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Abstract

Kulli and Muddebihal [V.R. Kulli, M.H. Muddebihal, Character-
ization of join graphs with crossing number zero, Far East J. Appl.
Math. 5 (2001) 87–97] gave the characterization of all pairs of graphs
which join product is planar graph. The crossing number cr(G) of a
graph G is the minimal number of crossings over all drawings of G
in the plane. There are only few results concerning crossing numbers
of graphs obtained as join product of two graphs. In the paper, the
exact values of crossing numbers for join of paths with all graphs of
order four, as well as for join of all graphs of order four with n isolated
vertices are given.
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1. Introduction

Let G be a graph, whose vertex set and edge set are denoted by V (G) and
E(G), respectively. A drawing of G is a representation of G in the plane such
that its vertices are represented by distinct points and its edges by simple
continuous arcs connecting the corresponding point pairs. For simplicity, we

1The research was supported by the Slovak VEGA grant No. 1/0636/08.
2This work was supported by the Slovak Research and Development Agency under the
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assume that in a drawing (a) no edge passes through any vertex other than
its end-points, (b) no two edges touch each other (i.e., if two edges have a
common interior point, then at this point they properly cross each other),
and (c) no three edges cross at the same point. The crossing number cr(G)
is the smallest number of edge crossings in any drawing of G. It is easy to
see that a drawing with minimum number of crossings (an optimal drawing)
is always a good drawing, meaning that no edge crosses itself, no two edges
cross more than once, and no two edges incident with the same vertex cross.

Crossing number problems were introduced by Turán, who first inquired
about the crossing number of the complete bipartite graph Km,n. Turán
devised a natural drawing of Km,n with ⌊m

2
⌋⌊m−1

2
⌋⌊n

2
⌋⌊n−1

2
⌋ crossings, but

the conjecture of Zarankiewicz that such a drawing is the best possible, is
still open. Crossing number problems are, in general, very difficult. It was
proved by Garey and Johnson [4] that computing the crossing number of a
graph is an NP -hard problem. The exact values of crossing numbers are
known only for few specific families of graphs. The Cartesian product is one
of few graph classes, for which exact results concerning crossing numbers are
known. Harary at al. [6] conjectured that the crossing number of Cm × Cn

is (m − 2)n, for all m,n satisfying 3 ≤ m ≤ n. This has been proved only
for m,n satisfying n ≥ m, m ≤ 7. It was recently proved by Glebsky and
Salazar [5] that the crossing number of Cm×Cn equals its long-conjectured
value at least for n ≥ m(m + 1). Besides of Cartesian product of two
cycles, there are several other exact results. In [2] and [7], the crossing
numbers of G × Cn for all graphs G of order four are given. Bokal in
[3] confirmed the general conjecture for the crossing number of Cartesian
product of path and star formulated in [7]. The table in [8] shows the
summary of known crossing numbers for Cartesian products of path, cycle
and star with connected graphs of order five.

Kulli and Muddebihal [11] gave the characterization of all pairs of graphs
which join is planar graph. It thus seems natural to inquire about crossing
numbers of join product of graphs. In [9], the crossing numbers for join of
two paths, join of two cycles, and for join of path and cycle are given. In
addition, the exact values of crossing numbers for join products G+Pn and
G + Cn for all graphs of order at most three and for some graphs of order
four are given. In the paper, we give the crossing numbers for join products
of all graphs on four vertices with discrete graphs nK1 and with paths Pn.

Let D be a good drawing of the graph G. We denote the number of
crossings in D by crD(G). Let Gi and Gj be edge-disjoint subgraphs of G.
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We denote by crD(Gi, Gj) the number of crossings between edges of Gi and
edges of Gj , and by crD(Gi) the number of crossings among edges of Gi in
D. It is easy to see that for three edge-disjoint graphs Gi, Gj , and Gk, the
following equations hold:

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj),

crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk).

