ik by Theorem 11. Also by Theorem 10, put Pt = Ok (or

Ok+1 by Theorem 13).
If t ≥ 2, then for i = 1, . . . , t− 1 we define

Pi := Ik − { G | (∃ j < i)(∃ f : V (Kn) → [0, rj − 1]) : χc((Kn)f,sj ) =
rj
sj

and there is a component H ⊆ (Kn)f,sj : H ⊆ G } .

Note that each property Pi is hereditary and additive.
First we show that if (Kn)f,sj ∈ Ik, with sj ≥ 2, then graph (Kn)f,sj is

connected. We consider (P, rj , sj)-colouring f of Kn and denote Vi = {v ∈
V (Kn) | f(v) ∈ [i, i+ sj − 1]} for i = 0, . . . , r− 1 (values i, . . . , i+ sj − 1 are
reduced modulo rj). Graph G[Vi] is complete, therefore |Vi| ≤ k+1 for any
i = 0, . . . , rj − 1.

If (Kn)f,sj is disconnected, then there are a, b ∈ [0, rj − 1] and sj + 1 ≤
|a−b| ≤ rj−(sj+1) such that Va = ∅ and Vb = ∅. We shall show, that there
is no set Va such that Va = ∅. For the proof by contradiction we suppose,
there exists an empty set Va for some a ∈ [0, rj−1]. Then n ≤ ⌊rj/sj⌋ (k+1)
and so n/(k + 1) ≤ ⌊rj/sj⌋ = ⌊n/(k + 1)⌋ — a contradiction.

Therefore we can write

Pi := Ik − { G | (∃ j < i)(∃ f : V (Kn) → [0, rj − 1]) :

(Kn)f,sj ∈ Ik ∧ χc((Kn)f,sj ) =
rj
sj

∧ G ⊇ (Kn)f,sj } .

As Pi ⊆ Ik, we have c(Pi) ≤ k. Next we shall show c(Pi) = k and thus
Kk+1 ∈ Pi. If Kk+1 /∈ Pi, then there exists a colouring f such that Kk+1 ⊇
(Kn)f,sj . It follows that k + 1 ≥ n ≥ 2(k + 1) — a contradiction.

Finally we shall prove, for each ri
si

∈ M there is a colouring fi such

that χc((Kn)f,si) = ri
si
. We shall denote by Ua the set of vertices of Kn

coloured by a. We shall construct a colouring fi : V (Kn) → [0, ri − 1]

as follows: we colour vertices of Kn such that |Ua| = ⌊ (a+1)n
r

⌋ − ⌊an
r
⌋, for
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a = 0, . . . , ri − 1. Then |Ua| ∈ {⌊ n
ri
⌋, ⌊ n

ri
⌋ + 1} and |Va| =

∑si−1
p=0 |Ua+p| =

∑si−1
p=0 (⌊

(a+p+1)n
ri

⌋−⌊ (a+p)n
ri

⌋) = ⌊ (a+si)n
ri

⌋−⌊an
ri
⌋ ≤ ⌊sin

ri
⌋+1 ≤ k+1. Because

Gsi
ri
⊆ (Kn)f,sj that χc(((Kn)f,sj ) =

ri
si
.
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[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli,
editor, Advances in Graph Theory (Vishwa International Publishers, 1991)
42–69.

[4] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanǐsin, A survey of
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