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Abstract

Let D be a digraph, V (D) and A(D) will denote the sets of vertices
and arcs of D, respectively.

A (k, l)-kernel N of D is a k-independent set of vertices (if u, v ∈ N ,
u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D)−N then
there exists v ∈ N such that d(u, v) ≤ l). A k-kernel is a (k, k − 1)-
kernel. Quasi-transitive, right-pretransitive and left-pretransitive di-
graphs are generalizations of transitive digraphs. In this paper the fol-
lowing results are proved: Let D be a right-(left-) pretransitive strong
digraph such that every directed triangle of D is symmetrical, then D
has a k-kernel for every integer k ≥ 3; the result is also valid for non-
strong digraphs in the right-pretransitive case. We also give a proof of
the fact that every quasi-transitive digraph has a (k, l)-kernel for every
integers k > l ≥ 3 or k = 3 and l = 2.
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1. Introduction

In this work, D = (V (D), A(D)) will denote a finite digraph without loops
or multiple arcs in the same direction, with vertex set V (D) and arc set
A(D). For general concepts and notation we refer the reader to [1], [4]
and [9], particularly we will use the notation of [9] for walks, if C =
(x0, x1, . . . , xn) is a walk and i < j then xiCxj will denote the subwalk
of C (xi, xi+1, . . . , xj−1, xj). Union of walks will be denoted by concatena-
tion or with ∪. For a vertex v ∈ V (D), we define the out-neighbourhood of v
in D as the set N+

D (v) =
{

u ∈ V (D)
∣

∣(v, u) ∈ A(D)
}

; when there is no possi-
bility of confusion we will omit the subscript D. The elements of N+(v) are
called the out-neighbours of v, and the out-degree of v, d+D(v), is the number
of out-neighbours of v. Definitions of in-neighbourhood, in-neighbours and
in-degree of v are analogously given.

A digraph is strongly connected (or strong) if for every u, v ∈ V (D),
there exists a uv-directed path, i.e., a directed path with initial vertex u and
terminal vertex v. A strong component (or component) of D is a maximal
strong subdigraph of D. The condensation of D is the digraph D⋆ with
V (D⋆) equal to the set of all strong components of D, and (S, T ) ∈ A(D⋆)
if and only if there is an ST -arc in D. Clearly D⋆ is an acyclic digraph
(a digraph without directed cycles), and thus, it has both vertices of out-
degree equal to zero and vertices of in-degree equal to zero. A terminal
component of D is a strong component T of D such that d+D⋆(T ) = 0. An
initial component of D is a strong component S of D such that d−D⋆(S) = 0.

An arc (u, v) ∈ A(D) is called asymmetrical (resp. symmetrical) if
(v, u) /∈ A(D) (resp. (v, u) ∈ A(D)). The asymmetrical part of D, Asym(D),
is the subdigraph of D induced by the asymmetrical arcs. A subdigraph of
D (e.g. a directed path or a directed triangle) is asymmetrical if all its arcs
are asymmetrical.

A biorientation of the graph G is a digraph D obtained from G by re-
placing each edge {x, y} ∈ E(G) by either the arc (x, y) or the arc (y, x)
or the pair of arcs (x, y) and (y, x). A semicomplete digraph is a biorienta-
tion of a complete graph. An orientation of a graph G is an asymmetrical
biorientation of G; thus, an oriented graph is an asymmetrical digraph. A
tournament is an orientation of a complete graph. An orientation of a di-
graph D is a maximal asymmetrical subdigraph of D. A complete digraph
is a biorientation of a complete graph obtained by replacing each edge {x, y}
by the arcs (x, y) and (y, x).
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In [16], M. Kwaśnik introduces the concept of (k, l)-kernel in a digraph
generalizing the concept of kernel of a digraph in Berge’s sense which is a
(2, 1)-kernel. As a special case of (k, l)-kernels we consider the k-kernels; we
define a k-kernel to be a (k, k − 1)-kernel. Under this definition a kernel is
a 2-kernel. Another special case of (k, l)-kernels that have been studied by
some authors are the (2, 2)-kernels, or quasi-kernels.

The solution of a digraph is the dual notion of a kernel, so Kwaśnik’s
concept can be adopted to generalize the concept of solution to (k, l)-solution
of a digraph.

Definition. Let D be a digraph and S ⊆ V (D).

• The set S is l-dominating if for every v ∈ V (D) \ S there exists u ∈ S
such that d(u, v) ≤ l.

• The set S is called a (k, l)-solution of D if it is both k-independent and
l-dominating.

• A k-solution is a (k, k − 1)-solution.

Another concept related to the kernel of a digraph is the one of semikernel.
A subset S ⊆ V (D) is a semikernel (or local kernel) of the digraph D if
S is independent and S absorbs N+(S). This concept was generalized also
by Kucharska and Kwaśnik in [15] as follows: A subset S ⊆ V (D) is a k-
semikernel of the digraph D if S is k-independent and for each u ∈ V (D)\S
such that d(S, u) ≤ k−1, it holds that d(u, S) ≤ k−1. Clearly a semikernel
is a 2-semikernel.

In the particular families of digraphs we will be studying in this work
the existence of k-solutions will be very close to the existence of k-kernels,
so we find it useful to recall the definition of the dual of a digraph.

Definition. If D is a digraph, the dual (or converse) of D,
←−
D is the digraph

with vertex set V (
←−
D) = V (D) and such that (u, v) ∈ A(

←−
D) if and only if

(v, u) ∈ A(D).