2. The Join Product of Two Graphs

The join product of two graphs G and H, denoted by G + H, is obtained
from vertex-disjoint copies of G and H by adding all edges between V (G)
and V (H). For |V (G)| = m and |V (H)| = n, the edge set of G +H is the
union of disjoint edge sets of the graphs G, H, and the complete bipartite
graph Km,n. It has been long-conjectured in [12] that the crossing number
cr(Km,n) of the complete bipartite graph Km,n equals the Zarankiewicz’s
Number Z(m,n) := ⌊m

2
⌋⌊m−1

2
⌋⌊n

2
⌋⌊n−1

2
⌋. This conjecture has been verified

by Kleitman for min{m,n} ≤ 6. More precisely, in [10] he proved that

cr(Km,n) =
⌊m

2

⌋⌊m− 1

2

⌋⌊n

2

⌋⌊n− 1

2

⌋

, if m ≤ 6.

Let nK1 denote the graph on n isolated vertices and let Pn be the path on n

vertices. For a graph G with |V (G)| = m, the join product G+nK1 consists
of one copy of the graph G and n vertices t1, t2, . . . , tn, where every vertex
ti, i = 1, 2, . . . , n, is adjacent to every vertex of G. For i = 1, 2, . . . , n, let T i

denote the subgraph induced by m edges incident with the vertex ti. Hence,

G+ nK1 = G ∪Km,n = G ∪

(

n
⋃

i=1

T i

)

.

The similar union of edge disjoint graphs forms the join product G+ Pn:

G+ Pn = G ∪Km,n ∪ Pn = G ∪

(

n
⋃

i=1

T i

)

∪ Pn.

The decomposition into edge disjoint subgraphs K4, Pn, and K4,n it is pos-
sible to see in the drawing of the graph K4 +Pn in Figure 1. The graph K4
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is induced on the vertices a, b, c, and d, and the path Pn is induced on the
vertices t1, t2, . . . , tn.

a

b

c

d

t1t2 tn t n-1t
2

n
+1t

2

n

Figure 1. The drawing of the graph graph K4 + Pn.

In the proofs of the paper, we will often use the term “region” also in
nonplanar drawings. In this case, crossings are considered to be vertices
of the “map”. Several parts of proofs are based on the next Lemma 2.1
which was proved in [9], and on its Corollary 2.1. Let Cn be the cycle on n

vertices. For the join product of the cycle Cn with m isolated vertices, the
following holds.

Lemma 2.1. Let D be a good drawing of mK1 + Cn, m ≥ 2, n ≥ 3, in

which no edge of Cn is crossed, and Cn does not separate the other vertices

of the graph. Then, for all i, j = 1, 2, . . . ,m, two different subgraphs T i and

T j cross each other at least ⌊n
2
⌋⌊n−1

2
⌋ times.

Assume now that the edges of Cn can cross each other. Then, in the view of
the subdrawing of the cycle Cn, there is only one region with all n vertices
of Cn on its boundary. If, in this case, some subgraph T i does not cross
Cn, then it is placed in the considered region and the next Corollary 2.1 is
obvious.

Corollary 2.1. Let D be a good drawing of mK1 + Cn, m ≥ 2, n ≥
3, in which the edges of Cn cross each other and none of r subgraphs

T i1 , T i2 , . . . , T ir , 2 ≤ r ≤ m, crosses the edges of Cn. Then, for all j, k =
1, 2, . . . , r, two different subgraphs T ij and T ik cross each other at least

⌊n
2
⌋⌊n−1

2
⌋ times.



The Crossing Numbers of Join Products of Paths with ... 325

3. The Crossing Numbers of Gj + nK1

There are eleven graphs G1 = 4K1, G2 = P2∪2K1, G3 = 2P2, G4 = P3∪K1,
G5 = P4, G6 = K3∪K1, G7 = K1,3, G8 = C4, G9 = K1,3∪{e}, G10 = K1,1,2,
and G11 = K4 of order four. All graphs Gj , j = 1, 2, . . . , 11, one can find in
the first column of the Table 5.1 in Section 5. Figure 1 shows the drawing of
the graph K4+Pn in which there are 2⌊n

