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Abstract

A vertex is said to be doubly light in a family of plane graphs if its
degree and sizes of neighbouring faces are bounded above by a finite
constant. We provide several results on the existence of doubly light
vertices in various families of plane graph.

Keywords: plane graph, doubly light vertex.

2010 Mathematics Subject Classification: 05C10.

1. Introduction

Throughout this paper we consider connected plane graphs without loops or
multiple edges. For a plane graph G, V = V (G), E = E(G) and F = F (G)
denotes the set of its vertices, edges and faces, respectively. A k-vertex (k-
face) will stand for a vertex (a face) of degree k, a ≥ k-vertex/≤ k-vertex (≥
k-face/≤ k-face) for those of degree at least k/at most k. Theminimum edge

weight of a graph G is the number w(G) = minuv∈E(G)(degG(u)+ degG(v));
the minimum dual edge weight w∗(G) of G is the minimum edge weight of
the dual graph of G (that is, the minimum sum of sizes of adjacent faces
of G).

The classical consequence of Euler’s theorem states that every plane
graph contains a vertex of degree at most 5. This result provides no infor-
mation on sizes of faces surrounding that vertex, but, Lebesgue [3] proved
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that, in a 3-connected plane graph, there exist an ≤ 5-vertex incident with
at least two ≤ 6-faces. In general, it is not true that every 3-connected
plane graph contains a vertex of degree ≤ 5 incident only with faces of size
bounded above by a fixed constant: in the graph of n-prism or n-antiprism,
each vertex is incident with an n-face. However, by [3], each 3-connected
plane graph of minimum degree 5 contains a 5-vertex incident with four
3-faces and the remaining fifth face is of size at most 5 (this bound is best
possible).

These examples show that if the minimum vertex degree is large enough,
plane graphs contain small degree vertices incident with small faces (in the
sequel, they are referred as doubly light vertices). The similar effect is
obtained also when restricting the minimum face size: from [1], it follows
that each plane graph of minimum face size 5 contains a 3-vertex such that
the sum of sizes of incident faces is at most 17. On the other hand, the
graph of n-prism shows that the minimum face size at least 4 is not enough
to ensure the existence of doubly light vertices. Nevertheless, plane graphs
contain doubly light vertices if their minimum dual edge weight is large
enough: from [2], it follows that each 3-connected plane graph of minimum
dual edge weight at least 11 (or 12 or 13, respectively) contains an ≤ 5-
vertex with all incident faces of sizes at most 22 (or 15 or 13, respectively),
and if the dual edge weight is at least 10, the size of neighbouring faces of
such a vertex is at most 41 (see [3]).

The aim of this paper is to explore in detail other conditions that enforce
doubly light vertices in plane graphs. We will show that these vertices
are also found in 3-connected plane graphs with sufficiently high minimum
edge weight, or under certain requirements on all four constraints on vertex
degree, face size, edge and dual edge weights.

For proving the structural results in this paper, we use the approach
called the Discharging Method; its earliest application can be found in [4]
(see also [5] for review of applications in graph theory and combinatorial
geometry). Each theorem is proved by contradiction: we assume the exis-
tence of a hypothetical counterexample G. Now, each vertex and each face
of G is assigned with the initial charge c; in this paper, we use the following
assignments:

c(v) = degG(v)− 4 for each vertex v ∈ V ,
c(α) = degG(α) − 4 for each face α ∈ F .

(1)

c(v) = degG(v)− 6 for each vertex v ∈ V ,
c(α) = 2degG(α) − 6 for each face α ∈ F .

(2)
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By Euler’s formula, we obtain that
∑

x∈V ∪F c(x) = −8 or −12 for the first
and the second assignments of initial charges, respectively.

Next, the initial charges of elements ofG are locally redistributed in such
a way that the total sum of all charges remains the same (hence, negative).
This redistribution is performed by a set of discharging rules which specify
the way of transfer of a charge from one element to another one in specific
configurations of vertices and faces. Finally, by a case analysis, it is shown
that, after discharging, each element of G has a nonnegative final charge
c∗; thus, the total sum of final charges is also nonnegative, which gives a
contradiction.