Remark 1. Clearly
←−←−
D = D. Also it is obvious that if N is a (k, l)-kernel

of D then N is a (k, l)-solution of
←−
D .

There are not many results concerning the existence of k-kernels nor (k, l)-
kernels in large families of digraphs. Many of the existing results come from
the study of products of graphs and digraphs and how the k-kernels are
preserved (like the work of W loch and W loch, in particular with Szumny
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in [20, 21]) or the superdigraphs of certain families of digraphs ([15]). We
begin with some of the classical results in Kernel Theory that we will use as
platform for the results we propose.

Since every (directed) cycle of odd length does not have a kernel, suf-
ficient conditions for the existence of kernels in digraphs have been found
imposing conditions on the cycles of a digraph, e.g., in [22] it is proved that

Theorem 2. If D is a digraph without directed cycles, then D has a kernel.

In [19], Richardson generalizes this result as follows1):

Theorem 3 (Richardson). If D is a digraph such that the length of every
directed cycle is congruent to 0 (mod 2) then D has a kernel.

In [17], M. Kwaśnik generalized this result for k-kernels in the following way.

Theorem 4 (Kwaśnik). Let D be a strongly connected digraph. If every
directed cycle in D has length congruent to 0 (mod k) then D has a k-kernel.

Kwaśnik’s Theorem indeed proves that digraphs in a very large family have
a k-kernel. Her result is equivalent to saying that every strongly connected
cyclically k-partite digraph have a k-kernel. Recall that a digraph D is
transitive if (u, v), (v,w) ∈ A(D) implies (u,w) ∈ A(D).

In [4], the following general result can be found:

Theorem 5. If D is a transitive digraph, then D has a kernel. Moreover,
every kernel consists in one vertex from every terminal strong component of
D, so all kernels of D have the same cardinality.

Theorem 5 has been a motivation for the results we present in this work.
We focus on three families of digraphs which generalize transitive digraphs:
quasi-transitive digraphs and right-/left-pretransitive digraphs.

Definition.

• A digraph D is quasi-transitive if (u, v), (v,w) ∈ A(D) implies (u,w) ∈
A(D) or (w, u) ∈ A(D).

• A digraph D is right-(left-)pretransitive if (u, v), (v,w) ∈ A(D) implies
(u,w) ∈ A(D) or (w, v) ∈ A(D) ((v, u) ∈ A(D)).

1)See [6] for a simpler proof of Theorem 3.
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Every transitive digraph is quasi-transitive and right-/left-pretransitive (and
thus the title of this article).

Related to right- and left-pretransitive digraphs is also Theorem 6 below
(proved by Galeana-Sánchez and Rojas-Monroy in [12]), which generalizes
a result of Duchet ([10]).

Definition. A digraph D is called kernel-perfect if every induced subdigraph
of D has a kernel.

Theorem 6 (Galeana-Sánchez, Rojas-Monroy). Let D be a (possibly infinite)
digraph. Suppose that there exist two subdigraphs of D say D1 and D2 such
that D = D1 ∪ D2 (possibly A(D1) ∩ A(D2) 6= ∅), where D1 is a right-
pretransitive digraph, D2 is a left-pretransitive digraph, and Di contains no
infinite outward path for i ∈ {1, 2}. Then D is a kernel-perfect digraph.

Corollary 7 (Duchet). If D is a right-/left-pretransitive digraph, then D is
kernel-perfect.

So we have great motivation for studying these families of digraphs. Also,
Bang-Jensen and Huang have studied quasi-transitive digraphs. Among
other results related to our research they have relevant results concerning
3-kings in quasi-transitive digraphs [3] and a structural characterization of
quasi-transitive digraphs [2].

To conclude this section, we present a result of Kernel Theory due to
Neumann-Lara that inspired the following lemma, which has turned out to
be very useful when dealing with k-kernels.

Theorem 8 (Neumann-Lara [18]). Let D be a digraph. If every induced
subdigraph of D has a nonempty semikernel, then D is a kernel-perfect di-
graph.

Lemma 9. Let k ≥ 2 be an integer. If D is a digraph such that {v} is a
k-semikernel of D for every v ∈ V (D), then D has k-kernel.

Proof. Let D be a digraph such that {v} is a k-semikernel of D for every
v ∈ V (D). Since D has at least one k-semikernel we can consider a (⊆-)
maximal k-semikernel of D (because D is finite), say S. If S is a (k − 1)-
absorbent set, S is the k-kernel we have been looking for. Otherwise, there
exists at least one vertex v0 ∈ V (D) such that it is not (k − 1)-absorbed by
S. In other words, there does not exist a v0S-directed path of length less
than or equal to k − 1, and by the second k-semikernel condition neither
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a Sv0-directed path of length less than or equal to k − 1 does (because,
if it exists, also a v0S-directed path of length less than or equal to k − 1
would exist). Thence S ∪ {v0} is a k-independent set. Besides, since S is a
k-semikernel of D, for each Sv-directed path of length less than or equal to
k − 1 in D, there exists a vS-directed path of length less than or equal to
k − 1 in D. The same property can be claimed for every vov-directed path
of length less than or equal to k−1 in D because {v0} is also a k-semikernel
of D. Therefore S ∪ {v0} fulfills the second k-semikernel condition, which
contradicts the choice of S as a maximal k-semikernel. It follows that S is
a k-kernel of D.

