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Abstract

An edge-coloured graph G is rainbow connected if any two vertices
are connected by a path whose edges have distinct colours. The rain-
bow connection number of a connected graph G, denoted rc(G), is the
smallest number of colours that are needed in order to make G rainbow
connected. In this paper we prove that rc(G) = 2 for every connected
graph G of order n and size m, where

(

n−1

2

)

+ 1 ≤ m ≤
(

n

2

)

− 1.
We also characterize graphs with rainbow connection number two and
large clique number.
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1. Introduction

We use [1] for terminology and notation not defined here and consider finite
and simple graphs only.

An edge-coloured graph G is called rainbow-connected if any two vertices
are connected by a path whose edges have different colours. This concept
of rainbow connection in graphs was recently introduced by Chartrand et
al. in [4]. The rainbow connection number of a connected graph G, denoted
rc(G), is the smallest number of colours that are needed in order to make
G rainbow connected. An easy observation is that if G has n vertices then
rc(G) ≤ n − 1, since one may colour the edges of a given spanning tree
of G with different colours, and colour the remaining edges with one of
the already used colours. Chartrand et al. computed the precise rainbow
connection number of several graph classes including complete multipartite
graphs [4]. The rainbow connection number has been studied for further
graph classes in [3] and for graphs with fixed minimum degree in [3, 6, 8].

Rainbow connection has an interesting application for the secure trans-
fer of classified information between agencies (cf. [5]). While the information
needs to be protected since it relates to national security, there must also
be procedures that permit access between appropriate parties. This two-
fold issue can be addressed by assigning information transfer paths between
agencies which may have other agencies as intermediaries while requiring a
large enough number of passwords and firewalls that is prohibitive to intrud-
ers, yet small enough to manage (that is, enough so that one or more paths
between every pair of agencies have no password repeated). An immedi-
ate question arises: What is the minimum number of passwords or firewalls
needed that allows one or more secure paths between every two agencies so
that the passwords along each path are distinct?

The computational complexity of rainbow connectivity has been studied
in [2, 7]. It is proved that the computation of rc(G) is NP-hard ([2],[7]). In
fact it is already NP-complete to decide if rc(G) = 2, and in fact it is already
NP-complete to decide whether a given edge-coloured (with an unbounded
number of colours) graph is rainbow connected [2]. More generally it has
been shown in [7], that for any fixed k ≥ 2, deciding if rc(G) = k is NP-
complete.

For the rainbow connection numbers of graphs the following results are
known (and obvious).

Proposition 1. Let G be a connected graph of order n. Then
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1. 1 ≤ rc(G) ≤ n− 1,

2. rc(G) ≥ diam(G),

3. rc(G) = 1 ⇔ G is complete,

4. rc(G) = n− 1 ⇔ G is a tree.

2. Rainbow Connection and Size of Graphs

In this section we consider the following

Problem 1. For every k, 1 ≤ k ≤ n−1, compute and minimize the function
f(n, k) with the following property: If |E(G)| ≥ f(n, k), then rc(G) ≤ k.

We first show a lower bound for f(n, k).

Proposition 2. f(n, k) ≥
(n−k+1

2

)

+ (k − 1).

Proof. We construct a graph Gk as follows: Take a Kn−k+1−e and denote
the two vertices of degree n − k − 1 with u1 and u2. Now take a path Pk

with vertices labeled w1, w2, . . . , wk and identify the vertices u2 and w1.

The resulting graph Gk has order n and size |E(G)| =
(n−k+1

2

)

+ (k − 2).
For its diameter we obtain d(u1, wk) = diam(G) = k + 1. Hence f(n, k) ≥
(n−k+1

2

)

+ (k − 1).

Using Propositions 1 and 2 we can compute f(n, k) for k ∈ {1, n− 2, n− 1}.

Proposition 3.

f(n, 1) =
(n
2

)

,

f(n, n− 1) = n− 1,

f(n, n− 2) = n.

We will now show that f(n, 2) =
(n−1

2

)

+ 1. In fact we will prove a stronger
result.

Theorem 1. Let G be a connected graph of order n and size m. If
(n−1

2

)

+
1 ≤ m ≤

(n
2

)

− 1, then rc(G) = 2.

