Discussiones Mathematicae Graph Theory 31 (2011) 283–292

MONOCHROMATIC CYCLES AND MONOCHROMATIC PATHS IN ARC-COLORED DIGRAPHS

Hortensia Galeana-Sánchez

GUADALUPE GAYTÁN-GÓMEZ

Instituto de Matemáticas Universidad Nacional Autónoma de México Ciudad Universitaria, México, D.F. 04510, México

e-mail: hgaleana@matem.unam.mx gaytan@matem.unam.mx

AND

Rocío Rojas-Monroy

Facultad de Ciencias Universidad Autónoma del Estado de México Instituto Literario No. 100, Centro 50000, Toluca, Edo. de México, México

e-mail: mrrm@uaemex.mx

Abstract

We call the digraph D an m-colored digraph if the arcs of D are colored with m colors. A path (or a cycle) is called monochromatic if all of its arcs are colored alike. A cycle is called a quasi-monochromatic cycle if with at most one exception all of its arcs are colored alike. A subdigraph H in D is called rainbow if all its arcs have different colors. A set $N \subseteq V(D)$ is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices $u, v \in N$ there is no monochromatic path between them and; (ii) for every vertex $x \in V(D) - N$ there is a vertex $y \in$ N such that there is an xy-monochromatic path. The closure of D, denoted by $\mathfrak{C}(D)$, is the m-colored multidigraph defined as follows: $V(\mathfrak{C}(D)) = V(D), A(\mathfrak{C}(D)) = A(D) \cup \{(u, v) \text{ with color } i | \text{ there exists}$ a uv-monochromatic path colored i contained in D. Notice that for any digraph D, $\mathfrak{C}(\mathfrak{C}(D)) \cong \mathfrak{C}(D)$ and D has a kernel by monochromatic paths if and only if $\mathfrak{C}(D)$ has a kernel.

Let D be a finite *m*-colored digraph. Suppose that there is a partition $C = C_1 \cup C_2$ of the set of colors of D such that every cycle in the subdigraph $D[C_i]$ spanned by the arcs with colors in C_i is monochromatic. We show that if $\mathfrak{C}(D)$ does not contain neither rainbow triangles nor rainbow P_3 involving colors of both C_1 and C_2 , then D has a kernel by monochromatic paths.

This result is a wide extension of the original result by Sands, Sauer and Woodrow that asserts: Every 2-colored digraph has a kernel by monochromatic paths (since in this case there are no rainbow triangles in $\mathfrak{C}(D)$).

Keywords: kernel, kernel by monochromatic paths, monochromatic cycles.

2010 Mathematics Subject Classification: 05C20.

1. INTRODUCTION

For general concepts we may refer the reader to [1]. Let D be a digraph, and let V(D) and A(D) denote the sets of vertices and arcs of D, respectively. We recall that a subdigraph D_1 of D is a spanning subdigraph if $V(D_1) = V(D)$. If S is a nonempty subset of V(D) then the subdigraph D[S] induced by S is the digraph having vertex set S, and whose arcs are all those arcs of D joining vertices of S. An arc u_1u_2 of D will be called an S_1S_2 -arc of Dwhenever $u_1 \in S_1$ and $u_2 \in S_2$.

A set $I \subseteq V(D)$ is independent if $A(D[I]) = \emptyset$. A kernel N of D is an independent set of vertices such that for each $z \in V(D) - N$ there exists a zN-arc in D, that is an arc from z towards some vertex in N. A digraph D is called a kernel-perfect digraph when every induced subdigraph of D has a kernel. Sufficient conditions for the existence of kernels in digraphs have been investigated by several authors, Duchet and Meyniel [4]; Duchet [2, 3]; Galeana-Sánchez and Neumann-Lara [5, 6]. The concept of kernel is very useful in applications.

We call the digraph D an m-colored digraph if the arcs of D are colored with m colors. Along this paper, all the paths and cycles will be directed paths and directed cycles. A path is called monochromatic if all of its arcs are colored alike. A subdigraph H of D is called rainbow if all its arcs have distinct colors. A set $N \subseteq V(D)$ is called a kernel by monochromatic paths if for every pair of different vertices $u, v \in N$ there is no monochromatic path between them and for every vertex $v \in V(D) - N$ there is a monochromatic path from v to some vertex in N.