The rest of the paper is structured as follows. In Section 2 we study some
properties of right-(left-)pretransitive digraphs as a setup to use Lemma 9
to prove that if D is a right-(left-)pretransitive strong digraph such that
every directed triangle of D is symmetrical, then D has a k-kernel for every
integer k ≥ 3. This result will be used along with a brief structural analysis
of non-strong right-pretransitive digraphs to prove that the result is also
valid for non-strong digraphs in the right-pretransitive case. A conjecture
and an open problem are proposed on the matter. In Section 3 a structural
characterization of quasi-transitive digraphs is used along with a previous
result about (k, l)-kernels in the composition of digraphs to prove that every
quasi-transitive digraph has (k, l)-kernel for every integers k > l ≥ 3 or
k = 3 and l = 2. An analysis of the (2-)kernels in quasi-transitive digraphs
is made from the point of view of the Strong Perfect Graph Theorem. At the
end of both sections, results about (k, l)-solutions in digraphs are obtained
by means of dualization.

2. Pretransitive Digraphs

Recall that a digraph D is called right-pretransitive (resp. left-pretransitive)
if (u, v) ∈ A(D) and (v,w) ∈ A(D) implies (u,w) ∈ A(D) or (w, v) ∈ A(D)
(resp. when (u, v), (v,w) ∈ A(D) implies (u,w) ∈ A(D) or (v, u) ∈ A(D)).

There is a notorious duality in the definitions of right and left-pretran-
sitive digraphs and as there is also a duality in the definitions of k-kernels
and k-solutions. In view of both definitions the next lemma will prove to be
very useful once we have the appropriate tools.
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Lemma 10. Let D be a digraph. D is a right-pretransitive digraph if and

only if
←−
D is a left-pretransitive digraph.

Proof. Straightforward.

We will prove two lemmas about the structure of right-pretransitive di-
graphs; the second one will be dualized using Lemma 10 to obtain an anal-
ogous result about left-pretransitive digraphs.

Lemma 11. If D is a right-pretransitive digraph and (x0, x1, . . . , xn) is
an asymmetrical directed path in D then (x0, xi) ∈ A(D) for every i ∈
{2, 3, . . . , n}.

Proof. Straightforward, by induction on n.

Lemma 12. If D is a right-pretransitive digraph then Asym(D) is acyclic.
Moreover, every directed triangle in D has at least two symmetrical arcs.

Proof. We will prove the second part first. Let C3 = (x, y, z, x) be a di-
rected triangle in D. Since D is right-pretransitive and (x, y), (y, z) ∈ A(D)
we can conclude that (x, z) ∈ A(D) or (z, y) ∈ A(D). In either case the
result is a directed triangle with a symmetrical arc, so let us assume with-
out loss of generality that (x, z) ∈ A(D). Then we can consider the arcs
(z, x) ∈ A(D) and (x, y) ∈ A(D), for the right-pretransitivity of D we know
that (z, y) ∈ A(D) or (y, x) ∈ A(D). In either case C3 has at least two
symmetrical arcs.

For the first part, suppose by contradiction that C = (x0, x1, . . . , xn =
x0) is a directed cycle in Asym(D), where D is a right-pretransitive digraph.
If we consider the asymmetrical directed path (x0, x1, . . . , xn−1), it follows
from Lemma 11 that (x0, xn−1) ∈ A(D); we don’t know whether (x0, xn−1)
is an asymmetrical arc or not, but together with (xn−1, xn) and as a con-
sequence of the right-pretransitivity of D we have that (x0, xn) ∈ A(D)
or (xn, xn−1) ∈ A(D), but (xn, x0) and (xn−1, xn) are both asymmetrical
arcs of D, thus we obtain the desired contradiction. Since the contradiction
arises from the assumption that there is a directed cycle in Asym(D), then
Asym(D) is acyclic.

Lemma 13. If D is a left-pretransitive digraph then Asym(D) is acyclic.
Moreover, every directed triangle in D has at least two symmetrical arcs.

Proof. The result follows straightforward from Lemmas 10 and 12.
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Our next result was part of our first attempt to implement a classical proof
method in kernel theory to k-kernels. For kernels (2-kernels), once it is
proved that digraphs in a certain family have nonempty semikernels it suf-
fices to consider a (⊆-)maximal semikernel S for a digraph D. If the set
of vertices not absorbed by S is not empty, then we can find a nonempty
semikernel S′ for D \ (S ∪N−(S)). From here is easy to prove that S ∪ S′

is a semikernel of D, contradicting the choice of S. When working with
k-kernels we have a problem: suppose that we have proved that a certain
family of digraphs have nonempty k-semikernel and consider a digraph D
in such family. Then we can find a maximal k-semikernel S of D and, if
S is (k − 1)-absorbent, S is the desired k-kernel. But if not, we consider
a k-semikernel S′ for the subdigraph T of D induced by the vertices not
(k − 1)-absorbed by S; it remains clear that S ∪ S′ is k-independent and
that every vertex reached from S must reach S ∪ S′ in D but, suppose that
there is a vertex v ∈ V (T ) such that the only S′v-directed path of length less
than or equal to k−1 in D is (x0, x1, x2, . . . , xn = v), where x0 ∈ S′ ⊆ V (T ),
but xi ∈ V (D \ T ) for some 1 ≤ i ≤ n− 1, then v is not reached by S′ in T
and then v may not reach S′ in D, and as v is in T , v does not reach S in
D, so S ∪ S′ may not be a k-semikernel in D. It is in view of this problem
that we proposed Lemma 9, were we prove that if every vertex v ∈ V (D)
is a k-semikernel of D, then D has a k-kernel. Nevertheless, this result
is interesting by itself as a local property of the class of right-pretransitive
digraphs is found.

Theorem 14. If D is a right-pretransitive digraph, then D has a k-semi-
kernel consisting of a single vertex for every k ∈ N, k ≥ 2.

