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Universidad Nacional Autónoma de México
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Abstract

We call the digraph D an m-colored digraph if the arcs of D are
colored with m colors. A path (or a cycle) is called monochromatic if all
of its arcs are colored alike. A cycle is called a quasi-monochromatic
cycle if with at most one exception all of its arcs are colored alike.
A subdigraph H in D is called rainbow if all its arcs have different
colors. A set N ⊆ V (D) is said to be a kernel by monochromatic
paths if it satisfies the following two conditions: (i) for every pair of
different vertices u, v ∈ N there is no monochromatic path between
them and; (ii) for every vertex x ∈ V (D) − N there is a vertex y ∈
N such that there is an xy-monochromatic path. The closure of D,
denoted by C(D), is the m-colored multidigraph defined as follows:
V (C(D)) = V (D), A(C(D)) = A(D)∪{(u, v) with color i | there exists
a uv-monochromatic path colored i contained in D}. Notice that for
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any digraph D, C(C(D)) ∼= C(D) and D has a kernel by monochromatic
paths if and only if C(D) has a kernel.

Let D be a finite m-colored digraph. Suppose that there is a parti-
tion C = C1 ∪C2 of the set of colors of D such that every cycle in the
subdigraph D[Ci] spanned by the arcs with colors in Ci is monochro-
matic. We show that if C(D) does not contain neither rainbow triangles
nor rainbow P3 involving colors of both C1 and C2, then D has a kernel
by monochromatic paths.

This result is a wide extension of the original result by Sands, Sauer
and Woodrow that asserts: Every 2-colored digraph has a kernel by
monochromatic paths (since in this case there are no rainbow triangles
in C(D)).

Keywords: kernel, kernel by monochromatic paths, monochromatic
cycles.

2010 Mathematics Subject Classification: 05C20.

1. Introduction

For general concepts we may refer the reader to [1]. Let D be a digraph, and
let V (D) and A(D) denote the sets of vertices and arcs of D, respectively. We
recall that a subdigraph D1 of D is a spanning subdigraph if V (D1) = V (D).
If S is a nonempty subset of V (D) then the subdigraph D[S] induced by
S is the digraph having vertex set S, and whose arcs are all those arcs of
D joining vertices of S. An arc u1u2 of D will be called an S1S2-arc of D
whenever u1 ∈ S1 and u2 ∈ S2.

A set I ⊆ V (D) is independent if A(D[I]) = ∅. A kernel N of D is an
independent set of vertices such that for each z ∈ V (D) −N there exists a
zN -arc in D, that is an arc from z towards some vertex in N . A digraph D

is called a kernel-perfect digraph when every induced subdigraph of D has
a kernel. Sufficient conditions for the existence of kernels in digraphs have
been investigated by several authors, Duchet and Meyniel [4]; Duchet [2, 3];
Galeana-Sánchez and Neumann-Lara [5, 6]. The concept of kernel is very
useful in applications.

We call the digraph D an m-colored digraph if the arcs of D are colored
with m colors. Along this paper, all the paths and cycles will be directed
paths and directed cycles. A path is called monochromatic if all of its arcs
are colored alike. A subdigraph H of D is called rainbow if all its arcs have
distinct colors. A set N ⊆ V (D) is called a kernel by monochromatic paths
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if for every pair of different vertices u, v ∈ N there is no monochromatic path
between them and for every vertex v ∈ V (D)−N there is a monochromatic
path from v to some vertex in N .

In [12] Sands, Sauer and Woodrow have proved that any 2-colored di-
graph D has an independent set S of vertices of D such that, for every
vertex x 6∈ S, there is a monochromatic path from x to a vertex of S (i.e., D
has a kernel by monochromatic paths, concept that was introduced later by
Galeana-Sánchez [7].) In particular, they proved that any 2-colored tourna-
ment T has a kernel by monochromatic paths. They also raised the following
problem: Let T be a 3-colored tournament such that every cycle of length
3 is a quasi-monochromatic cycle; must T have a kernel by monochromatic
paths? (This question still remains open.) In [11] Shen Minggang proved
that if T is an m-colored tournament such that every cycle of length 3 is
a quasi-monochromatic cycle, and every transitive tournament of order 3 is
quasi-monochromatic, then T has a kernel by monochromatic paths. He also
proved that this result is the best possible for m-colored tournaments with
m ≥ 5. In fact, he proved that for each m ≥ 5 there exists an m-colored
tournament T such that every cycle of length 3 is quasi-monochromatic and
T has no kernel by monochromatic paths. Also for every m ≥ 3 there exists
an m-colored tournament T ′ such that every transitive tournament of order
3 is quasi-monochromatic and T ′ has no kernel by monochromatic paths. In
2004 [10] H. Galeana-Sánchez and R. Rojas-Monroy presented a 4-colored
tournament T such that every cycle of order 3 is quasi-monochromatic; but T
has no kernel by monochromatic paths. The known sufficient conditions for
the existence of kernel by monochromatic paths in m-colored (m ≥ 3) tour-
naments (or nearly tournaments), ask for the monochromaticity or quasi-
monochromaticity of certain subdigraphs. More information on m-colored
digraphs can be found in [7, 8, 9, 13, 14].