2
⌋⌊n−1

2
⌋ = Z(4, n) crossings among

the edges of T 1 ∪ T 2 ∪ · · · ∪ T n = K4,n, n crossings between the edges of
G11 = K4 and the edges of K4,n, and one crossing between the edges of K4

and the edges of Pn.
Let us consider the drawing of the graph K4+nK1 obtained by deleting

the edges of Pn from the drawing in Figure 1. This gives the upper bound
Z(4, n) + n for the crossing number of the graph G11 + nK1. The deleting
of all edges of the subgraph G11 = K4 from the drawing of G11 + nK1

results in the drawing of the graph G1+nK1 = K4,n with Z(4, n) crossings.
This drawing is optimal, because cr(K4,n) = Z(4, n). By deleting the edges
{a, c}, and {b, d} from the considered drawing of G11 +nK1, the drawing of
the graph G8+nK1 = C4+nK1 with Z(4, n) crossings is obtained. As every
of the graphs G2 +nK1, G3 + nK1, G4 + nK1, and G5 +nK1 is a subgraph
of the graph C4 + nK1 and all these graphs contain K4,n as a subgraph, for
n ≥ 1 we have that the crossing number of the graphs G1+nK1, G2+nK1,

G3 + nK1, G4 + nK1, G5 + nK1, and G8 + nK1 is Z(4, n).
The deleting of the edge {b, d} from the considered drawing of the graph

K4 + nK1 with Z(4, n) + n crossings results in the drawing of the graph
G10 + nK1 with Z(4, n) + ⌊n

2
⌋ crossings. Asano [1] in 1986 proved that the

crossing number of the complete tripartite graphK1,3,n is Z(4, n)+⌊n
2
⌋. The

graph G7+nK1 is isomorphic to the graphK1,3,n, hence the crossing number
of the graph G7 + nK1 is Z(4, n) + ⌊n

2
⌋. As the graph G10 + nK1 contains

G7 + nK1 as a subgraph, cr(G10 + nK1) ≥ Z(4, n) + ⌊n
2
⌋. Moreover, as the

graph G9 + nK1 is a subgraph of G10 + nK1 and G7 + nK1 is a subgraph
of G9 + nK1, for n ≥ 1 we have that cr(G7 + nK1) = cr(G9 + nK1) =
cr(G10 +nK1) = Z(4, n)+ ⌊n

2
⌋. The crossing numbers of the remaining two

graphs G6 + nK1 and G11 + nK1 are given below.

Theorem 3.1. cr(K4 + nK1) = 2⌊n
2
⌋⌊n−1

2
⌋+ n for n ≥ 1.

Proof. The drawing in Figure 1 without the edges of Pn shows that cr(K4+
nK1) ≤ Z(4, n)+n. We prove the reverse inequality by induction on n. The
graph K4 +K1 is isomorphic to the complete graph K5 and, as cr(K5) = 1,
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the case n = 1 is proved. Assume that for n ≥ 2 there is a drawing D

of the graph K4 + nK1 with fewer than Z(4, n) + n crossings and that
cr(K4 + rK1) ≥ Z(4, r) + r for every integer r < n. As K4 + nK1 =
K4 ∪ K4,n, the assumption crD(K4 + nK1) < Z(4, n) + n implies that the
subgraph K4 has at most n− 1 crossings in D and that there is a subgraph
T i with crD(K4, T

i) = 0. Without loss of generality, let crD(K4, T
n) = 0.

Hence, the subdrawing of the subgraph K4 induced from D has all four
vertices on the boundary of one, say unbounded, region and all edges of
T n are placed in this region without crossings. Such unique subdrawing of
the graph K4 ∪ T n = K5 with one crossing on the edges of K4 is shown
in Figure 2. There are exactly two vertices of the subgraph K4 on the
boundary of every region. This implies that, in D, every subgraph T i,
i 6= n, crosses the edges of K4 ∪ T n at least two times. Thus, using the fact
that K4 + nK1 = K4,n−1 ∪ (K4 ∪ T n) we have

crD(K4 + nK1) = crD(K4,n−1) + crD(K4 ∪ T n) + crD(K4,n−1,K4 ∪ T n)

≥ Z(4, n− 1) + 1 + 2(n − 1) > Z(4, n) + n− 1.