2. Results

Firstly, we explore the family of plane graphs which is ”between” (according
to inclusion ordering) families of plane graphs of minimum degree ≥ 4 and 5:

Theorem 2.1. Each connected plane graph of minimum degree ≥ 4 and

minimum edge weight ≥ 9 contains a vertex of degree ≤ 5 incident only with

≤ 10-faces. The bound 10 is best possible.

Proof. We use the Discharging Method with the initial charge assignment
(2) and the following discharging rules:

Rule. Each ≥ 11-face sends 2 to each incident 4-vertex and 1 to each
incident 5-vertex.

We check the nonnegativity of final charges; since ≥ 6-vertices and ≤ 10-
faces are not influenced by the discharging rule, it is enough to check 4-
and 5-vertices, and ≥ 11-faces. Moreover, in a counterexample, each 4- and
5-vertex is incident with an ≥ 11-face from which it receives, by Rule, the
charge that exactly neutralizes its initial negative charge −2 or −1.

Let α be an r-face, r ≥ 11 and let p, q be the number of 4- and 5-
vertices incident with α, respectively. Since the minimum edge weight of G
is at least 9, we have p ≤

⌊

r
2

⌋

and p+ q ≤ r. Thus c∗(α) ≥ 2r− 6− 2p− q =
2r − 6− (p+ q)− p ≥ 2r − 6− r −

⌊

r
2

⌋

≥ 0 as r ≥ 11.
Consider the graph of the Archimedean polytope of type (4, 6, 10) (which

is the plane cubic graph such that each its vertex is incident with a 4-, 6- and
10-face) and the bipartition (B,W ) of its vertex set. Into each 4-face, insert
a diagonal connecting two vertices from W , and, into each 6-face, insert a
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new vertex and join it by new edges with all vertices on the face boundary.
The resulting plane graph is of minimum degree 4, minimum edge weight 9
and each its 4- and 5- vertex is incident with a 10-face. Thus, the bound 10
is best possible.

Similar results hold (with smaller bounds on face sizes) for plane graphs of
minimum degree ≥ 4 and higher minimum edge weight:

Theorem 2.2. Each connected plane graph of minimum degree ≥ 4 and

minimum edge weight ≥ 10 contains a vertex of degree ≤ 5 incident only

with ≤ 5-faces.

Proof. The proof goes essentially in the same way as for the previous
theorem, the only difference is in the analysis of the final charge of big
faces: if p, q are numbers of 4- and 5-vertices incident with an r-face α,
then p ≤

⌊

r−q
2

⌋

(because, in the counterexample, each 4-vertex is incident
only with ≥ 6-vertices) and p + q ≤ r. Thus c∗(α) ≥ 2r − 6 − 2p − q ≥
2r − 6− 2

⌊

r−q
2

⌋

− q ≥ 2r − 6− 2 r−q
2 − q = r − 6 ≥ 0 as r ≥ 6.

Theorem 2.3 Each connected plane graph of minimum degree ≥ 4 and

minimum edge weight ≥ 11 contains a vertex of degree ≤ 5 incident only

with 3-faces.

Proof. We use the Discharging Method with the initial charge assignment
(2) and the following discharging rules:

Rule 1. Each ≥ 4-face distributes its charge equally among incident 4- and
5-vertices.

Rule 2. Each ≥ 7-vertex sends 1
7 to each adjacent 4-vertex.

Rule 3. Let [xyz] be a 3-face, y be an ≥ 7-vertex, x be a 4-vertex and z be
an ≥ 5-vertex. Then y sends additional 1

14 to x.