In [12] Sands, Sauer and Woodrow have proved that any 2-colored digraph D has an independent set S of vertices of D such that, for every vertex $x \notin S$, there is a monochromatic path from x to a vertex of S (i.e., D has a kernel by monochromatic paths, concept that was introduced later by Galeana-Sánchez [7].) In particular, they proved that any 2-colored tournament T has a kernel by monochromatic paths. They also raised the following problem: Let T be a 3-colored tournament such that every cycle of length 3 is a quasi-monochromatic cycle; must T have a kernel by monochromatic paths? (This question still remains open.) In [11] Shen Minggang proved that if T is an *m*-colored tournament such that every cycle of length 3 is a quasi-monochromatic cycle, and every transitive tournament of order 3 is quasi-monochromatic, then T has a kernel by monochromatic paths. He also proved that this result is the best possible for m-colored tournaments with $m \geq 5$. In fact, he proved that for each $m \geq 5$ there exists an *m*-colored tournament T such that every cycle of length 3 is quasi-monochromatic and T has no kernel by monochromatic paths. Also for every $m \geq 3$ there exists an *m*-colored tournament T' such that every transitive tournament of order 3 is quasi-monochromatic and T' has no kernel by monochromatic paths. In 2004 [10] H. Galeana-Sánchez and R. Rojas-Monroy presented a 4-colored tournament T such that every cycle of order 3 is quasi-monochromatic; but T has no kernel by monochromatic paths. The known sufficient conditions for the existence of kernel by monochromatic paths in *m*-colored $(m \ge 3)$ tournaments (or nearly tournaments), ask for the monochromaticity or quasimonochromaticity of certain subdigraphs. More information on m-colored digraphs can be found in [7, 8, 9, 13, 14].

If $C = (z_0, z_1, \ldots, z_n, z_0)$ is a cycle, we will denote by $\ell(C)$ its length and if $z_i, z_j \in V(C)$ with $i \leq j$ we denote by (z_i, C, z_j) the $z_i z_j$ -path contained in C, and $\ell(z_i, C, z_j)$ will denote its length.

The following is our main result:

Theorem 1. Let D be a finite m-colored digraph. Suppose that there is a partition $C = C_1 \cup C_2$ of the set of colors of D such that every cycle in the subdigraph $D[C_i]$ spanned by the arcs with colors in C_i is monochromatic. Suppose, moreover, that $\mathfrak{C}(D)$ does not contain neither rainbow triangles nor rainbow P_3 involving colors of both C_1 and C_2 . Then D has a kernel by monochromatic paths.

Notice that the Theorem 1 implies the Theorem of Sands, Sauer and Woodrow in the finite case by taking as a partition each of the two colors: all cycles in each color class are trivially monochromatic and $\mathfrak{C}(D)$ has no rainbow subdigraphs.

We will need the following basic elementary results.

Lemma 2. Let D be a digraph; $u, v \in V(D)$. Every uv-monochromatic walk in D contains a uv-monochromatic path.

Lemma 3. Let D be a digraph. Every closed walk in D contains a cycle.

Lemma 4. Let D be a digraph. If for every $v \in V(D)$ fulfills that $\delta_D^-(v) \ge 1$ $(\delta_D^+(v) \ge 1)$ then D contains a cycle.

And the following Theorem.

Theorem 5 (Berge-Duchet [2]). If D is a digraph such that every cycle of D has at least one symmetrical arc, then D is a kernel-perfect digraph.

2. Monochromatic Cycles and Monochromatic Paths in Arc-colored Digraphs

The following lemmas are about m-colored digraphs such that each cycle is monochromatic, and they are useful to prove our main result.

Lemma 6. Let D be a finite or infinite m-colored digraph such that every cycle in D is monochromatic. If $C = (u_0, u_1, \ldots, u_{n-1})$ is a sequence of $n \ge 2$ vertices, different by pairs, such that for every $i \in \{0, \ldots, n-1\}$ T_i is some $u_i u_{i+1}$ -monochromatic path then the set of paths $\{T_i \mid i \in \{0, \ldots, n-1\}\}$ is monochromatic, that is, the paths T_i are of the same color by pairs (the indices of the vertices will be taken modulo n.)

Proof. Assume, by contradiction, that there exists a sequence of vertices $(u_0, u_1, \ldots, u_{n-1})$ such that for every $i \in \{0, \ldots, n-1\}$ there exists a $T_i = u_i u_{i+1}$ -monochromatic path in D and the set of paths $\{T_i \mid i \in \{0, \ldots, n-1\}\}$ is not monochromatic. Choose such a counterexample with a minimal number of arcs. Then from Lemma 3 the subdigraph induced by this walk contains a cycle which involves more than one path. Since all cycles in D are monochromatic, we can not consider the arcs of the cycle and obtain a counterexample with a smaller number of arcs, a contradiction.