Proof. Since m ≤
(n
2

)

− 1, we obtain rc(G) ≥ diam(G) ≥ 2 by Proposi-
tion 1.
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Now we want to colour the edges of G blue and red in such a way that G

is rainbow connected. Equivalently we can colour the edges of the complete
graph Kn blue, red and black, where the edges of G are coloured black.
Then for every black edge we need a blue-red path of length two between
the endvertices. Let H be the subgraph spanned by the edges of G. Then 1 ≤
|E(H)| ≤ n − 2. Let H = ∪s

i=1Hi, where Hi are the connected components
of H, and let F be a maximal bipartite spanning subgraph of H with F =
∪s
i=1Fi. For 1 ≤ i ≤ s let |V (Hi)| = |V (Fi)| = ni, qi = |E(Fi)| ≤ |E(Hi)| =

pi, and let q = |E(F )| ≤ |E(H)| = p. For each Fi, 1 ≤ i ≤ s, let Ui,Wi with
V (Fi) = Ui ∪Wi be the partite sets of Fi.

Let E[F,H] be the set of edges of G between vertices of V (F ) and
vertices of V (H) and E[v,H] be the set of edges of G between v ∈ F and
the vertices of V (H). Finally let R = V (G) \ V (H) and r = |R|.

We now distinguish several cases. In each of these cases we will colour
some edges blue or red. All remaining edges can be coloured arbitrarily blue
or red.

Case 1. q = p (F = H).

Subcase 1.1. s = 1.

Then n1 ≤ n − 1. Choose a vertex v1 ∈ R and colour all edges of E[v1, U1]
blue and all edges of E[v1,W1] red.

Subcase 1.2. s ≥ 2.

In this subcase the blue-red stars will form a circular structure within the
components Hi. For each Hi, 1 ≤ i ≤ s, choose a vertex ui ∈ Ui and colour
all edges of E[ui, Ui+1] blue and all edges of E[ui,Wi+1] red (indices reduced
modulo s).

Case 2. q < p.

Then p− q ≤ n−
∑s

i=1 ni + (s − 2) = r + s− 2.

Suppose p−q > n−
∑s

i=1 ni+(s−2). Then p > n−
∑s

i=1 ni+(s−2)+q ≥
n−

∑s
i=1 ni+(s−2)+

∑s
i=1(ni−1) = n−2, since qi ≥ ni−1, a contradiction.

For each of the q black edges we can construct a blue-red path of length
two as in the previous case. For the remaining p − q ≤ r + s − 2 black
edges we choose a vertex wi ∈ Wi for 3 ≤ i ≤ s and the r vertices v1, . . . , vr
of R. We may assume that the components Hi are labeled in such a way
that p1 − q1 ≥ p2 − q2 ≥ . . . ≥ ps − qs. Now picking up the vertices in the
order w3, w4, . . . , ws, v1, v2, . . . , vr and the black edges in the order E(H1) \
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E(F1), E(H2) \ E(F2), . . . , E(Hs) \ E(Fs), we can construct p − q blue-red
paths of length two between the endvertices of the black edges.

3. Rainbow Connection and Clique Number

In this section we characterize graphs with rainbow connection two with
respect to their clique number.

Proposition 4. Let G be a connected graph of order n and clique number
ω(G). If ω(G) = n+ 1− i for i = 1 or i = 2, then rc(G) = i.

Proof. If i = 1 then ω(G) = n and thus G is complete which implies
rc(G) = 1 by Proposition 1. If i = 2 then ω(G) = n − 1. Hence |E(G)| ≥
(n−1

2

)

+ 1 since G is connected. The result follows now by Theorem 1.

Suppose now that G is connected and that 2 ≤ ω(G) ≤ n−2. LetH be a sub-
graph of G which induces a maximum clique, i.e., a clique of size ω = ω(G).
Let F = G[V (G) \ V (H)] be the subgraph of G induced by the vertices of
V (G)\V (H). Let V (H) = {w1, w2, . . . , wω} and V (F ) = {v1, v2, . . . , vn−ω}.
If F is not connected then let F1, F2, . . . , Fp be the components of F . Let
NH(v) be the set of neighbors of v in H and dH(v) = |NH(v)|.