We check the nonnegativity of final charges; by the formulation of discharg-
ing rules, it is enough to check only 4-, 5- and ≥ 7-vertices. Each 5-vertex
of the counterexample graph must be incident with an ≥ 4-face and receives
from this face ≥ 1 (note that, since the edge weight is ≥ 11, there is at most
⌊

r
2

⌋

≤ 5-vertices incident with an r-face; hence, the contribution by Rule 1
is ≥ 2r−6

⌊ r

2
⌋
≥ 2·4−6

⌊ 4

2
⌋

≥ 1), so its final charge is nonnegative.
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Let x be a 4-vertex. Then again, x must be incident with an ≥ 4-face and
adjacent to four ≥ 7-vertices. If x is incident with at least two ≥ 4-faces,
then c∗(x) ≥ −2 + 2 · 1 = 0; otherwise, x is incident with three 3-faces, and
by Rules 1, 2 and 3, c∗(x) ≥ −2 + 1 + 4 · 1

7 + 6 · 1
14 = 0.

Next theorem shows that, for the existence of doubly light vertices in plane
graphs, one can consider also plane graphs of minimum degree at least 3
provided the minimum edge weight is large enough:

Theorem 2.4. Each connected plane graph of minimum degree ≥ 3 and

minimum edge weight ≥ 9 contains a vertex of degree ≤ 5 incident only with

≤ 11-faces.

Proof. We use the Discharging Method with the initial charge assignment
(2) and the following discharging rules:

Rule. Each ≥ 12-face sends 6− i to each incident i-vertex, i ∈ {3, 4, 5}.

We check the nonnegativity of final charges; since ≥ 6-vertices and ≤ 11-
faces are not influenced by the discharging rule, it is enough to check ≤
5-vertices, and ≥ 12-faces. In the counterexample graph, each i-vertex,
i ∈ {3, 4, 5} is incident with an ≥ 12-face from which it receives, by Rule,
the charge that exactly neutralizes its initial negative charge i− 6.

Let α be an r-face, r ≥ 12 and let p, q, s be the number of 3-, 4- and
5-vertices incident with α, respectively. Since the minimum edge weight

of G is at least 9, we have p ≤
⌊

r−q−s
2

⌋

and q ≤
⌊

r−2p
2

⌋

. Thus c∗(α) ≥

2r − 6 − 3p − 2q − s = (2r − 6) − (2p + q + s) − (p + q) ≥ (2r − 6) −
(

2
⌊

r−q−s
2

⌋

+
⌊

r−2p
2

⌋

+ s
)

− (p+ q) ≥ (2r− 6)−
(

r − q − s+ r
2 −

2p
2 + s

)

−

(p + q) = (2r − 6)−
(

3
2r − (p+ q)

)

− (p+ q) = r
2 − 6 ≥ 0 as r ≥ 12.

Note that even if the minimum edge weight is high, connected plane graphs
need not contain doubly light vertices (an example is the star graph K1,n);
but, for 2-connected plane graphs, we obtain the following

Theorem 2.5. Each 2-connected plane graph of minimum edge weight ≥ 11
(12, 13, 14, 17 or 26, respectively) contains a vertex of degree ≤ 5 incident

only with ≤ 16- (≤ 14,≤ 12,≤ 10,≤ 8,≤ 6-) faces.
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Proof. We will handle all particular instances of the theorem simultane-
ously, using the Discharging Method with the initial charge assignment (2)
and the following common discharging rules:

Rule 1. Each ≥ 5-face distributes its charge equally among all incident
≤ 5-vertices.

Rule 2. Each ≥ 7-vertex x distributes its charge equally among all adjacent
≤ 5-vertices.

From the formulation of discharging rules, it is enough to check only final
charges of ≤ 5-vertices. Given a counterexample G of minimum edge weight
w (w ≥ 11), each d-vertex x, d ∈ {2, 3, 4, 5} is adjacent to d vertices of degree
≥ w − d and incident to at least one big r-face (r being greater than values
described by theorem). Then, by Rules 1 and 2, c∗(x) ≥ d−6+dw−d−6

w−d
+ 2r−6

⌊ r

2
⌋

(note that, due to the fact that w ≥ 11, no two ≤ 5-vertices are adjacent
and an r-face is incident to at most

⌊

r
2

⌋

such vertices).