Proof. If D has no asymmetrical arcs, then D is a symmetrical digraph
and each vertex is trivially a k-semikernel of D for every k ≥ 2.

So, let us assume that Asym(D) 6= ∅. In virtue of Lemma 12 Asym(D) is
acyclic, so we can choose a vertex v with out-degree 0 in Asym(D). We claim
that {v} is a k-semikernel of D for every k ≥ 2. As {v} is k-independent for
every k ∈ N, it suffices to prove that for every k ≥ 2 if a vw-directed path of
length less than or equal to k − 1 exists, then a wv-directed path of length
less than or equal to k − 1 exists.

Since v has out-degree 0 in Asym(D), if (v,w) ∈ A(D) for some w ∈
V (D), then such arc must be symmetrical, so (w, v) ∈ A(D) and the second
condition of k-semikernel is fulfilled for k = 2. Let k be greater than 2. We
will prove by induction on n that if a vw-directed path of length n ≤ k − 1
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exists, then there exists a wv-directed path of length less than or equal to
k−1. The case n = 1 has been already proved, is the same as case k = 2. Let
us assume the result valid for every vw-directed path of length m < n and
let C = (v = v0, v1, . . . , vn = w) be a vw-directed path of length n ≤ k − 1.
For the choice of v we know that (v0, v1) is a symmetrical arc of D. If every
arc in C is symmetrical, then the directed path C−1 is the one we have been
looking for. Otherwise, there must be a first asymmetrical arc in A(C ), let
us say (vi, vi+1), 1 ≤ i. So we can consider the arcs (vi−1, vi), (vi, vi+1) ∈
A(D) and, since D is right-pretransitive and (vi+1, vi) /∈ A(D), necessarily
(vi−1, vi+1) ∈ A(D), and hence v0C vi−1 ∪ (vi−1, vi+1) ∪ vi+1Cw is a vw-
directed path of length n− 1. Inductive hypothesis assures the existence of
a wv-directed path of length less than or equal to k − 1, which concludes
the proof. The desired result follows from the induction principle.

We have already proved that right-/left-pretransitive digraphs have at least
two symmetrical arcs in every directed triangle. In view of this property, it
is not very restrictive to ask for a right-/left-pretransitive digraph to have
only symmetrical directed triangles. As the next lemma shows (only after
a little technical lemma), this is a sufficient condition along with strong
connectedness to prove that every right-/left-pretransitive digraph have a
k-kernel.

Lemma 15. If D is a right-pretransitive digraph such that every directed
triangle is symmetrical and C = (x0, x1, . . . , xn) is a directed path such that
(xi, xi+1) is a symmetrical arc for every i ∈ {0, 1, . . . , n− 2} and (xn−1, xn)
is an asymmetrical arc of D, then (xi, xn) ∈ A(D) for every i ∈ {0, 1, . . . ,
n− 1}. Moreover, every such arc is asymmetrical.

Proof. By induction on n. For n = 2, (x0, x1), (x1, x2) ∈ A(D) so, since D
is right-pretransitive then (x2, x1) ∈ A(D) or (x0, x2) ∈ A(D), but (x1, x2)
is an asymmetrical arc, hence (x0, x2) ∈ A(D). Besides, if (x2, x0) ∈ A(D),
then (x0, x1, x2, x0) would be a directed triangle and it should be symmet-
rical by hypothesis, but (x1, x2) is an asymmetrical arc; it follows that
(x0, x2) is also an asymmetrical arc. So, let us assume the result valid
for every path with the required conditions and length less than n. If
C = (x0, x1, . . . , xn) is a directed path with the required conditions and
length n, clearly (x1, x2, . . . , xn) is a directed path with the required con-
ditions and length n − 1 < n, and from the inductive hypothesis we have
the existence of the asymmetrical arcs (xi, xn) for every i ∈ {1, 2, . . . , n}.
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To finish the inductive step we have to prove that (x0, xn) ∈ A(D) and it
is an asymmetrical arc. But (x0, x1), (x1, xn) is a directed path of length 2
where the first arc is symmetrical and the second arc is asymmetrical, so it
follows from the case n = 2 that (x0, xn) ∈ A(D) is an asymmetrical arc.
The desired result follows from the principle of mathematical induction.

Lemma 16. Let k ≥ 2 be an integer. If D is a right-pretransitive strong
digraph such that every directed triangle is symmetrical, then every vertex
of D is a k-semikernel of D.