Proposition 5. Let G be a connected graph of order n, clique number ω(G)
with 2 ≤ ω(G) ≤ n− 2 and rainbow connection number rc(G) = 2. Then

(N1) 1 ≤ dH(v) ≤ ω(G)− 1 for every vertex v ∈ V (F ),

(N2) NH(vi) ∩NH(vj) 6= ∅ and max{dH(vi), dH(vj)} ≥ 2 for every pair of
nonadjacent vertices vi ∈ V (Fi), vj ∈ V (Fj),

(N3) |(NH(vi) ∩ NH(vj)) ∪ (NH(vi) ∩ NH(vk)) ∪ (NH(vj) ∩ NH(vk))| ≥ 2
for every triple of independent vertices vi ∈ V (Fi), vj ∈ V (Fj), vk ∈
V (Fk).

Proof. By Proposition 1 we have that diam(G) = 2. Since H induces a
maximum clique in G we obtain (N1). Suppose w ∈ NH(v1) ∩ NH(v2) for
two nonadjacent vertices v1, v2 ∈ V (F ) and dH(v1) = dH(v2) = 1. Since G

is rainbow connected we may assume that c(v1w) = 1 and c(v2w) = 2. Then
c(wu) = 2 for all vertices u ∈ (V (H) \ {w}) with respect to v1 and c(wu) =
1 for all vertices u ∈ (V (H) \ {w}) with respect to v2, a contradiction.
This shows (N2). If |(NH(v1) ∩NH(v2)) ∪ (NH(v1) ∩NH(v3)) ∪ (NH(v2) ∩
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NH(v3))| = 1, then not all three pairs of vertices of F are rainbow connected.
This shows (N3).

Theorem 2. Let G be a connected graph of order n, diameter 2 and clique
number n − 2. Then rc(G) = 2 with the exception that G is isomorphic to
Kn−2 with two pendant edges at the same vertex.

Proof. If F ∼= K2 then colour all edges of E(H) blue, all edges of E[F,H]
red and the edge of F arbitrarily to obtain an edge colouring of G with
rc(G) = 2.

If F ∼= 2K1 then v1 and v2 have a common neighbor in H by (N2), say
w1. If NH(v1) = NH(v2) = {w1}, then G is isomorphic to Kn−2 with two
pendant edges at w1. Now (N2) is violated and thus rc(G) ≥ 3. Hence we
may assume that max{|E[v1,H]|, |E[v2,H]|} ≥ 2, say |E[v1,H]| ≥ 2 and
w1, w2 ∈ N(v1,H). Colour the edges of E(H) as well as edge v1w1 blue
and the edges v2w1 and v1w2 red to obtain an edge colouring of G with
rc(G) = 2.

Theorem 3. Let G be a connected graph of order n, diameter 2 and clique
number n − 3. Then rc(G) = 2 with the exception of the following three
cases:

(1) F = G[V (G) \ V (H)] ∼= K2 ∪ K1 where H is a clique of size n − 3,
V (K2) = {v1, v2}, V (K1) = {v3} and min{|E[v1,H]|, |E[v2,H]|} =
|E[v3,H]| = 1.

(2) F = G[V (G) \ V (H)] ∼= K2 ∪ K1, V (K2) = {v1, v2}, V (K1) = {v3},
|E[v1,H]|+ |E[v2,H]| = |E[v3,H]| = 2 and NH(v1) 6= NH(v2).

(3) F = G[V (G) \ V (H)] ∼= 3K1, V (F ) = {v1, v2, v3} and |E[v1,H]| =
|E[v2,H]| = |E[v3,H]| = 1.

Proof. 1. If F ∼= K3 or F ∼= P3 then colour all edges of E(H) blue, all
edges of E[F,H] red and the edges of F blue and red such that F is rainbow
connected. This is an edge colouring of G with rc(G) = 2.