As a direct result from Lemma 6 we have:

Remark 7. If D is an m-colored digraph such that every cycle is monochromatic then in $\mathfrak{C}(D)$ every cycle is monochromatic.

Remark 8. If D is an m-colored digraph such that every cycle is monochromatic then in $\mathfrak{C}(D)$ every cycle is symmetrical.

Proof. It follows from Remark 7 and the fact that $\mathfrak{C}(\mathfrak{C}(D)) \cong \mathfrak{C}(D)$.

Lemma 9. Let D be a finite m-colored digraph such that every cycle in D is monochromatic. Then there exists $x_0 \in V(D)$ such that for every $z \in V(D) - \{x_0\}$ if there exists a x_0z -monochromatic path contained in D then there exists a zx_0 -monochromatic path contained in D.

Proof. Assume, for a contradiction, that D is a digraph as in the hypothesis and that there is no vertex x_0 satisfying the affirmation from Lemma 9. It follows that $Asym\mathfrak{C}(D)$ has a cycle. On the other hand, from Remark 8 we have that every cycle in $\mathfrak{C}(D)$ is symmetric, a contradiction.

Let D be an m-colored digraph and let H be a subdigraph of D. We will say that $S \subseteq V(D)$ is a semikernel by monochromatic paths modulo H of D if S is independent by monochromatic paths in D and for every $z \in V(D) - S$, if there is a Sz-monochromatic path contained in D - H then there is a zS-monochromatic path contained in D.

Lemma 10. Let D be a finite m-colored digraph. Let H be a subdigraph of D such that every directed cycle in D - H is monochromatic. Then there exists $x_0 \in V(D)$ which satisfies that $\{x_0\}$ is a semikernel by monochromatic paths mod H of D.

Proof. It follows by applying Lemma 9 to D - H.

Let

 $S = \{ \emptyset \neq S \mid S \text{ is a semikernel by monochromatic paths } mod D_2 \text{ of } D \}.$

Whenever $S \neq \emptyset$, we will denote by D_S the digraph defined as follows: $V(D_S) = S$ (i.e, for every element of S we put a vertex in D_S) and $(S_1, S_2) \in A(D_S)$ if and only if for every $s_1 \in S_1$ there exists $s_2 \in S_2$ such that $s_1 = s_2$, or there exists a s_1s_2 -monochromatic path contained in D_2 and there is no s_2S_1 -monochromatic path contained in D. **Lemma 11.** Let D be a finite m-colored digraph. Suppose that there is a partition $C = C_1 \cup C_2$ of the set of colors of D such that every cycle in the subdigraph $D[C_i]$ spanned by the arcs with colors in C_i is monochromatic. Then D_S is an acyclic digraph.

Proof. Observe that by Lemma 10, there exists a semikernel by monochromatic paths $mod \ D_2$ of D. Thus $S \neq \emptyset$ and we can consider the digraph D_S . Suppose for a contradiction, that D_S contains some cycle, say $\mathcal{C} = (S_0, S_1, \ldots, S_{n-1}, S_0)$ of length $n \geq 2$. Since \mathcal{C} is a cycle in D_S , we have that $S_i \neq S_j$ whenever $i \neq j$.

Claim 1. There exists $i_0 \in \{0, 1, 2, \dots, n-1\}$ such that for some $z \in S_{i_0}$, $z \notin S_{i_0+1} \pmod{n}$.

Otherwise, for every $i \in \{0, 1, ..., n-1\}$ and every $z \in S_i$ we have that $z \in S_{i+1}$ and then $S_i = S_j$ for all $i, j \in \{0, 1, ..., n-1\}$. So, $\mathcal{C} = (S_0)$, which is a contradiction since a cycle contains at least two vertices.

Claim 2. If there exists $i_0 \in \{0, 1, \ldots, n-1\}$ such that for some $z \in S_{i_0}$ and some $w \in S_{i_0+1} \pmod{n}$ there exists a *zw*-monochromatic path; then there exists $j_0 \neq i_0, j_0 \in \{0, 1, \ldots, n-1\}$ such that $w \in S_{j_0}$ and $w \notin S_{j_0+1} \pmod{n}$.

Suppose without loss of generality that $i_0 = 0$. First, observe that $w \notin S_n = S_0$ since otherwise we have a *zw*-monochromatic path with $\{z, w\} \subseteq S_0$, contradicting that S_0 is independent by monochromatic paths. Since $w \in S_1$, let $j_0 = \max\{i \in \{0, 1, \ldots, n-1\} \mid w \in S_i\}$ (notice that for both previous observations j_0 is well defined.) So, $w \in S_{j_0}$ and $w \notin S_{j_0+1}$.