This contradiction completes the proof.

tn

Figure 2. The drawing of K4 ∪ T n with crD(K4, T
n) = 0.

Theorem 3.2. cr((K3 ∪K1) + nK1) = 2⌊n
2
⌋⌊n−1

2
⌋+ ⌊n

2
⌋ for n ≥ 1.

Proof. By deleting all edges of Pn and the edges {a, d}, {b, d}, {c, d} of
K4 from the drawing of the graph K4 + Pn in Figure 1, the drawing of the
graph (K3 ∪ K1) + nK1 = G6 + nK1 with 2⌊n

2
⌋⌊n−1

2
⌋ + ⌊n

2
⌋ = 1

2
n(n − 1)

crossings is obtained. Hence, cr((K3 ∪K1) + nK1) ≤
1

2
n(n − 1). We prove

the reverse inequality by induction on n. Let us denote by Hn the graph
(K3 ∪K1)+nK1 in this proof. The graph H1 is planar, so the case n = 1 is
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trivial. As, the graph H2 is a subdivision of K5, cr(H2) = 1 and the theorem
is true for n = 2. Suppose now that for n ≥ 3

cr(Hn−2) ≥
1

2
(n − 2)(n − 3)

and consider such a drawing D of Hn that

crD(Hn) <
1

2
n(n− 1).

Assume that there are two different subgraphs T i and T j that do not cross
each other in D. Without loss of generality, let crD(T

n−1, T n) = 0. In the
good drawing D, crD(T

n−1 ∪ T n) = 0 and, as cr(K4,3) = 2, crD(T
i, T n−1 ∪

T n) ≥ 2 for all i = 1, 2, . . . , n− 2. Let us denote the 3-cycle of the graph G6

by C3. As Hn = (C3 ∪K1) ∪ (∪n
i=1

T i), using the fact that cr(H2) = 1 we
have that crD(C3, T

n−1 ∪ T n) ≥ 1. This implies that

crD(Hn) = crD(Hn−2) + crD(T
n−1 ∪ T n) + crD(Hn−2, T

n−1 ∪ T n)

= crD(Hn−2) + crD(T
n−1 ∪ T n) + crD(C3, T

n−1 ∪ T n)

+

n−2
∑

i=1

crD(T
i, T n−1 ∪ T n)

≥
1

2
(n− 2)(n− 3) + 0 + 1 + 2(n − 2) =

1

2
n(n− 1),

a contradiction with the assumption of D.
Hence, crD(T

i, T j) 6= 0 for all i, j = 1, 2, . . . , n, i 6= j, and in D there
are at least

(

n
2

)

= 1

2
n(n − 1) crossings. This contradiction with crD(Hn) <

1

2
n(n− 1) completes the proof.

4. The Crossing Numbers of Gj + Pn

Every join productGj+Pn, j = 1, 2, . . . , 11, contains Gj+nK1 as a subgraph
and therefore, cr(Gj+Pn) ≥ cr(Gj+nK1). For j = 1, 2, . . . , 5, one can easy
obtain a drawing ofGj+Pn with Z(4, n) crossings by removing suitable edges
from the drawing in Figure 1. For j = 6, 7, and 9, the deleting of suitable
edges from the drawing in Figure 1 results in the drawings of the graphs
Gj + Pn with Z(4, n) + ⌊n

2
⌋ crossings. Hence, cr(Gj + Pn) = cr(Gj + nK1)
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for j = 1, 2, . . . , 7 and also for j = 9. It was proved in [9] that cr(G8+Pn) =
cr(C4 + Pn) = Z(4, n) + 1 for n ≥ 2. The graph G8 + P1 is planar. It is the
aim of this section to establish the crossing numbers for the graphs G10+Pn

and G11 + Pn.

Theorem 4.1. cr(K1,1,2+P1) = 0 and cr(K1,1,2+Pn) = 2⌊n
2
⌋⌊n−1

2
⌋+⌊n

2
⌋+1

for n ≥ 2.