Let f(d, r, w) = d−6+dw−d−6
w−d

+ 2r−6

⌊ r

2
⌋
and f∗(d, r, w) = d−6+dw−d−6

w−d
+

2r−6
r

2

= 2(rw(d−1)−rd(d+2)−6(w−d))
(w−d)r . It is not hard to check that, for w ≥ 11

and d ∈ {2, 3, 4}, f(d + 1, r, w) > f(d, r, w) holds. Thus, for ensuring that
c∗(x) ≥ 0, it is enough to check the nonnegativity of f(2, r, w). Although
f(2, r, w) is not increasing in r, we can see that, for fixed w, there exists
rw such that f(2, r, w) ≥ 0 for all r > rw: using the estimation f(2, r, w) ≥
f∗(2, r, w) and the fact that f∗ is increasing in w (note that ∂f∗

∂w
= 6d

(d−w)2 > 0

for d ∈ {2, 3, 4, 5} and w ≥ 11), we obtain that

• if w ≥ 11 then f∗(2, r, w) ≥ f∗(2, r, 11) = 2(r−18)
3r ≥ 0 for r ≥ 18;

furthermore, f(2, 17, 11) = 1
6 > 0, f(2, 16, 11) = − 1

12 , thus, r11 = 16,

• if w ≥ 12 then f∗(2, r, w) ≥ f∗(2, r, 12) = 4(r−15)
5r ≥ 0 for r ≥ 15;

furthermore, f(2, 14, 12) = − 2
35 , thus, r12 = 14,

• if w ≥ 13 then f∗(2, r, w) ≥ f∗(2, r, 13) = 2(5r−66)
11r ≥ 0 for r ≥ 13;

furthermore, f(2, 12, 13) = − 1
11 , thus, r13 = 12,

• if 14 ≤ w ≤ 16 then f∗(2, r, w) ≥ f∗(2, r, 14) = r−12
r

≥ 0 for r ≥
12; furthermore, f(2, 11, 14) = 1

5 , f(2, 10, 14) = −1
5 , f(2, 11, 15) = 18

65 ,

f(2, 10, 15) = − 8
65 , f(2, 11, 16) = 12

35 , f(2, 10, 16) = − 2
35 , thus, r14 =

r15 = r16 = 10,
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• if 17 ≤ w ≤ 25 then f∗(2, r, w) ≥ f∗(2, r, 17) = 6(r−10)
5r ≥ 0 for r ≥ 10;

furthermore, f(2, 9, w) > 0 and f(2, 8, w) < 0 for mentioned values of w,
thus, r17 = · · · = r25 = 8,

• if w ≥ 26 then f∗(2, r, w) ≥ f∗(2, r, 26) = 3(r−8)
2r ≥ 0 for r ≥ 8; further-

more, f(2, 7, 26) = 1
6 and f(2, 6, 26) = −1

2 , thus, rw = 6 for w ≥ 26.

As noted before, the condition of minimum degree at least 4 is not sufficient
for existence of doubly light vertices in plane graphs (as seen from the graph
of an n-antiprism); but, under additional requirement of slightly higher dual
edge weight, we obtain

Theorem 2.6. Each connected plane graph of minimum degree ≥ 4 and

minimum dual edge weight ≥ 7 contains a 4-vertex incident only with ≤ 7-
faces; the bound 7 is best possible.

Proof. We use the Discharging Method with the initial charge assignment
(1) and the following discharging rules:

Rule 1. Each ≥ 5-face distributes its charge equally among all incident
vertices.

Let c(x) denote the charge of a vertex x after application of Rule 1.

Rule 2. Each vertex x distributes its charge c(x) equally among all incident
3-faces.

Observe that, due to the condition of minimum dual edge weight ≥ 7, each
d-vertex is incident with at most

⌊

d
2

⌋

3-faces; consequently, its contribution

to a 3-face by Rule 2 is at least d−4

⌊ d

2
⌋
≥ 1

2 if d ≥ 5.