Proof. Let k ≥ 2 be an integer. Let v ∈ V (D) be any vertex, consider w ∈
V (D) such that there exists a vw-directed path of length less than or equal to
k−1 and let C = (v = v0, v1, . . . , vn = w) be a vw-directed path of minimum
length. Then n ≤ k−1. For every pair of arcs (vi, vi+1), (vi+1, vi+2) ∈ A(C ),
the arc (vi, vi+2) can not exist in A(D), because it would contradict the
choice of C as a vw-directed path of minimum length, so, for the right
pretransitve hypothesis, for every 0 ≤ i ≤ n− 2 the arc (vi+2, vi+1) ∈ A(D)
must exist. If (v1, v0) ∈ A(D), the directed path (vn, vn−1, . . . , v0) would be a
wv-directed path of length n ≤ k−1. If (v1, v0) /∈ A(D), as D is strong, there
exists a v1v-directed path in D, say D = (v1 = z0, z1, . . . , zm = v). We can
suppose without loss of generality that D is of minimum length and its length
is greater than 1. So, we can consider the arcs (zi, zi+1), (zi+1, zi+2) ∈ A(D),
and since D has minimum length, once again we have the existence of the
arcs (zi+2, zi+1) ∈ A(D) for every 0 ≤ i ≤ m − 2. Also, we have the arcs
(zm−1, v), (v, z0) ∈ A(D), and by hypothesis we know that (v, z0 = v1) is not
a symmetrical arc, thence it follows from right pretransitivity the existence
of the arc (zm−1, z0) ∈ A(D). But (zm−1, z0) must be an asymmetrical
arc of D, in other case, (z0, zm−1, zm, z0) would be a directed triangle and
all of its arcs would be symmetrical for hypothesis, in particular the arc
(zm, z0) = (v, v1) would be symmetrical, contrary to our assumption. So
the directed path (z1, z2, . . . , zm−1, z0) fulfills the hypothesis of Lemma 15
and as a consequence the arcs (zi, z0) are asymmetrical arcs of D for every
i ∈ {1, 2, . . . m − 1}; in particular (z1, z0) ∈ A(D) and it should be an
asymmetrical arc, but (z0, z1) ∈ A(D), which turns out to be a contradiction.
Since the contradiction arises from the assumption (v1, v0) /∈ A(D), we can
conclude that (v1, v0) ∈ A(D) and thence there exists a wv-directed path of
length less than or equal to k − 1.

Theorem 17. If D is a right-pretransitive strong digraph such that every
directed triangle is symmetrical, then D has k-kernel for every k ∈ N, k ≥ 2.
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Proof. It follows from Lemmas 9 and 16.

Lemma 18. If D is a left-pretransitive strong digraph such that every di-
rected triangle is symmetrical, then {v} is a k-semikernel of D for every
v ∈ V (D).

Proof. Let D be a left-pretransitive strong digraph such that every directed

triangle is symmetrical. In virtue of Lemma 10
←−
D is a right-pretransitive

digraph such that every directed triangle is symmetrical, so it follows from

Lemma 16 that {v} is a k-semikernel of
←−
D for every v ∈ V (D) = V (

←−
D).

Let v be a vertex in V (D) and k ≥ 2 an integer. It is clear that {v} is k-
independent for every k, so let us consider a vw-directed path of length less
than or equal to k − 1 C . It is also obvious that C−1 is a wv-directed path

of length less than or equal to k − 1 in
←−
D , and since {w} is a k-semikernel

of
←−
D , then there exists a vw-directed path of length less than or equal to

k − 1 in
←−
D , say D . But D−1 is hence a wv-directed path of length ≤ k − 1

in D, consequently {v} fulfills both k-semikernel conditions and the result
follows.

Theorem 19. If D is a left-pretransitive strong digraph such that every
directed triangle is symmetrical, then D has k-kernel for every k ∈ N, k ≥ 2.

Proof. The result follows from Lemmas 9 and 18.

The following corollary is obtained directly by dualization.

Corollary 20. If D is a right-(left-)pretransitive strong digraph such that
every directed triangle is symmetrical, then D has a k-solution for every
k ∈ N, k ≥ 2.

For right-pretransitive digraphs we can improve our results. Let us state a
lemma about the structure of non-strong right-pretransitive digraphs, but
first we will need some notation. Let A and B be non-empty subsets of
V (D). If for every a ∈ A and every b ∈ B we have that (a, b) ∈ A(D),
we will write A 7→ B. When A = {v} for some v ∈ V (D), we will simply
write v 7→ B, and analogously if B = {v}. If S and T are subdigraphs of D
(e.g., strong components) we will abuse notation to write S 7→ T instead of
V (S) 7→ V (T ).

Lemma 21. Let be D a right-pretransitive digraph, S and T strong com-
ponents of D. If there exist s ∈ S and t ∈ T such that (s, t) ∈ A(D), then
S 7→ t.
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Proof. Let v be a vertex in V (S) \ {s}. Since S is a strong component of
D, we have that d(v, s) ∈ N. We will prove by induction on n = d(v, s)
that (v, t) ∈ A(D). If d(v, s) = 1, then (v, s), (s, t) ∈ A(D). By the right-
pretransitivity of D we have that (v, t) ∈ A(D) or (t, s) ∈ A(D). But S and
T are distinct strong components of D and (s, t) ∈ A(D). Since D⋆ is an
acyclic digraph, (t, s) /∈ A(D), thus (v, t) ∈ A(D).

For the inductive step it suffices to observe that, if d(v, s) = n, then
there exists a vs-directed path in S, (v = x0, x1, . . . , xn = s), realizing the
distance from v to s. It is clear that d(x1, s) = n − 1, so by induction
hypothesis, (x1, t) ∈ A(D). Together with (v, x1) ∈ A(D), we may use the
same argument that we used in the base case.

Theorem 22. Let D be a right-pretransitive digraph such that every directed
triangle is symmetrical. Then D has k-kernel for every k ∈ N, k ≥ 2.

Proof. Let k ≥ 2 be a fixed integer. We will proceed by induction on
n = |V (D⋆)|. If n = 1, then D is a strong digraph and the result follows
from Theorem 17. So let us assume that n ≥ 2.

Let D be a digraph such that |V (D⋆)| = n and S an initial strong
component of D. Clearly (D \ S)⋆ = D⋆ \ S, so |V ((D \ S)⋆)| = n − 1.
By induction hypothesis, D \ S has a k-kernel, say N ′. Suppose first that
dD(S,N ′) ≥ k. Then, by Theorem 17 we can choose a k-kernel N ′′ of S.
We know that dD(N ′, S) = ∞ because S is an initial component of D, so
N = N ′ ∪ N ′′ is k-independent. Also it follows from the fact that N ′ is
(k − 1)-absorbent in D \ S and N ′′ is (k − 1)-absorbent in S that N is
(k − 1)-absorbent in D. Thus, N is the desired k-kernel.