Proof. The graph K1,1,2+P1 = G10+P1 is planar. For n ≥ 2, the deleting
of the edge {b, d} from the drawing in Figure 1 results in the drawing of
G10+Pn with Z(4, n)+⌊n

2
⌋+1 = 1

2
n(n−1)+1 crossings. AsG10+Pn contains

the graph G10 + nK1 as a subgraph, we have 1

2
n(n − 1) ≤ cr(G10 + Pn) ≤

1

2
n(n− 1) + 1.

Assume that there is a drawing D of the graph G10+Pn with 1

2
n(n−1)

crossings. In such a drawing, no edge of the path Pn is crossed, becauseG10+
nK1 is a subgraph of G10+Pn and cr(G10+nK1) =

1

2
n(n−1). Moreover, no

edge of the 4-cycle of the subgraph G10 is crossed in D, otherwise in D there
is a crossing on an edge of G10 not belonging to the subgraph G9 + nK1,
a contradiction with cr(G9 + nK1) = 1

2
n(n − 1). The subdrawing of the

considered 4-cycle induced from D divides the plane into two quadrangular
regions in such a way that, in D, all vertices of the path Pn lie in one of
these two regions and none of T 1, T 2, . . . , T n crosses the considered 4-cycle.
Hence, using Lemma 2.1, we have crD(G10 + Pn) ≥ 2

(

n
2

)

> 1

2
n(n− 1). This

contradiction completes the proof.

Theorem 4.2. cr(K4 + P1) = 1 and cr(K4 + Pn) = 2⌊n
2
⌋⌊n−1

2
⌋+ n+ 1 for

n ≥ 2.

Proof. The graph K4 + P1 is isomorphic to the complete graph K5 and
cr(K5) = 1. For n ≥ 2, the drawing in Figure 1 shows that cr(K4 + Pn) ≤
Z(4, n) + n + 1. We prove the reverse inequality by induction on n. The
graph K4 + P2 is isomorphic to the graph K6 and, as cr(K6) = 3, the
theorem is true for n = 2. Suppose now that for n ≥ 3 there is a drawing
D of the graph G11 +Pn with fewer than Z(4, n) +n+1 crossings and that
cr(G11 + Pr) ≥ Z(4, r) + r + 1 for every integer 2 ≤ r < n. As cr(K4,n) =
Z(4, n), the edges of G11 are crossed in D at most n times. Moreover, since
G11+Pn contains G11+nK1 as a subgraph and cr(G11+nK1) = Z(4, n)+n,
none of the edges of Pn is crossed in D.
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Assume first that the edges of G11 do not cross each other in D. Then
crD(G11, T

i) = 1 for all i = 1, 2, . . . , n, because the graph G11 = K4 is not
outerplanar and crD(K4,n, G11) ≤ n. In D there are at least two different
subgraphs T i and T j with crD(T

i, T j) = 0, otherwise crD(G11 + Pn) ≥
(

n
2

)

+ n > Z(4, n) + n, and this contradicts our assumption. The subgraph
consisting of G11, T

i, T j , and the path joining ti with tj is homeomorphic
to the complete graph K6. Now we have crD(G11) = 0, crD(T

i, T j) = 0,
crD(G11, T

i) = crD(G11, T
j) = 1 and no edge of the path joining ti with tj

is crossed. This contradiction with cr(K6) = 3 confirms that the edges of
G11 cross each other in D.

In a good drawing, the edges of G11 = K4 do not cross each other
more than once. As cr(K4,n) = Z(4, n) and crD(G11) = 1, in D there is
at least one subgraph T i with crD(G11, T

i) = 0. The edges of T i do not
cross each other and, as G11 ∪ T i = K5, the only possible subdrawing of
G11 ∪ T i induced from D divides the plane in the same way as shown in
Figure 2. Hence, in this subdrawing there are exactly two vertices of G11 on
the boundary of every region and, in D, every subgraph T j, j = 1, 2, . . . , n,
j 6= i, crosses the edges of G11 ∪ T i at least two times. This implies that

crD(G11 + Pn) = cr(K4,n−1) + crD(G11 ∪ T i) + crD(K4,n−1, G11 ∪ T i)

≥ Z(4, n − 1) + 1 + 2(n− 1) ≥ Z(4, n) + n.