If C = (z0, z1, . . . , zn, z0) is a cycle, we will denote by ℓ(C) its length and
if zi, zj ∈ V (C) with i ≤ j we denote by (zi, C, zj) the zizj-path contained in
C, and ℓ(zi, C, zj) will denote its length.

The following is our main result:

Theorem 1. Let D be a finite m-colored digraph. Suppose that there is a

partition C = C1 ∪ C2 of the set of colors of D such that every cycle in the

subdigraph D[Ci] spanned by the arcs with colors in Ci is monochromatic.

Suppose, moreover, that C(D) does not contain neither rainbow triangles

nor rainbow P3 involving colors of both C1 and C2. Then D has a kernel by

monochromatic paths.
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Notice that the Theorem 1 implies the Theorem of Sands, Sauer and Woodrow
in the finite case by taking as a partition each of the two colors: all cycles
in each color class are trivially monochromatic and C(D) has no rainbow
subdigraphs.

We will need the following basic elementary results.

Lemma 2. Let D be a digraph; u, v ∈ V (D). Every uv-monochromatic walk

in D contains a uv-monochromatic path.

Lemma 3. Let D be a digraph. Every closed walk in D contains a cycle.

Lemma 4. Let D be a digraph. If for every v ∈ V (D) fulfills that δ−D(v) ≥ 1
(δ+D(v) ≥ 1) then D contains a cycle.

And the following Theorem.

Theorem 5 (Berge-Duchet [2]). If D is a digraph such that every cycle of

D has at least one symmetrical arc, then D is a kernel-perfect digraph.

2. Monochromatic Cycles and Monochromatic Paths in

Arc-colored Digraphs

The following lemmas are about m-colored digraphs such that each cycle is
monochromatic, and they are useful to prove our main result.

Lemma 6. Let D be a finite or infinite m-colored digraph such that every

cycle in D is monochromatic. If C = (u0, u1, . . . , un−1) is a sequence of n ≥
2 vertices, different by pairs, such that for every i ∈ {0, . . . , n−1} Ti is some

uiui+1-monochromatic path then the set of paths {Ti | i ∈ {0, . . . , n − 1}}
is monochromatic, that is, the paths Ti are of the same color by pairs (the
indices of the vertices will be taken modulo n.)

Proof. Assume, by contradiction, that there exists a sequence of vertices
(u0, u1, . . . , un−1) such that for every i ∈ {0, . . . , n − 1} there exists a Ti =
uiui+1-monochromatic path in D and the set of paths {Ti | i ∈ {0, . . . ,
n−1}} is not monochromatic. Choose such a counterexample with a minimal
number of arcs. Then from Lemma 3 the subdigraph induced by this walk
contains a cycle which involves more than one path. Since all cycles in D

are monochromatic, we can not consider the arcs of the cycle and obtain a
counterexample with a smaller number of arcs, a contradiction.
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As a direct result from Lemma 6 we have:

Remark 7. If D is an m-colored digraph such that every cycle is monochro-
matic then in C(D) every cycle is monochromatic.

Remark 8. If D is an m-colored digraph such that every cycle is monochro-
matic then in C(D) every cycle is symmetrical.

Proof. It follows from Remark 7 and the fact that C(C(D)) ∼= C(D).

Lemma 9. Let D be a finite m-colored digraph such that every cycle in

D is monochromatic. Then there exists x0 ∈ V (D) such that for every

z ∈ V (D) − {x0} if there exists a x0z-monochromatic path contained in D

then there exists a zx0-monochromatic path contained in D.

Proof. Assume, for a contradiction, that D is a digraph as in the hypothesis
and that there is no vertex x0 satisfying the affirmation from Lemma 9. It
follows that AsymC(D) has a cycle. On the other hand, from Remark 8 we
have that every cycle in C(D) is symmetric, a contradiction.