Suppose now that dD(S,N ′) ≤ k − 1. Then there is a vertex s ∈ S and
a vertex t ∈ N ′ such that there exist a directed path (s = x0, x1, . . . , xr = t)
of length r ≤ k− 1. We can choose s and t in such way that x1 ∈ V (D \S).
Since s and x1 are in distinct strong components, in virtue of Lemma 21
we can conclude that S 7→ x1, which implies that d(v, t) ≤ k − 1 for every
v ∈ V (S). Thus, N ′ is a (k − 1)-absorbent set in D. Also, since S is an
initial component, there are no N ′S-directed paths, so N ′ is k-independent
in D. Hence, N ′ is the desired k-kernel.

Dualization does not work as good as we would like for Lemma 21 and
Theorem 22. The next results have straightforward proofs by means of
dualization.
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Lemma 23. Let be D a left-pretransitive digraph, S and T strong compo-
nents of D. If there exist s ∈ S and t ∈ T such that (s, t) ∈ A(D), then
s 7→ T .

Theorem 24. Let D be a left-pretransitive digraph such that every directed
triangle is symmetrical, then D has k-solution for every k ∈ N, k ≥ 2.

So, two obvious problems arise.

Problem 25. Is it true that every right-pretransitive digraph such that
every directed triangle is symmetrical has a k-solution for every integer
k ≥ 2?

A positive answer for the question proposed in Problem 25 would imply that
every left-pretransitive digraph such that every directed triangle is symmet-
rical has a k-kernel for every integer k ≥ 2. The remaining question about
existence of k-kernels in right-/left-pretransitive digraphs would be the fol-
lowing.

Problem 26. Are the hypotheses in Theorems 17 and 19 on the directed
triangles sharp?

In virtue of Lemmas 12 and 13, Problem 26 is equivalent to asking if it is
true that every right-/left-pretransitive strong digraph has a k-kernel for
every integer k ≥ 3 or if there is a right-/left-pretransitive strong digraph
without a k-kernel for some integer k ≥ 3.

3. Quasi-transitive Digraphs

Recall that a digraph D is quasi-transitive if (u, v), (v,w) ∈ A(D) implies
(u,w) ∈ A(D) or (w, u) ∈ A(D).

As we have already mentioned, in [2] Bang-Jensen and Huang proved a
structural characterization of quasi-transitive digraphs. This result uses the
composition operation, defined next.

Definition. Let D be a digraph with vertex set {v1, v2, . . . , vn}, and let
G1, G2, . . . , Gn be digraphs which are pairwise vertex-disjoint. The compo-
sition D[G1, G2, . . . , Gn] is the digraph L with vertex set

⋃n
i=1(V (Gi)) and

arc set (
⋃n

i=1 A(Gi)) ∪ {gigj
∣

∣gi ∈ V (Gi), gj ∈ V (Gj), vivj ∈ A(D)}.

The characterization theorem is stated next.
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Theorem 27 (Bang-Jensen and Huang [2]). Let D be a digraph which is
quasi-transitive.

1. If D is not strong, then there exists an acyclic, transitive oriented graph
T with vertices {u1, u2, . . . , ut} and quasi-transitive strong digraphs H1,
H2, . . . ,Ht such that D = T [H1,H2, . . . ,Ht], where Hi is substituted ui,
i = 1, 2, . . . , t.

2. If D is strong, then there exists a strong semicomplete digraph S with
vertices {v1, v2, . . . , vs} and quasi-transitive digraphs Q1, Q2, . . . , Qs such
that each Qi is either a vertex or is non-strong and D = S[Q1, Q2, . . . , Qs],
where Qi is substituted for vi, i = 1, 2, . . . , s.

Using this characterization and a result due to Szumny, W loch and W loch
about (k, l)-kernels in digraph compositions we are able to derive easily that
every quasi-transitive digraph has a (k, l)-kernel for every k ≥ 4, k − 1 ≥
l ≥ 3 or k = 3 and l = 2, in particular, every quasi-transitive digraph
has a k-kernel for k ≥ 3. Previous results include those of I. Goldfeder
who has proven that every quasi-transitive digraph has a 3-kernel and has
given a characterization of quasi-transitive digraphs with a (2-)kernel ([14]),
and the work of Galeana-Sánchez and Rojas-Monroy ([12]) about sufficient
conditions for a quasi-transitive digraph to have a kernel. We include this
proof since is a very direct and easy consequence of Theorems 27 and 28,
but also, the authors have developed another proof of this fact using local
properties of the quasi-transitive digraphs rather than global arguments (like
those from Theorems 27 and 28) that will not be included in this work. For
the case k = 2 we simply mention the existing results about kernels in
digraphs.

To state the next result we need some new notation. If D is a digraph
with vertex set V (D) = {v1, v2, . . . , vn}, we denote by CµD(vi) the family
of all circuits in D containing the vertex vi and of length at most µ. If
D[G1, G2, . . . , Gn] is a digraph composition, we denote by Gc

i the copy of Gi

as an induced subdigraph of D[G1, G2, . . . , Gn].