For crD(G11+Pn) > Z(4, n)+n we have a contradiction. If crD(G11+Pn) =
Z(4, n) + n, then crD(G11 ∪ T i, T j) = 2 for all j 6= i. Since crD(G11, Pn) =
0, all vertices t1, t2, . . . , tn lie in D in the same region in the view of the
subdrawing of G11. All vertices of G11 are placed on the boundary of this
considered region. One can easy to see that at least two edges of T j, j 6= i,
cross in D the edges of G11∪T i and that if some edge {tj, x}, x ∈ {a, b, c, d},
crosses the edges of G11, then it crosses G11 at least twice and therefore, T j

crosses G11 ∪ T i at least three times. This implies that crD(G11, T
i) = 0

for all i = 1, 2, . . . , n and all vertices t1, t2, . . . , tn lie in D in one region of a
4-cycle of G11. Since the graph G11 + Pn contains the subgraph C4 + nK1,
using Corollary 2.1 and the fact that crD(G11) = 1 we have crD(G11+Pn) ≥
2
(

n
2

)

+ 1 > Z(4, n) + n. This contradiction with the assumption completes
the proof.
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5. Conclusion

In the Table 5.1 below there are collected all values of crossing numbers of
the join products for all graphs on four vertices with discrete graphs nK1

and with paths Pn. It is easily seen that for all nonconnected subgraphsH of
the path Pn with some restricted number of edges in every component, the
crossing number of the graph Gj +H is the same as for the graph Gj +nK1

for all j = 1, 2, . . . , 11.

Table 5.1. Summary of crossing numbers for Gi + nK1 and Gi + Pn.

G
i icr( )G  + nK1 icr( )G  + Pn

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

G11

Z n(4, )

Z n(4, )

Z n(4, ) Z n(4, )

Z n(4, )

Z n(4, )

Z n(4, ) Z n(4, )

Z n(4, ) Z n(4, )

Z n(4, )

Z n(4, ) +
n

2
Z n(4, ) +

n

2

Z n(4, ) +
n

2
Z n(4, ) +

n

2

Z n(4, ) +
n

2
Z n(4, ) +

n

2

Z n(4, ) +
n

2

Z n(4, ) + n

n $1

n $1

n $1

n $1

n $1

n $1

n $1

n $1

n $1

n $1

n $1

n $1

n $1

n $1

n $1

n $1n $1

n $1

n $1

Z n(4, ) +1

Z n(4, )
n

2+ +1

Z n(4, ) ++ n 1

n 2$

n 2$

n 2$



The Crossing Numbers of Join Products of Paths with ... 331

References

[1] K. Asano, The crossing number of K1,3,n and K2,3,n, J. Graph Theory 10

(1986) 1–8.

[2] L.W. Beineke and R.D. Ringeisen, On the crossing numbers of products of

cycles and graphs of order four, J. Graph Theory 4 (1980) 145–155.

[3] D. Bokal, On the crossing numbers of Cartesian products with paths, J. Com-
bin. Theory (B) 97 (2007) 381–384.

[4] M.R. Garey and D.S. Johnson, Crossing number is NP-complete, SIAM J.
Algebraic. Discrete Methods 4 (1983) 312–316.

[5] L.Y. Glebsky and G. Salazar, The crossing number of Cm×Cn is as conjectured

for n ≥ m(m+ 1), J. Graph Treory 47 (2004) 53–72.

[6] F. Harary, P.C. Kainen and A.J. Schwenk, Toroidal graphs with arbitrarily high

crossing numbers, Nanta Math. 6 (1973) 58–67.
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[8] M. Klešč, The crossing numbers of Cartesian products of paths with 5-vertex
graphs, Discrete Math. 233 (2001) 353–359.
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