It follows from Claim 1 that there exists $i_0 \in \{0, \ldots, n-1\}$ and $t_0 \in S_{i_0}$ such that $t_0 \notin S_{i_0+1}$. It follows from the fact that $(S_{i_0}, S_{i_0+1}) \in F(D_S)$ that there exists $t_1 \in S_{i_0+1}$ such that there exists a t_0t_1 -monochromatic path contained in D_2 and there is no $t_1S_{i_0}$ -monochromatic path contained in D. From Claim 2, it follows that there exists an index $i_1 \in \{0, \ldots, n-1\}$ such that $t_1 \in S_{i_1}$ and $t_1 \notin S_{i_1+1}$. Since $(S_{i_1}, S_{i_1+1}) \in F(D_S)$ it follows that there exists $t_2 \in S_{i_1+1}$ such that there is a t_1t_2 -monochromatic path contained in D_2 and there is no $t_2S_{i_1}$ -monochromatic path contained in D. Since D is finite, we obtain a sequence of vertices $(t_0, t_1, t_2, \ldots, t_{m-1})$ such that there exists a t_it_{i+1} -monochromatic path contained in D_2 and there is no $t_{i+1}t_i$ -monochromatic path contained in D for every $i \in \{0, 1, 2, \ldots, m-1\}$ (mod m). But this contradicts Lemma 6. Therefore D_S is an acyclic digraph.

3. The Main Result

The following theorem is a particular case from our Main Result.

Theorem 12. Let D be an m-colored digraph such that every cycle in D is monochromatic, then D has a kernel by monochromatic paths.

Proof. It follows from Remark 8 and Theorem 5 that $\mathfrak{C}(D)$ has a kernel and so D has a kernel by monochromatic paths.

The main idea of the proof of our main theorem is to select $S \in V(D_S)$ such that $\delta^+_{D_S}(S) = 0$ (such S exists since D_S is acyclic) and prove that S is a kernel by monochromatic paths of D.

We next proceed to prove our main result, Theorem 1.

Proof of Theorem 1. Consider the digraph D_S of the digraph D. Since D_S is a finite digraph and from Lemma 11 it does not contain cycles, it follows that D_S contains at least a vertex of zero outdegree. Let $S \in V(D_S)$ be such that $\delta_{D_S}^+(S) = 0$.

We will prove that S is a kernel by monochromatic paths of D. Suppose for a contradiction, that S is not a kernel by monochromatic paths of D. Since $S \in V(D_S)$, we have that S is independent by monochromatic paths.

Let

$$X = \{z \in V(D) \mid \text{there is no } zS\text{-monochromatic path in } D\}.$$

It follows from our assumption that $X \neq \emptyset$. Since D[X] is an induced subdigraph of D, we have that D[X] satisfies the hypotheses from Lemma 11. So, it follows that there exists $x_0 \in X$ such that $\{x_0\}$ is a semikernel by monochromatic paths mod D_2 of D.

Let

 $T = \{z \in S \mid \text{there is no } zx_0\text{-monochromatic path in } D_2\}.$

From the definition of T, we have that for every $z \in (S - T)$ there exists a zx_0 -monochromatic path contained in D_2 .

Claim 13. $T \cup \{x_0\}$ is independent by monochromatic paths.

It follows directly from the facts that $T \subseteq S, S \in \mathcal{S}$ and $x_0 \in X$.

Claim 14. For each $z \in V(D) - T \cup \{x_0\}$, if there exists a $(T \cup \{x_0\})z$ -monochromatic path contained in D_1 , then there exists a $z(T \cup \{x_0\})$ -monochromatic path contained in D.

Case 1. There exists a Tz-monochromatic path contained in D_1 . Since $T \subseteq S$ and $S \in S$, it follows that there exists a zS-monochromatic path contained in D. We may suppose that there exists a z(S-T)-monochromatic path contained in D. Let α_1 be a uz-monochromatic path contained in D_1 with $u \in T$, and let α_2 be a zw-monochromatic path with $w \in (S - T)$ contained in D. Since $w \in (S - T)$ it follows from the definition of T that there exists α_3 a wx_0 -monochromatic path contained in D_2 .