Theorem 28 (Szumny, W loch, W loch [20]). Let k ≥ 2, 1 ≤ l ≤ k − 1
be integers. A subset J∗ ⊆ V (D[G1, G2, . . . , Gn]) is a (k, l)-kernel of the
composition D[G1, G2, . . . , Gn] if and only if there exists a (k, l)-kernel J ⊆
V (D) such that J∗ =

⋃

i∈I Ji, where I = {i
∣

∣vi ∈ J}, Ji ⊆ V (Gc
i ) and for

every i ∈ I

1. Ji is a (k, l)-kernel of Gc
i if Ck−1

D (vi) = ∅ or
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2. Ji is 1-element set containing an arbitrary vertex of V (Gc
i ) if ClD(vi) 6= ∅

or

3. Ji is 1-element set containing an l-absorbent vertex of Gc
i , otherwise.

To make an adequate use of this theorem we need to prove the following
lemma.

Lemma 29. If D is a strong semicomplete digraph and v ∈ V (D), then v
is contained in a directed cycle of length 2 or 3.

Proof. Let D be a semicomplete digraph and v ∈ V (D) a vertex. If any
arc incident to or from v is symmetrical, then v is contained in a directed
cycle of length 2. If every arc indicent to and from v is asymmetrical,
we can consider the in-neighbourhood and out-neighbourhood of v, N−(v)
and N+(v). Since D is a strong semicomplete digraph, there must exist a
N+(v)N−(v)-arc in D, say (u,w), and thus (v, u,w, v) is a directed cycle of
length 3.

To finish the setup to prove the main theorem of this section, we need to
observe that Theorem 5 has a very nice generalization for (k, l)-kernels. Let
D be a digraph and let x1, x2, . . . , xn be an ordering of its vertices. We call
this ordering an acyclic ordering if, for every arc (xi, xj) ∈ A(D), we have
i < j. In [1], the following characterization of transitive digraphs is left as
an excersise.

Proposition 30. Let D be a digraph with an acyclic ordering D1,D2, . . . ,Dp

of its strong components. The digraph D is transitive if and only if each Di

is complete, D⋆ is a transitive oriented graph, and D = D⋆[D1,D2, . . . ,Dp],
where D⋆ is the condensation of D.

Using Proposition 30, Theorem 5 can be generalized as follows.

Theorem 31. If D is a transitive digraph, then D has a (k, l)-kernel for
every k ≥ 2 and every l ≥ 1. Moreover, every (k, l)-kernel consists in one
vertex from every terminal strong component of D, so all (k, l)-kernels of D
have the same cardinality.

Proof. Let D be a transitive digraph with an acyclic ordering D1,D2, . . . ,Dp

of its strong components. From Proposition 30 we have that D⋆ is a tran-
sitive acyclic digraph and D = D⋆[D1,D2, . . . ,Dp], so, if v is a vertex of
D that does not belong to a terminal strong component of D, then there
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exists a terminal strong component of D, say S, such that (v, s) ∈ A(D) for
every s ∈ S. Besides, Di is a complete digraph for every i ∈ {1, 2, . . . , p},
so every vertex in Di is absorbed by every other vertex in Di. From these
observations we can conclude that if we choose one vertex in every terminal
strong component, then we obtain an (1-)absorbent set, say N . Also, for
every vertex v ∈ N , since v is in a terminal strong component of D, there
are no directed paths from v to any other strong component of D, so N is
k-independent for every k ≥ 2. The set N is the desired (k, l)-kernel, we
have already observed that it is k-independent, and every for every vertex
u ∈ V (D) \ N , there exists a vertex v ∈ N such that d(u, v) = 1 ≤ l, for
each l ≥ 1.

Theorem 32. If D is a quasi-transitive digraph, then D has a (k, l)-kernel
for every pair of integers k, l such that k ≥ 4 and 3 ≤ l ≤ k − 1 or k = 3
and l = 2.

Proof. Let k ≥ 4 and 3 ≤ l ≤ k − 1 or k = 3 and l = 2 be a fixed pair
of integers. The proof is by mathematical induction on the order of D. If
|V (D)| = 1 the result follows trivially, so let us assume the result valid for
every quasi-transitive digraph with fewer than m vertices and let D be a
digraph with exactly m vertices. We have two cases, when D is strong and
when D is non-strong.

Case 1. If D is non-strong, as a consequence of Theorem 27 there
exists an acyclic, transitive oriented graph T with vertices {u1, u2, . . . , ut}
and quasi-transitive strong digraphs H1,H2, . . . ,Ht such that D = T [H1,
H2, . . . ,Ht]. Theorem 31 assures the existence of a (k, l)-kernel with k ≥ 3
and 2 ≤ l ≤ k − 1 for every transitive digraph, so we can consider a (k, l)-
kernel of T , say J , and since H1,H2, . . . ,Ht are quasi-transitive digraphs of
order strictly smaller than m, it follows from the inductive hypothesis that
every Hi has (k, l)-kernel Ji. Since T is acyclic, we just have to consider
the first case of Theorem 28, which asks Hi to have a (k, l)-kernel for every
ui ∈ J such that Ck−1

D (ui) = ∅. It follows from Theorem 28 that D has a
(k, l)-kernel.