Let D be an m-colored digraph and let H be a subdigraph of D. We will say
that S ⊆ V (D) is a semikernel by monochromatic paths modulo H of D if
S is independent by monochromatic paths in D and for every z ∈ V (D)−S,
if there is a Sz-monochromatic path contained in D − H then there is a
zS-monochromatic path contained in D.

Lemma 10. Let D be a finite m-colored digraph. Let H be a subdigraph of

D such that every directed cycle in D − H is monochromatic. Then there

exists x0 ∈ V (D) which satisfies that {x0} is a semikernel by monochromatic

paths mod H of D.

Proof. It follows by applying Lemma 9 to D −H.

Let

S = {∅ 6= S | S is a semikernel by monochromatic paths mod D2 of D}.

Whenever S 6= ∅, we will denote by DS the digraph defined as follows:
V (DS) = S (i.e, for every element of S we put a vertex in DS) and (S1, S2) ∈
A(DS) if and only if for every s1 ∈ S1 there exists s2 ∈ S2 such that s1 = s2,
or there exists a s1s2-monochromatic path contained in D2 and there is no
s2S1-monochromatic path contained in D.



288 H. Galeana-Sánchez, G. Gaytán-Gómez and R. Rojas-Monroy

Lemma 11. Let D be a finite m-colored digraph. Suppose that there is a

partition C = C1 ∪ C2 of the set of colors of D such that every cycle in the

subdigraph D[Ci] spanned by the arcs with colors in Ci is monochromatic.

Then DS is an acyclic digraph.

Proof. Observe that by Lemma 10, there exists a semikernel by monochro-
matic paths mod D2 of D. Thus S 6= ∅ and we can consider the di-
graph DS . Suppose for a contradiction, that DS contains some cycle, say
C = (S0, S1, . . . , Sn−1, S0) of length n ≥ 2. Since C is a cycle in DS , we have
that Si 6= Sj whenever i 6= j.

Claim 1. There exists i0 ∈ {0, 1, 2, . . . , n − 1} such that for some z ∈ Si0 ,
z 6∈ Si0+1 (mod n).

Otherwise, for every i ∈ {0, 1, . . . , n− 1} and every z ∈ Si we have that
z ∈ Si+1 and then Si = Sj for all i, j ∈ {0, 1, . . . , n−1}. So, C = (S0), which
is a contradiction since a cycle contains at least two vertices.

Claim 2. If there exists i0 ∈ {0, 1, . . . , n−1} such that for some z ∈ Si0 and
some w ∈ Si0+1 (mod n) there exists a zw-monochromatic path; then there
exists j0 6= i0, j0 ∈ {0, 1, . . . , n−1} such that w ∈ Sj0 and w 6∈ Sj0+1(mod n).

Suppose without loss of generality that i0 = 0. First, observe that w 6∈
Sn = S0 since otherwise we have a zw-monochromatic path with {z, w} ⊆
S0, contradicting that S0 is independent by monochromatic paths. Since
w ∈ S1, let j0 = max{i ∈ {0, 1, . . . , n − 1} | w ∈ Si} (notice that for both
previous observations j0 is well defined.) So, w ∈ Sj0 and w 6∈ Sj0+1.

It follows from Claim 1 that there exists i0 ∈ {0, . . . , n−1} and t0 ∈ Si0

such that t0 6∈ Si0+1. It follows from the fact that (Si0 , Si0+1) ∈ F (DS)
that there exists t1 ∈ Si0+1 such that there exists a t0t1-monochromatic
path contained in D2 and there is no t1Si0-monochromatic path contained
in D. From Claim 2, it follows that there exists an index i1 ∈ {0, . . . , n− 1}
such that t1 ∈ Si1 and t1 6∈ Si1+1. Since (Si1 , Si1+1) ∈ F (DS) it follows
that there exists t2 ∈ Si1+1 such that there is a t1t2-monochromatic path
contained in D2 and there is no t2Si1-monochromatic path contained in D.
Since D is finite, we obtain a sequence of vertices (t0, t1, t2, . . . , tm−1) such
that there exists a titi+1-monochromatic path contained in D2 and there
is no ti+1ti-monochromatic path contained in D for every i ∈ {0, 1, 2, . . . ,
m−1} (mod m). But this contradicts Lemma 6. Therefore DS is an acyclic
digraph.
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3. The Main Result

The following theorem is a particular case from our Main Result.

Theorem 12. Let D be an m-colored digraph such that every cycle in D is

monochromatic, then D has a kernel by monochromatic paths.

Proof. It follows from Remark 8 and Theorem 5 that C(D) has a kernel
and so D has a kernel by monochromatic paths.

The main idea of the proof of our main theorem is to select S ∈ V (DS) such
that δ+DS

(S) = 0 (such S exists since DS is acyclic) and prove that S is a
kernel by monochromatic paths of D.