We check the nonnegativity of final charges; according to the formula-
tion of discharging rules, it is enough to consider only 3-faces.

Case 1. Let α be a 3-face incident with at least two ≥ 5-vertices. Then,
by Rule 2, c∗(α) ≥ −1 + 2 · 1

2 = 0.

Case 2. Let α be a 3-face incident with exactly one ≥ 5-vertex z; let
x, y be 4-vertices incident with α. Note that each of x, y is incident with
at most two 3-faces, and with at least one ≥ 8-face. Thus, c(x) ≥ 8−4

8 = 1
2

(similarly for c(y)) and, by Rules 1 and 2, c∗(α) ≥ −1 + 1
2 + 2 ·

1

2

2 = 0.
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Case 3. Let α be a 3-face incident only with 4-vertices; then each of
them is incident with an ≥ 8-face. Now, if at least two of them are incident

with exactly one 3-face, then c∗(α) ≥ −1+2 ·
1

2

1 = 0. Hence, assume that at
least two of vertices incident with α are incident also with 3-faces different
from α. If there exists a vertex of α which is incident with at least two ≥ 8-

faces, then c∗(α) ≥ −1+
2· 1

2

2 +2·
1

2

2 = 0. Hence, assume that each vertex of α
is incident with exactly one ≥ 8-face. Then there must be a vertex on α that

is incident with no other 3-face, and we obtain c∗(α) ≥ −1 +
1

2

1 + 2 ·
1

2

2 = 0.

v
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6

7

8

Figure 1

Consider two mirror copies G,G′ of the graph on the Figure 1 drawn on
two hemispheres H,H′ such that vertices v1, . . . , v8 and v′1, . . . , v

′

8 lie on
equators of H and H′, respectively. Now, glue H and H′ into the sphere S
and identify the corresponding vertices vi, v

′

i for i = 1, . . . , 8. The resulting
graph is drawn on S without crossings, hence, it can be transformed to a
plane graph which is 4-regular, has minimum dual edge weight 7 and each
its 4-vertex is incident with a 7- or 8-face; thus, the bound 7 of this theorem
is best possible.
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Similarly, with the condition on minimum face size being at least 4, one
cannot enforce the existence of doubly light vertices in plane graphs (see
the graph of n-sided prism), but, they appear under additional condition on
higher edge weight:

Theorem 2.7. Each connected plane graph of minimum face size ≥ 4 and

edge weight ≥ 7 contains a 3-vertex incident only with ≤ 6-faces; the bound

6 is best possible.

Proof. We use the Discharging Method with the initial charge assignment
(1) and the following discharging rule:

Rule. Each ≥ 7-face distributes its charge equally among incident 3-
vertices.

We check the nonnegativity of final charges; due to formulation of discharg-
ing rule, it is enough to check only 3-vertices. Each 3-vertex must be incident
with a d-face, d ≥ 7; as edge weight of the counterexample graph is at least 7,
each d-face is incident with at most

⌊

d
2

⌋

3-vertices. Consequently, each d-face

sends at least d−4

⌊ d

2
⌋
to an incident 3-vertex. Now, for d ≥ 7, d−4

⌊ d

2
⌋
≥ 7−4

⌊ 7

2
⌋
= 1,

so the contribution of an ≥ 7-face to an incident 3-vertex is sufficient to
make its final charge nonnegative.

Consider two mirror copies G,G′ of the graph on the Figure 2 and,
in the similar way as in the previous proof, glue them (by identifying the
corresponding vertices vi, v

′

i for i = 1, . . . , 8) to a graph embedded in the
sphere. This graph can be transformed to the graph which is plane, has
minimum face size 4, minimum edge weight 7 and each its 3-vertex is incident
with a 6-face; thus, the bound 6 of this theorem is best possible.
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Figure 2
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Finally, we show that if the minimum edge weight and dual edge weight is at
least 8, the condition on minimum vertex degree or face size being at least
4 can be dropped:

Theorem 2.8. Each connected plane graph of minimum degree ≥ 3, mini-

mum edge weight ≥ 8 and minimum dual edge weight ≥ 8 contains a ≤ 5-
vertex incident only with ≤ 11-faces.