2. If F ∼= K2∪K1 then let V (K2) = {v1, v2}, V (K1) = {v3}. We distinguish
three cases.

Case 1. |E[v3,H]| = 1.
Let NH(v3) = {w1}. If min{|E[v1,H]|, |E[v2,H]|} = 1, then (N2) is vi-
olated and thus rc(G) ≥ 3. Hence we may assume that min{|E[v1,H]|,
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|E[v2,H]|} ≥ 2, say {w1, w2} ⊆ NH(v1) and {w1, w3} ⊆ NH(v2) (w2 = w3

is possible; w1 ∈ NH(v1) ∩ NH(v2) since diam(G) = 2). The following
colouring c with colours 1 (blue) and 2 (red) induces an edge colouring of
G with rainbow connection rc(G) = 2: c(wiwj) = 1 for all wi, wj ∈ V (H),
c(v1w1) = c(v2w1) = 1, c(v1w2) = c(v2w3) = c(v3w1) = 2 and an arbitrary
colour for the remaining edges.

Case 2. |E[v3,H]| = 2.

Let NH(v3) = {w1, w2}. If |E[v1,H]| = |E[v2,H]| = 1 and NH(v1) 6=
NH(v2), then we may assume v1w1, v2w2 ∈ E(G) and c(v1w1) = c(v2w2) =
2. Assume that rc(G) = 2. This implies v3w1, v3w2 ∈ E(G) and c(v3w1) =
c(v3w2) = 1, which is not possible. Therefore, rc(G) ≥ 3.

Hence we may assume that NH(v1) = NH(v2) = {w} or |E[v1,H]| +
|E[v2,H]| ≥ 3. If NH(v1) = NH(v2) = {w} then w ∈ NH(v3), say w =
w1, since diam(G) = 2. Choose c(wiwj) = 1 for all wi, wj ∈ V (H),
c(v1w1) = c(v2w1) = c(v3w2) = 2, c(v3w1) = 1 and an arbitrary colour
for the remaining edges to obtain an edge colouring of G with rc(G) = 2.
If |E[v1,H]|+ |E[v2,H]| ≥ 3 and |E[v3,H]| = 2 then, without loss of gener-
ality, NH(v3) = {w1, w2}, {w3, w4} ⊆ NH(v1), w5 ∈ NH(v2) with w3 = w1

and w5 = w1 or w5 = w2. Choose c(wiwj) = 1 for all wi, wj ∈ V (H),
c(v1w4) = 2, and c(v1w1) = c(v2w1) = c(v3w2) = 2, c(v3w1) = 1 in case
w5 = w1 or c(v1w1) = c(v3w2) = 1, c(v2w2) = c(v3w1) = 2 in case w5 = w2,
respectively, and an arbitrary colour for the remaining edges in both cases.

Case 3. |E[v3,H]| ≥ 3.

Obviously an analogous coloring like the previous one induces an edge colour-
ing of G with rc(G) = 2.

3. If F ∼= 3K1 then let V (F ) = {v1, v2, v3}. If |E[v1,H]| = |E[v2,H]| =
|E[v3,H]| = 1, then NH(v1) = NH(v2) = NH(v3) = {w} for a vertex w ∈
V (H) by (N2). However, (N3) is violated and thus rc(G) ≥ 3. Hence we may
assume |(NH(v1) ∩ NH(v2)) ∪ (NH(v1) ∩ NH(v3)) ∪ (NH(v2) ∩ NH(v3))| ≥
2. If there are three pairwise different vertices w1 ∈ NH(v1) ∩ NH(v2),
w2 ∈ NH(v1) ∩NH(v3), and w3 ∈ NH(v2) ∩NH(v3), then choose c(v1w1) =
c(v2w3) = c(v3w2) = 1 and c(v1w2) = c(v2w1) = c(v3w3) = 2. If two of the
vertices w1, w2, w3 coincide, say w1 = w2, then choose c(v2w3) = c(v3w1) =
1, c(v1w1) = c(v2w1) = c(v3w3) = 2. Choose in both cases c(wiwj) = 1 for
all wi, wj ∈ V (H) and an arbitrary colour for the remaining edges to obtain
an edge colouring of G with rainbow connection rc(G) = 2.
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It would be possible to characterize all connected graphs of order n, diam-
eter 2 and rainbow connection number 2 with clique number n − s, s ≥ 4.
However, the case analysis will enlarge extensively since the number of ex-
ceptional graph classes with |V (G)| = n, diam(G) = 2, ω(G) = n − s, but
rainbow connection number rc(G) > 2 increases.
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