Moreover, $\operatorname{color}(\alpha_1) \neq \operatorname{color}(\alpha_2)$ ($\operatorname{color}(\alpha)$ denotes the color used in the arcs of α) otherwise there exists a *uw*-monochromatic path contained in $\alpha_1 \cup \alpha_2$, with $\{u, w\} \subseteq S$, in contradiction with the fact that S is independent by monochromatic paths. In addition, we will suppose that color $(\alpha_2) \neq \operatorname{color}(\alpha_3)$ since if $\operatorname{color}(\alpha_2) = \operatorname{color}(\alpha_3)$ then $\alpha_2 \cup \alpha_3$ contains a zx_0 -monochromatic path and Claim 2 is proved. Also $\operatorname{color}(\alpha_1) \neq \operatorname{color}(\alpha_3)$ as $\operatorname{color}(\alpha_1) \in C_1$ and $\operatorname{color}(\alpha_3) \in C_2$.

So, we obtain that (u, z, w, x_0) is a rainbow P_3 in $\mathfrak{C}(D)$ involving colors of both C_1 and C_2 , a contradiction.

Case 2. There exists a x_0z -monochromatic path contained in D_1 . Let α_1 be such a path, we may suppose that $z \notin X$. It follows from the definition of X that there exists some zS-monochromatic path contained in D, let α_2 be such path, say that α_2 ends in w. We will suppose that $w \in (S - T)$. Since $w \in (S - T)$, by the definition of T, we have that there exists a wx_0 -monochromatic path contained in D_2 , let α_3 be such a path.

Again, we have that $\operatorname{color}(\alpha_1) \neq \operatorname{color}(\alpha_2)$ otherwise there exists a x_0w monochromatic path contained in $\alpha_1 \cup \alpha_2$, contradicting that $x_0 \in X$ and $w \in S$. In addition, we will suppose that $\operatorname{color}(\alpha_2) \neq \operatorname{color}(\alpha_3)$ since if $\operatorname{color}(\alpha_2) = \operatorname{color}(\alpha_3)$ then $\alpha_2 \cup \alpha_3$ contains a zx_0 -monochromatic path and Claim 2 is proved. Also $\operatorname{color}(\alpha_1) \neq \operatorname{color}(\alpha_3)$ since $\alpha_1 \subseteq D_1$ and $\alpha_3 \subseteq D_2$.

Then (x_0, z, w, x_0) is a rainbow C_3 in $\mathfrak{C}(D)$ which involves colors of both C_1 and C_2 , a contradiction.

We conclude from Claims 1 and 2 that $T \cup \{x_0\} \in S$ and therefore $T \cup \{x_0\} \in V(D_S)$. We have that $(S, T \cup \{x_0\}) \in F(D_S)$ since $T \subseteq T \cup \{x_0\}$, and for each $s \in S - T$ there exists a sx_0 -monochromatic path contained in D_2 and there is no x_0S -monochromatic path contained in D. But this contradicts

the fact that $\delta_{D_S}^+(S) = 0$. Therefore S is a kernel by monochromatic paths in D and the Theorem is proved.

Remark 15. Notice that while in Theorem 12 it is asked for every cycle to be monochromatic, in the Theorem 1 there could exist non monochromatic cycles since the monochromatic cycles only are asked for each D_i , $i \in \{1, 2\}$.

Acknowledgement

The authors thank the anonymous referee for many suggestions which improve substantially the rewriting of this paper.

References

- [1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).
- [2] P. Duchet, Graphes Noyau Parfaits, Ann. Discrete Math. 9 (1980) 93–101.
- [3] P. Duchet, Classical Perfect Graphs, An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984) 67–96.
- [4] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103–105.
- [5] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67–76.
- [6] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257–265.
- [7] H. Galeana-Sánchez, On monochromatic paths and monochromatics cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103–112.
- [8] H. Galeana-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998) 87–99.
- [9] H. Galeana-Sánchez and J.J. García-Ruvalcaba, Kernels in the closure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 103–110.
- [10] H. Galeana-Sánchez and R. Rojas-Monroy, A counterexample to a conjecture on edge-coloured tournaments, Discrete Math. 282 (2004) 275–276.
- S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108–111.
- [12] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271–275.

292 H. GALEANA-SÁNCHEZ, G. GAYTÁN-GÓMEZ AND R. ROJAS-MONROY

- [13] I. Włoch, On kernels by monochromatic paths in the corona of digraphs, Cent. Eur. J. Math. 6 (2008) 537–542.
- [14] I. Włoch, On imp-sets and kernels by monochromatic paths in duplication, Ars Combin. 83 (2007) 93–99.

Received 26 November 2009 Revised 18 December 2010 Accepted 19 December 2010