Proof. We use the Discharging Method with the initial charge assignment
(2) and the following discharging rules (here, a face of size at least 12 is
called a big face):

Rule 1. Each ≥ 4-face distributes its charge equally among all incident
≤ 5-vertices.

Let c(x) denote the charge of a vertex x after application of Rule 1.

Rule 2. Each vertex x distributes its charge c(x) equally among all adjacent
3-vertices.

We check the nonnegativity of final charges; according to the formulation of
discharging rules, it is enough to consider only ≤ 5-vertices.

Case 1. Let x be a 5-vertex. Then x is incident with at least one big
face; moreover, of the remaining four neighbouring faces, either at least two
are ≥ 5-faces, or at least three of them are ≥ 4-faces (otherwise, in the
neighbourhood of x, there exist two adjacent faces with size sum at most 7).
Thus, by Rule 1, c∗(x) ≥ −1 + 2·12−6

12 + 3 · 2·4−6
4 = 2 > 0 (as a consequence,

we obtain that a 5-vertex always sends, by Rule 2, at least 2
5).

Case 2. Let x be a 4-vertex. Again, x is incident with at least one big
face and, except this face, either with at least one ≥ 5-face or with at least
two ≥ 4-faces; we obtain c∗(x) ≥ −2 + 2·12−6

12 + 2·5−6
5 = 3

10 > 0.

Case 3. Let x be a 3-vertex. Note that all neighbours of x are ≥ 5-
vertices. As before, x is incident with a big face α; denote the remaining
incident faces by β, γ.

Case 3.1. Let one of β, γ – say, β – be a 3-face; then γ is an ≥ 5-face.
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Case 3.1.1. If all neighbours of x are ≥ 6-vertices, then, by Rule 1,
c∗(x) ≥ −3 + 2·5−6

5−2 + 2·12−6
12−2 = 2

15 > 0.

Case 3.1.2. If x is adjacent to exactly one 5-vertex, then γ and α are
incident with at least one ≥ 6-vertex; hence, by Rules 1 and 2, c∗(x) ≥
−3 + 2·5−6

5−1 + 2·12−6
12−1 + 2

5 = 2
55 > 0.

Case 3.1.3. If x is adjacent to precisely two 5-vertices, then, by Rules 1
and 2, c∗(x) ≥ −3 + 2·5−6

5 + 2·12−6
12 + 2 · 2

5 = 1
10 > 0.

Case 3.1.4. Let x be adjacent only to 5-vertices. Then, by Rules 1 and
2, c∗(x) ≥ −3 + 2·5−6

5 + 2·12−6
12 + 3 · 2

5 = 1
2 > 0.

Case 3.2. Let one of β, γ – say, β – be a 4-face; then γ is an ≥ 4-face.

Case 3.2.1. If x is incident only with ≥ 6-vertices, then, by Rule 1 we
obtain c∗(x) ≥ −3 + 2·12−6

12−2 + 2 · 2·4−6
4−2 = 4

5 > 0.

Case 3.2.2. If exactly one of neighbours of x is a 5-vertex, then each
neighbouring face of x is incident with an ≥ 6-vertex, and by Rules 1 and
2, we obtain c∗(x) ≥ −3 + 2·12−6

12−1 + 2 · 2·4−6
4−1 + 2

5 = 61
165 > 0.

Case 3.2.3. If at least two neighbours of x are 5-vertices, then c∗(x) ≥
−3 + 2·12−6

12 + 2 · 2·4−6
4 + 2 · 2

5 = 3
10 > 0.

Case 3.3. Let both β, γ be ≥ 5-faces. Then c∗(x) ≥ −3 + 2 · 2·5−6
5 +

2·12−6
12 = 1

10 > 0.
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