Case 2. If D is strong, as a consequence of Theorem 27 there exists a
strong semicomplete digraph S with vertex set {v1, v2, . . . , vs} and quasi-
transitive digraphs Q1, Q2, . . . , Qs such that Qi is a single vertex or is non-
strong, and D = S[Q1, Q2, . . . , Qs]. Since S is a semicomplete digraph, it
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follows from a well known result2) that S has a 1-vertex quasi-kernel, which
without loss of generality can be chosen as {v1}. So {v1} is k-independent
for every k and 2-absorbent, which implies that is also l-absorbent for every
2 ≤ l ≤ k−1. Being S a strong semicomplete digraph, and as a consequence
of Lemma 29, for every vertex v ∈ V (S) there exists a directed cycle of length
2 or 3 containing v. Therefore, if l ≥ 3, ClS(v1) 6= ∅ and in such case, applying
Theorem 28, it suffices to consider J = {v1} and J1 = {u}, where u ∈ V (Qc

1)
is an arbitrary vertex. If k = 3, l = 2 and ClS(v1) 6= ∅, it also suffices to
consider J = {v1} and J1 = {u}, where u ∈ V (Qc

1) is an arbitrary vertex.
If k = 3, l = 2 and ClS(v1) = ∅, then, as k − 1 = 2, also Ck−1

S (x1) = ∅, and
for the first case of Theorem 28, we only need to choose J1 as a (3, 2)-kernel
for Q1 that exists for the inductive hypothesis. It follows from Theorem 28
that J∗ = J1 is a (k, l)-kernel of D.

The result now follows from the principle of mathematical induction.

As mentioned above, case k = 2 is not covered by Theorem 32, but in
this case a k-kernel is a kernel in the classical sense of Berge. For kernels
in quasi-transitive digraphs we have a powerful sufficient condition given by
the Strong Perfect Graph Theorem, conjectured by Berge and finally proven
by Chudnovsky, Robertson, Seymour and Thomas in [8]. An odd hole in a
graph is an induced odd cycle, and odd anti-hole in a graph is an induced
subgraph isomorphic to the complement of an odd cycle.

Theorem 33 (Strong Perfect Graph Theorem). A graph is perfect if and
only if it has no odd holes nor odd anti-holes of length greater than or equal
to 5.

Together with an additional characterization and an observation we will
reach the desired result.

Definition. Let G be a graph. We call an orientation D of G clique-acyclic
if every clique in G has a kernel in D.

A graph G is called kernel solvable if every clique-acyclic orientation of
G has a kernel.

Boros and Gurvich proved in [7] that a graph is kernel solvable if it is
perfect. The converse of this result is a consequence of Theorem 33 so the
next theorem can be stated.

2)Every tournament has a (2, 2)-kernel.
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Theorem 34. A graph G is perfect if and only if it is kernel solvable.

Applying Theorem 34 and remembering that underlying graphs of asym-
metrical quasi-transitive digraphs are comparability graphs3) and that com-
parability graphs are perfect4), we obtain a sufficient condition for an asym-
metrical quasi-transitive digraph D to have a kernel (in fact, to be kernel
perfect).

Theorem 35. If D is an asymmetrical quasi-transitive digraph such that
every maximal semicomplete subdigraph of D has a kernel, then D is kernel
perfect.

Also, Galeana-Sánchez and Rojas-Monroy proved in [12] the following suffi-
cient condition for a quasi-transitive digraph to have a kernel.

Theorem 36. Let D be a (possibly infinite) digraph such that D = D1 ∪D2

(possibly A(D1) ∩ A(D2) 6= ∅), where Di is a quasi-transitive subdigraph of
D which contains no asymmetrical (in D) infinite outward path. If every
triangle contained in D has at least two symmetrical arcs, then D is a kernel
perfect digraph.

Corollary 37. If D is a quasi-transitive digraph such that every triangle
contained in D has at least two symmetrical arcs, then D is kernel-perfect.

Lemma 38. Let D be a digraph. Then D is a quasi-transitive digraph if

and only if
←−
D is a quasi-transitive digraph.

Proof. Straightforward.

Corollary 39. If D is a quasi-transitive digraph, then D has (k, l)-solution
for every pair of integers k, l such that k ≥ 4 and 3 ≤ l ≤ k − 1 or k = 3
and l = 2.

Acknowledgments

The authors wish to express their deepest gratitude to an Anonymous Ref-
eree for her/his very careful examination of the present work. Also the
authors are very thankful for many accurate and pertinent suggestions that
helped to rewrite and improve substantially the present paper.

3)Proved by Ghouila-Houri in [13].
4)Proved by Berge in [5].



k-kernels in Generalizations of Transitive Digraphs 311

References

[1] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications
(Springer-Verlag Berlin Heidelberg New York, 2002).

[2] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20

(1995) 141–161.

[3] J. Bang-Jensen and J. Huang, Kings in quasi-transitive digraphs, Discrete
Math. 185 (1998) 19–27.

[4] C. Berge, Graphs (North-Holland, Amsterdam New York, 1985).

[5] C. Berge, Some classes of perfect graphs, in: Graph Theory and Theoretical
Physics (Academic Press, London, 1967) 155–165, MR 38 No. 1017.

[6] C. Berge and P. Duchet, Recent problems and results about kernels in directed
graphs, Discrete Math. 86 (1990) 27–31.

[7] E. Boros and V. Gurvich, Perfect graphs are kernel solvable, Discrete Math.
159 (1996) 35–55.

[8] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The Strong Perfect
Graph Theorem, Annals of Math. 164 (2006) 51–229.

[9] R. Diestel, Graph Theory 3rd Edition (Springer-Verlag Berlin Heidelberg New
York, 2005).

[10] P. Duchet, Graphes Noyau-Parfaits, Annals of Discrete Math. 9 (1980) 93–101.

[11] H. Galeana-Sánchez, On the existence of kernels and h-kernels in directed
graphs, Discrete Math. 110 (1992) 251–255.

[12] H. Galeana-Sánchez and R. Rojas-Monroy, Kernels in quasi-transitive di-
graphs, Discrete Math. 306 (2006) 1969–1974.
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