We next proceed to prove our main result, Theorem 1.

Proof of Theorem 1. Consider the digraph DS of the digraph D. Since
DS is a finite digraph and from Lemma 11 it does not contain cycles, it
follows that DS contains at least a vertex of zero outdegree. Let S ∈ V (DS)
be such that δ+DS

(S) = 0.

We will prove that S is a kernel by monochromatic paths of D.

Suppose for a contradiction, that S is not a kernel by monochromatic paths
of D. Since S ∈ V (DS), we have that S is independent by monochromatic
paths.

Let

X = {z ∈ V (D) | there is no zS-monochromatic path in D}.

It follows from our assumption that X 6= ∅. Since D[X] is an induced
subdigraph of D, we have that D[X] satisfies the hypotheses from Lemma
11. So, it follows that there exists x0 ∈ X such that {x0} is a semikernel by
monochromatic paths mod D2 of D.

Let

T = {z ∈ S | there is no zx0-monochromatic path in D2}.

From the definition of T , we have that for every z ∈ (S − T ) there exists a
zx0-monochromatic path contained in D2.

Claim 13. T ∪ {x0} is independent by monochromatic paths.

It follows directly from the facts that T ⊆ S, S ∈ S and x0 ∈ X.
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Claim 14. For each z ∈ V (D) − T ∪ {x0}, if there exists a (T ∪ {x0})z-
monochromatic path contained in D1, then there exists a z(T ∪ {x0})-mon-
ochromatic path contained in D.

Case 1. There exists a Tz-monochromatic path contained in D1.

Since T ⊆ S and S ∈ S, it follows that there exists a zS-monochromatic path
contained in D. We may suppose that there exists a z(S−T )-monochromatic
path contained in D. Let α1 be a uz-monochromatic path contained in D1

with u ∈ T , and let α2 be a zw-monochromatic path with w ∈ (S − T )
contained in D. Since w ∈ (S − T ) it follows from the definition of T that
there exists α3 a wx0-monochromatic path contained in D2.

Moreover, color(α1) 6= color(α2) (color(α) denotes the color used in the
arcs of α) otherwise there exists a uw-monochromatic path contained in
α1 ∪ α2, with {u,w} ⊆ S, in contradiction with the fact that S is inde-
pendent by monochromatic paths. In addition, we will suppose that color
(α2) 6= color(α3) since if color(α2) = color(α3) then α2 ∪ α3 contains a zx0-
monochromatic path and Claim 2 is proved. Also color(α1) 6= color(α3) as
color(α1) ∈ C1 and color(α3) ∈ C2.

So, we obtain that (u, z, w, x0) is a rainbow P3 in C(D) involving colors
of both C1 and C2, a contradiction.

Case 2. There exists a x0z-monochromatic path contained in D1.

Let α1 be such a path, we may suppose that z 6∈ X. It follows from the
definition of X that there exists some zS-monochromatic path contained
in D, let α2 be such path, say that α2 ends in w. We will suppose that
w ∈ (S − T ). Since w ∈ (S − T ), by the definition of T , we have that there
exists a wx0-monochromatic path contained in D2, let α3 be such a path.

Again, we have that color(α1) 6= color(α2) otherwise there exists a x0w-
monochromatic path contained in α1 ∪ α2, contradicting that x0 ∈ X and
w ∈ S. In addition, we will suppose that color(α2) 6= color(α3) since if
color(α2) = color(α3) then α2 ∪α3 contains a zx0-monochromatic path and
Claim 2 is proved. Also color(α1) 6= color(α3) since α1 ⊆ D1 and α3 ⊆ D2.

Then (x0, z, w, x0) is a rainbow C3 in C(D) which involves colors of both
C1 and C2, a contradiction.

We conclude from Claims 1 and 2 that T ∪{x0} ∈ S and therefore T ∪{x0} ∈
V (DS). We have that (S, T ∪ {x0}) ∈ F (DS) since T ⊆ T ∪ {x0}, and for
each s ∈ S − T there exists a sx0-monochromatic path contained in D2 and
there is no x0S-monochromatic path contained in D. But this contradicts



Monochromatic Cycles and Monochromatic Paths 291

the fact that δ+DS
(S) = 0. Therefore S is a kernel by monochromatic paths

in D and the Theorem is proved.

Remark 15. Notice that while in Theorem 12 it is asked for every cycle to
be monochromatic, in the Theorem 1 there could exist non monochromatic
cycles since the monochromatic cycles only are asked for each Di, i ∈ {1, 2}.
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